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3. Simplices and Convexity

3. Simplices and Convexity

3.1. Affine Independence

Definition

Points v0, v1, . . . , vq in some Euclidean space Rk are said to be
affinely independent (or geometrically independent) if the only
solution of the linear system

q∑
j=0

sjvj = 0,

q∑
j=0

sj = 0

is the trivial solution s0 = s1 = · · · = sq = 0.
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Lemma 3.1

Let v0, v1, . . . , vq be points of Euclidean space Rk of dimension k .
Then the points v0, v1, . . . , vq are affinely independent if and only
if the displacement vectors v1 − v0, v2 − v0, . . . , vq − v0 are linearly
independent.
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Proof
Suppose that the points v0, v1, . . . , vq are affinely independent.
Let s1, s2, . . . , sq be real numbers which satisfy the equation

q∑
j=1

sj(vj − v0) = 0.

Then
q∑

j=0
sjvj = 0 and

q∑
j=0

sj = 0, where s0 = −
q∑

j=1
sj , and therefore

s0 = s1 = · · · = sq = 0.

It follows that the displacement vectors
v1 − v0, v2 − v0, . . . , vq − v0 are linearly independent.
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Conversely, suppose that these displacement vectors are linearly
independent. Let s0, s1, s2, . . . , sq be real numbers which satisfy

the equations
q∑

j=0
sjvj = 0 and

q∑
j=0

sj = 0. Then s0 = −
q∑

j=1
sj , and

therefore

0 =

q∑
j=0

sjvj = s0v0 +

q∑
j=1

sjvj =

q∑
j=1

sj(vj − v0).

It follows from the linear independence of the displacement vectors
vj − v0 for j = 1, 2, . . . , q that

s1 = s2 = · · · = sq = 0.

But then s0 = 0 also, because s0 = −
q∑

j=1
sj . It follows that the

points v0, v1, . . . , vq are affinely independent, as required.
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It follows from Lemma 3.1 that any set of affinely independent
points in Rk has at most k + 1 elements. Moreover if a set
consists of affinely independent points in Rk , then so does every
subset of that set.
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3.2. Simplices in Euclidean Spaces

Definition

A q-simplex in Rk is defined to be a set of the form
q∑

j=0

tjvj : 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1

 ,

where v0, v1, . . . , vq are affinely independent points of Rk . These
points are referred to as the vertices of the simplex. The
non-negative integer q is referred to as the dimension of the
simplex. (Thus a simplex of dimension q has q + 1 vertices.)
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Example
A 0-simplex in a Euclidean space Rk is a single point of that space.

Example
A 1-simplex in a Euclidean space Rk of dimension at least one is a
line segment in that space. Indeed let λ be a 1-simplex in Rk with
vertices v and w. Then

λ = {s v + t w : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 and s + t = 1}
= {(1− t)v + t w : 0 ≤ t ≤ 1},

and thus λ is a line segment in Rk with endpoints v and w.
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Example
A 2-simplex in a Euclidean space Rk of dimension at least two is a
triangle in that space. Indeed let τ be a 2-simplex in Rk with
vertices u, v and w. Then

τ = {r u + s v + t w : 0 ≤ r , s, t ≤ 1 and r + s + t = 1}.

Let x ∈ τ . Then there exist r , s, t ∈ [0, 1] such that
x = r u + s v + t w and r + s + t = 1. If r = 1 then x = u.
Suppose that r < 1. Then

x = r u + (1− r)
(

(1− p)v + pw
)

where p =
t

1− r
. Moreover 0 ≤ r < 1 and 0 ≤ p ≤ 1. Also the

above formula determines a point of the 2-simplex τ for each pair
of real numbers r and p satisfying 0 ≤ r ≤ 1 and 0 ≤ p ≤ 1.
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Thus

τ =
{
r u + (1− r)

(
(1− p)v + pw

)
: 0 ≤ p, r ≤ 1.

}
.

Now the point (1− p)v + pw traverses the line segment v w from
v to w as p increases from 0 to 1. It follows that τ is the set of
points that lie on line segments with one endpoint at u and the
other at some point of the line segment v w. This set of points is
thus a triangle with vertices u, v and w.
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Example
A 3-simplex in a Euclidean space Rk of dimension at least three is
a tetrahedron on that space. Indeed let x be a point of a
3-simplex σ in R3 with vertices a, b, c and d. Then there exist
non-negative real numbers s, t, u and v such that

x = s a + t b + u c + v d,

and s + t + u + v = 1. These real numbers s, t, u and v all have
values between 0 and 1, and moreover 0 ≤ t ≤ 1− s,
0 ≤ u ≤ 1− s and 0 ≤ v ≤ 1− s. Suppose that x 6= a. Then
0 ≤ s < 1 and x = s a + (1− s)y, where

y =
t

1− s
b +

u

1− s
c +

v

1− s
d.
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Moreover y is a point of the triangle b c d, because

0 ≤ t

1− s
≤ 1, 0 ≤ u

1− s
≤ 1, 0 ≤ v

1− s
≤ 1

and
t

1− s
+

u

1− s
+

v

1− s
= 1.

It follows that the point x lies on a line segment with one endpoint
at the vertex a of the 3-simplex and the other at some point y of
the triangle b c d. Thus the 3-simplex σ has the form of a
tetrahedron (i.e., it has the form of a pyramid on a triangular base
b c d with apex a).
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A simplex of dimension q in Rk determines a subset of Rk that is a
translate of a q-dimensional vector subspace of Rk . Indeed let the
points v0, v1, . . . , vq be the vertices of a q-dimensional simplex σ
in Rk . Then these points are affinely independent. It follows from
Lemma 3.1 that the displacement vectors

v1 − v0, v2 − v0, . . . , vq − v0

are linearly independent. These vectors therefore span a
q-dimensional vector subspace V of Rk . Now, given any point x of
σ, there exist real numbers t0, t1, . . . , tq such that 0 ≤ tj ≤ 1 for

j = 0, 1, . . . , q,
q∑

j=0
tj = 1 and x =

q∑
j=0

tjvj . Then

x =

 q∑
j=0

tj

 v0 +

q∑
j=1

tj(vj − v0) = v0 +

q∑
j=1

tj(vj − v0).
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It follows that

σ =

{
v0 +

q∑
j=1

tj(vj − v0) : 0 ≤ tj ≤ 1 for j = 1, 2, . . . , q

and

q∑
j=1

tj ≤ 1

}
,

and therefore σ ⊂ v0 + V . Moreover the q-dimensional vector
subspace V of Rk is the unique q-dimensional vector subspace of
Rk that contains the displacement vectors between each pair of
points belonging to the simplex σ.
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3.3. Faces of Simplices

Definition

Let σ and τ be simplices in Rk . We say that τ is a face of σ if the
set of vertices of τ is a subset of the set of vertices of σ. A face of
σ is said to be a proper face if it is not equal to σ itself. An
r -dimensional face of σ is referred to as an r -face of σ. A
1-dimensional face of σ is referred to as an edge of σ.

Note that any simplex is a face of itself. Also the vertices and
edges of any simplex are by definition faces of the simplex.
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3.4. Barycentric Coordinates on a Simplex

Let σ be a q-simplex in Rk with vertices v0, v1, . . . , vq. If x is a
point of σ then there exist real numbers t0, t1, . . . , tq such that

q∑
j=0

tjvj = x,

q∑
j=0

tj = 1 and 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q.

Moreover t0, t1, . . . , tq are uniquely determined: if
q∑

j=0
sjvj =

q∑
j=0

tjvj and
q∑

j=0
sj =

q∑
j=0

tj = 1, then
q∑

j=0
(tj − sj)vj = 0

and
q∑

j=0
(tj − sj) = 0, and therefore tj − sj = 0 for j = 0, 1, . . . , q,

because the points v0, v1, . . . , vq are affinely independent.
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Definition

Let σ be a q-simplex in Rk with vertices v0, v1, . . . , vq, and let
x ∈ σ. The barycentric coordinates of the point x (with respect to
the vertices v0, v1, . . . , vq) are the unique real numbers
t0, t1, . . . , tq for which

q∑
j=0

tjvj = x and

q∑
j=0

tj = 1.

The barycentric coordinates t0, t1, . . . , tq of a point of a q-simplex
satisfy the inequalities 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q.



3. Simplices and Convexity (continued)

Example
Consider the triangle τ in R3 with vertices at i, j and k, where

i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1).

Then

τ = {(x , y , z) ∈ R3 : 0 ≤ x , y , z ≤ 1 and x + y + z = 1}.

The barycentric coordinates on this triangle τ then coincide with
the Cartesian coordinates x , y and z , because

(x , y , z) = x i + y j + zk

for all (x , y , z) ∈ τ .
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Example
Consider the triangle in R2 with vertices at (0, 0), (1, 0) and (0, 1).
This triangle is the set

{(x , y) ∈ R2 : x ≥ 0, y ≥ 0 and x + y ≤ 1.}.

The barycentric coordinates of a point (x , y) of this triangle are t0,
t1 and t2, where

t0 = 1− x − y , t1 = x and t2 = y .
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Example
Consider the triangle in R2 with vertices at (1, 2), (3, 3) and (4, 5).
Let t0, t1 and t2 be the barycentric coordinates of a point (x , y) of
this triangle. Then t0, t1, t2 are non-negative real numbers, and
t0 + t1 + t2 = 1. Moreover

(x , y) = (1− t1 − t2)(1, 2) + t1(3, 3) + t2(4, 5),

and thus

x = 1 + 2t1 + 3t2 and y = 2 + t1 + 3t2.

It follows that

t1 = x − y + 1 and t2 = 1
3(x − 1− 2t1) = 2

3y −
1
3x − 1,

and therefore

t0 = 1− t1 − t2 = 1
3y −

2
3x + 1.
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In order to verify these formulae it suffices to note that
(t0, t1, t2) = (1, 0, 0) when (x , y) = (1, 2), (t0, t1, t2) = (0, 1, 0)
when (x , y) = (3, 3) and (t0, t1, t2) = (0, 0, 1) when (x , y) = (4, 5).
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