MA3486—Fixed Point Theorems and Economic Equilibria School of Mathematics, Trinity College Hilary Term 2018 Lecture 10 (February 8, 2018)

David R. Wilkins

3. Simplices and Convexity

3.1. Affine Independence

Definition

Points $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$ in some Euclidean space \mathbb{R}^k are said to be *affinely independent* (or *geometrically independent*) if the only solution of the linear system

$$\begin{cases} \sum_{j=0}^{q} s_j \mathbf{v}_j = \mathbf{0}, \\ \sum_{j=0}^{q} s_j = \mathbf{0} \end{cases}$$

is the trivial solution $s_0 = s_1 = \cdots = s_q = 0$.

Lemma 3.1

Let $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$ be points of Euclidean space \mathbb{R}^k of dimension k. Then the points $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$ are affinely independent if and only if the displacement vectors $\mathbf{v}_1 - \mathbf{v}_0, \mathbf{v}_2 - \mathbf{v}_0, \dots, \mathbf{v}_q - \mathbf{v}_0$ are linearly independent.

Proof

Suppose that the points $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$ are affinely independent. Let s_1, s_2, \dots, s_q be real numbers which satisfy the equation

$$\sum_{j=1}^q s_j(\mathbf{v}_j-\mathbf{v}_0)=\mathbf{0}.$$

Then $\sum_{j=0}^{q} s_j \mathbf{v}_j = \mathbf{0}$ and $\sum_{j=0}^{q} s_j = 0$, where $s_0 = -\sum_{j=1}^{q} s_j$, and therefore

$$s_0=s_1=\cdots=s_q=0.$$

It follows that the displacement vectors $\mathbf{v}_1 - \mathbf{v}_0, \mathbf{v}_2 - \mathbf{v}_0, \dots, \mathbf{v}_q - \mathbf{v}_0$ are linearly independent.

3. Simplices and Convexity (continued)

Conversely, suppose that these displacement vectors are linearly independent. Let $s_0, s_1, s_2, \ldots, s_q$ be real numbers which satisfy the equations $\sum_{j=0}^{q} s_j \mathbf{v}_j = \mathbf{0}$ and $\sum_{j=0}^{q} s_j = 0$. Then $s_0 = -\sum_{j=1}^{q} s_j$, and therefore

$$\mathbf{0} = \sum_{j=0}^q s_j \mathbf{v}_j = s_0 \mathbf{v}_0 + \sum_{j=1}^q s_j \mathbf{v}_j = \sum_{j=1}^q s_j (\mathbf{v}_j - \mathbf{v}_0).$$

It follows from the linear independence of the displacement vectors $\mathbf{v}_j - \mathbf{v}_0$ for $j = 1, 2, \dots, q$ that

$$s_1=s_2=\cdots=s_q=0.$$

But then $s_0 = 0$ also, because $s_0 = -\sum_{j=1}^{q} s_j$. It follows that the points $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$ are affinely independent, as required.

It follows from Lemma 3.1 that any set of affinely independent points in \mathbb{R}^k has at most k + 1 elements. Moreover if a set consists of affinely independent points in \mathbb{R}^k , then so does every subset of that set.

3.2. Simplices in Euclidean Spaces

Definition

A *q*-simplex in \mathbb{R}^k is defined to be a set of the form

$$\left\{\sum_{j=0}^q t_j \mathbf{v}_j: 0 \leq t_j \leq 1 \text{ for } j=0,1,\ldots,q \text{ and } \sum_{j=0}^q t_j = 1\right\},$$

where $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ are affinely independent points of \mathbb{R}^k . These points are referred to as the *vertices* of the simplex. The non-negative integer q is referred to as the *dimension* of the simplex. (Thus a simplex of dimension q has q + 1 vertices.)

A 0-simplex in a Euclidean space \mathbb{R}^k is a single point of that space.

Example

A 1-simplex in a Euclidean space \mathbb{R}^k of dimension at least one is a line segment in that space. Indeed let λ be a 1-simplex in \mathbb{R}^k with vertices **v** and **w**. Then

$$\begin{aligned} \lambda &= \{ s \mathbf{v} + t \mathbf{w} : 0 \le s \le 1, \ 0 \le t \le 1 \text{ and } s + t = 1 \} \\ &= \{ (1-t)\mathbf{v} + t \mathbf{w} : 0 \le t \le 1 \}, \end{aligned}$$

and thus λ is a line segment in \mathbb{R}^k with endpoints **v** and **w**.

A 2-simplex in a Euclidean space \mathbb{R}^k of dimension at least two is a triangle in that space. Indeed let τ be a 2-simplex in \mathbb{R}^k with vertices **u**, **v** and **w**. Then

$$\tau = \{ r \mathbf{u} + s \mathbf{v} + t \mathbf{w} : 0 \le r, s, t \le 1 \text{ and } r + s + t = 1 \}.$$

Let $\mathbf{x} \in \tau$. Then there exist $r, s, t \in [0, 1]$ such that $\mathbf{x} = r \mathbf{u} + s \mathbf{v} + t \mathbf{w}$ and r + s + t = 1. If r = 1 then $\mathbf{x} = \mathbf{u}$. Suppose that r < 1. Then

$$\mathbf{x} = r \mathbf{u} + (1-r) \Big((1-p)\mathbf{v} + p\mathbf{w} \Big)$$

where $p = \frac{t}{1-r}$. Moreover $0 \le r < 1$ and $0 \le p \le 1$. Also the above formula determines a point of the 2-simplex τ for each pair of real numbers r and p satisfying $0 \le r \le 1$ and $0 \le p \le 1$.

Thus

$$\tau = \left\{ r \mathbf{u} + (1-r) \left((1-p)\mathbf{v} + p\mathbf{w} \right) : 0 \le p, r \le 1. \right\}.$$

Now the point $(1 - p)\mathbf{v} + p\mathbf{w}$ traverses the line segment $\mathbf{v} \mathbf{w}$ from \mathbf{v} to \mathbf{w} as p increases from 0 to 1. It follows that τ is the set of points that lie on line segments with one endpoint at \mathbf{u} and the other at some point of the line segment $\mathbf{v} \mathbf{w}$. This set of points is thus a triangle with vertices \mathbf{u} , \mathbf{v} and \mathbf{w} .

A 3-simplex in a Euclidean space \mathbb{R}^k of dimension at least three is a tetrahedron on that space. Indeed let **x** be a point of a 3-simplex σ in \mathbb{R}^3 with vertices **a**, **b**, **c** and **d**. Then there exist non-negative real numbers *s*, *t*, *u* and *v* such that

 $\mathbf{x} = s \, \mathbf{a} + t \, \mathbf{b} + u \, \mathbf{c} + v \, \mathbf{d},$

and s + t + u + v = 1. These real numbers s, t, u and v all have values between 0 and 1, and moreover $0 \le t \le 1 - s$, $0 \le u \le 1 - s$ and $0 \le v \le 1 - s$. Suppose that $\mathbf{x} \ne \mathbf{a}$. Then $0 \le s < 1$ and $\mathbf{x} = s \mathbf{a} + (1 - s)\mathbf{y}$, where

$$\mathbf{y} = \frac{t}{1-s} \, \mathbf{b} + \frac{u}{1-s} \, \mathbf{c} + \frac{v}{1-s} \, \mathbf{d}$$

Moreover \mathbf{y} is a point of the triangle $\mathbf{b} \mathbf{c} \mathbf{d}$, because

$$0 \le \frac{t}{1-s} \le 1, \quad 0 \le \frac{u}{1-s} \le 1, \quad 0 \le \frac{v}{1-s} \le 1$$

and

$$\frac{t}{1-s} + \frac{u}{1-s} + \frac{v}{1-s} = 1.$$

It follows that the point **x** lies on a line segment with one endpoint at the vertex **a** of the 3-simplex and the other at some point **y** of the triangle **b c d**. Thus the 3-simplex σ has the form of a tetrahedron (i.e., it has the form of a pyramid on a triangular base **b c d** with apex **a**).

3. Simplices and Convexity (continued)

A simplex of dimension q in \mathbb{R}^k determines a subset of \mathbb{R}^k that is a translate of a q-dimensional vector subspace of \mathbb{R}^k . Indeed let the points $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ be the vertices of a q-dimensional simplex σ in \mathbb{R}^k . Then these points are affinely independent. It follows from Lemma 3.1 that the displacement vectors

$$\mathbf{v}_1 - \mathbf{v}_0, \mathbf{v}_2 - \mathbf{v}_0, \dots, \mathbf{v}_q - \mathbf{v}_0$$

are linearly independent. These vectors therefore span a q-dimensional vector subspace V of \mathbb{R}^k . Now, given any point \mathbf{x} of σ , there exist real numbers t_0, t_1, \ldots, t_q such that $0 \le t_j \le 1$ for

$$j=0,1,\ldots,q$$
, $\sum_{j=0}^{q}t_{j}=1$ and $\mathbf{x}=\sum_{j=0}^{q}t_{j}\mathbf{v}_{j}$. Then

$$\mathbf{x} = \left(\sum_{j=0}^{q} t_j\right) \mathbf{v}_0 + \sum_{j=1}^{q} t_j (\mathbf{v}_j - \mathbf{v}_0) = \mathbf{v}_0 + \sum_{j=1}^{q} t_j (\mathbf{v}_j - \mathbf{v}_0).$$

It follows that

$$\sigma = \left\{ \mathbf{v}_0 + \sum_{j=1}^q t_j (\mathbf{v}_j - \mathbf{v}_0) : 0 \le t_j \le 1 \text{ for } j = 1, 2, \dots, q \right.$$

and
$$\sum_{j=1}^q t_j \le 1 \right\},$$

and therefore $\sigma \subset \mathbf{v_0} + V$. Moreover the *q*-dimensional vector subspace V of \mathbb{R}^k is the unique *q*-dimensional vector subspace of \mathbb{R}^k that contains the displacement vectors between each pair of points belonging to the simplex σ .

3.3. Faces of Simplices

Definition

Let σ and τ be simplices in \mathbb{R}^k . We say that τ is a *face* of σ if the set of vertices of τ is a subset of the set of vertices of σ . A face of σ is said to be a *proper face* if it is not equal to σ itself. An *r*-dimensional face of σ is referred to as an *r*-face of σ . A 1-dimensional face of σ is referred to as an *edge* of σ .

Note that any simplex is a face of itself. Also the vertices and edges of any simplex are by definition faces of the simplex.

3.4. Barycentric Coordinates on a Simplex

Let σ be a *q*-simplex in \mathbb{R}^k with vertices $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$. If **x** is a point of σ then there exist real numbers t_0, t_1, \ldots, t_q such that

$$\sum_{j=0}^q t_j \mathbf{v}_j = \mathbf{x}, \quad \sum_{j=0}^q t_j = 1 ext{ and } 0 \leq t_j \leq 1 ext{ for } j = 0, 1, \dots, q.$$

Moreover t_0, t_1, \ldots, t_q are uniquely determined: if $\sum_{j=0}^{q} s_j \mathbf{v}_j = \sum_{j=0}^{q} t_j \mathbf{v}_j \text{ and } \sum_{j=0}^{q} s_j = \sum_{j=0}^{q} t_j = 1, \text{ then } \sum_{j=0}^{q} (t_j - s_j) \mathbf{v}_j = \mathbf{0}$ and $\sum_{j=0}^{q} (t_j - s_j) = 0$, and therefore $t_j - s_j = 0$ for $j = 0, 1, \ldots, q$, because the points $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ are affinely independent.

Definition

Let σ be a *q*-simplex in \mathbb{R}^k with vertices $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$, and let $\mathbf{x} \in \sigma$. The *barycentric coordinates* of the point \mathbf{x} (with respect to the vertices $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$) are the unique real numbers t_0, t_1, \ldots, t_q for which

$$\sum_{j=0}^q t_j \mathbf{v}_j = \mathbf{x}$$
 and $\sum_{j=0}^q t_j = 1.$

The barycentric coordinates t_0, t_1, \ldots, t_q of a point of a *q*-simplex satisfy the inequalities $0 \le t_j \le 1$ for $j = 0, 1, \ldots, q$.

Consider the triangle τ in \mathbb{R}^3 with vertices at **i**, **j** and **k**, where

$${f i}=(1,0,0), \quad {f j}=(0,1,0) \quad {
m and} \quad {f k}=(0,0,1).$$

Then

$$\tau = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x, y, z \le 1 \text{ and } x + y + z = 1\}.$$

The barycentric coordinates on this triangle τ then coincide with the Cartesian coordinates x, y and z, because

$$(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

for all $(x, y, z) \in \tau$.

Consider the triangle in \mathbb{R}^2 with vertices at (0,0), (1,0) and (0,1). This triangle is the set

$$\{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0 \text{ and } x + y \le 1.\}.$$

The barycentric coordinates of a point (x, y) of this triangle are t_0 , t_1 and t_2 , where

$$t_0 = 1 - x - y$$
, $t_1 = x$ and $t_2 = y$.

Consider the triangle in \mathbb{R}^2 with vertices at (1, 2), (3, 3) and (4, 5). Let t_0 , t_1 and t_2 be the barycentric coordinates of a point (x, y) of this triangle. Then t_0 , t_1 , t_2 are non-negative real numbers, and $t_0 + t_1 + t_2 = 1$. Moreover

$$(x, y) = (1 - t_1 - t_2)(1, 2) + t_1(3, 3) + t_2(4, 5),$$

and thus

$$x = 1 + 2t_1 + 3t_2$$
 and $y = 2 + t_1 + 3t_2$.

It follows that

$$t_1 = x - y + 1$$
 and $t_2 = \frac{1}{3}(x - 1 - 2t_1) = \frac{2}{3}y - \frac{1}{3}x - 1$,

and therefore

$$t_0 = 1 - t_1 - t_2 = \frac{1}{3}y - \frac{2}{3}x + 1.$$

In order to verify these formulae it suffices to note that $(t_0, t_1, t_2) = (1, 0, 0)$ when (x, y) = (1, 2), $(t_0, t_1, t_2) = (0, 1, 0)$ when (x, y) = (3, 3) and $(t_0, t_1, t_2) = (0, 0, 1)$ when (x, y) = (4, 5).