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2. Correspondences and Hemicontinuity (continued)

2.2. The Graph of a Correspondence

Let m and n be integers. Then the Cartesian product R” x R™ of
the Euclidean spaces R” and R™ of dimensions n and m is itself a
Euclidean space of dimension n 4+ m whose Euclidean norm is
characterized by the property that

(x,y)[> = [x|* + |y[?

forall x € R” and y € R™.
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Lemma 2.4

Let x1,X2,X3,... and y1,¥2,Y3, ... be infinite sequences of points
in R" and R™ respectively, and let p € R" and q € R™. Then the
infinite sequence

(xla Y1), (X2, Y2), (X3, y3)a s

converges in R" x R™ to the point (p, q) if and only if the infinite
sequence Let x1,X2,X3, ... converges to the point p and the
infinite sequence y1,Y2,Y3, ... converges to the point q.
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Proof
Suppose that the infinite sequence

(Xl, y1)7 (X2, Y2), (X3, Y3)7 cee

converges in R” x R™ to the point (p,q). Let some strictly
positive real number £ be given. Then there exists some positive
integer N such that

xj —pl* + |y; — a* < &
whenever j > N. But then
xj—p|l<e and |y;—q|<e

whenever j > N. It follows that x; — p and y; — q as j — +00.
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Conversely suppose that x; —+ p and y; — q as j — +o00. Let
some positive real number £ be given. Then there exist positive
integers Ny and N» such that |x; — p| < £/v/2 whenever j > N,
and |y; — q| < &/v/2 whenever j > Ny. Let N be the maximum of
N1 and N2. Then

x; — p[> + ly; —af* < &

whenever j > N. It follows that (x;,y;) — (p,q) as j — +o0, as
required. |}
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Lemma 2.5

Let X and Y be subsets of R" and R™ respectively, and let V' be a
subset of X X Y. Then V is open in X x Y if and only if, given
any point (p,q) of V, where p € X and q € Y, there exist subsets
Wx and Wy of X and Y respectively such that p € Wx, q € Wy,
Wx is open in X, Wy is open in' Y and Wx x Wy C V.

v

Proof

Let V be a subset of X x Y and let (p,q) € V, where p € X and
qgey.

Suppose that V is open in X x Y. Then there exists a positive real
number ¢ such that (x,y) € V for all x € X and y € Y satisfying

x—pl+]y —af <&
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Let

Wx—{XEXi‘X—p’<\j§}

and

5
Wy = cY:|ly— < —=
v {y ly —q| vﬁ}

If x € Wx and y € Wy then

5 2
V—pF+w—qF<2(> = 0°

V2

and therefore (x,y) € V. It follows that Wx x Wy C V.



2. Correspondences and Hemicontinuity (continued)

Conversely suppose that there exist open sets Wx and Wy in X
and Y respectively such that p € Wx, q € Wy and

Wx x Wy C V. Then there exists some positive real number ¢§
such that x € Wx for all x € X satisfying |x — p| < ¢ and also

y € Wy for all y € Y satisfying |y — q| < J. If (x,y) is a point of
X X Y that lies within a distance § of (p,q) then |[x — p| < ¢ and
ly — q| < 6, and therefore (x,y) € Wx x Wy. But

Wx x Wy C V. It follows that the open ball of radius § about the
point (p,q) is wholly contained within the subset V of X x Y.
The result follows. |}
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Proposition 2.6

Let X and Y be subsets of R" and R™ respectively, and let G be a
subset of X X Y. Then G is closed in X x Y if and only if

(lim x;, limy;)e G

_]—)OO _]—}OO
for all convergent infinite sequences x1,X2,x3 in X and for all
convergent infinite sequences y1,Y2,Y3 in Y with the property that
(xj,yj) € G for all positive integers j.

v
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Proof

Suppose that G is closed in X x Y. Let x1,X2,x3 be an infinite
sequence in X converging to some point p of X and let y1,y2,y3
be an infinite sequence in Y converging to a point q of Y, where
(xj,yj) € G for all positive integers j. We must prove that

(p,q) € G. Now the infinite sequence consisting of the ordered
pairs (x;,y;) converges in X x Y to (p,q) (see Lemma 2.4). Now
every infinite sequence contained in G that converges to a point of
X XY must converge to a point of G, because G is closed in

X x Y (see Lemma 1.10). It follows that (p,q) € G.
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Now suppose that G is not closed in X x Y. Then the
complement of G in X X Y is not open, and therefore there exists
a point (p,q) of X x Y that does not belong to G though every
open ball of positive radius about the point (p, q) intersects G. It
follows that, given any positive integer j, the open ball of radius
1/j about the point (p,q) intersects G and therefore there exist
x; € X and y; € Y for which |x; —p| < 1/j, |yj —q| < 1/j and

G. Th li = d i P = d theref
(xj,yj) € en —:-T Xj = p an _]—)I-Tooyj q and therefore

(lim x;, lim y;) € G.

j—o0 j—o0

The result follows. |
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Definition

Let X and Y be subsets of R” and R™ respectively, and let

@: X — Y be a function from X and Y. The graph Graph(y) of
the function ¢ is the subset of R” x R™ defined so that

Graph(p) = {(x,y) e R" xR™ :x € X and y = p(x)}.

| A

Definition

Let X and Y be subsets of R” and R respectively, and let

®: X =2 Y be a correspondence between X and Y. The graph
Graph(®) of the correspondence @ is the subset of R” x R™
defined so that

Graph(®) = {(x,y) e R" x R™ : x € X and y € ®(x)}.
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Let X and Y be subsets of R" and R™ respectively, and let

p: X = Y be a function from X to Y. Suppose that p: X =Y
is continuous. Then the graph Graph(y) of the function ¢ is
closed in X x Y.

Proof
Let 9p: X X Y — Y be the function defined such that

Y(x,y) =y —p(x)

for all x € X and y € Y. Then Graph(p) = ¢~({0}), and {0} is
closed in R™. It follows that Graph(y) is closed in X x Y (see
Corollary 1.17). |}
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Example
Let f: R — R be defined such that

1 .
F(x) = - if x> 0;

0 ifx<o.

Then the graph Graph(f) of the function f satisfies
Graph(f) = Z U H, where

Z={(x,y)eR*:x<0and y =0}
and
H={(x,y) €R?:x>0and xy = 1}.

Each of the sets Z and H is a closed set in R2. It follows that
Graph(f) is a closed set in R2. However the function f: R — R is
not continuous at 0.
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Lemma 2.8

Let X be a subset of n-dimensional Euclidean space R", let S be a
non-empty subset of X, and let

d(x,S) =inf{|x —s|:s € S}

for all x € X. Then the function sending x to d(x, S) for all x € X
is a continuous function on X.

v
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Proof
Let f(x) = d(x,S) = inf{|x —s| : s € S} for all x € X.
Let x and x’ be points of X. It follows from the Triangle Inequality
that
f(x) <|x—s| < |x—=xX|+[x —5

for all s € S, and therefore
X" —s| > f(x) — [x — x|

for all s € S. Thus f(x) — |x — x/| is a lower bound for the
quantities |x’ — s| as s ranges over the set S, and therefore cannot
exceed the greatest lower bound of these quantities. It follows that

f(x') =inf{|xX' —s| :s € S} > f(x) — [x — X[,

and thus
f(x)—f(xX) <|x—X|.
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Interchanging x and x/, it follows that

f(x') = f(x) <|x—X|.
Thus

f(x) — F(x)] < [x — x|

for all x,x’ € X. It follows that the function f: X — R is
continuous, as required. |

The multidimensional Heine-Borel Theorem (Theorem 1.23)
ensures that a subset of a Euclidean space is compact if and only if
it is both closed and bounded.
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Proposition 2.9

Let X be a subset of n-dimensional Euclidean space R", let V' be a
subset of X that is open in X, and let K be a compact subset of
R" satisfying K C V. Then there exists some positive real
number ¢ with the property that Bx(K,e) C V, where Bx(K,¢)
denotes the subset of X consisting of those points of X that lie
within a distance less than e of some point of K.
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Proof of Proposition 2.9 using the Extreme Value Theorem
Let f: K — R be defined such that

f(x)=inf{lz—x|:z€ X\ V}.

for all x € K. It follows from Lemma 2.8 that the function f is
continuous on K.

Now K C V and therefore, given any point x € K, there exists
some positive real number § such that the open ball of radius ¢
about the point x is contained in V/, and therefore f(x) > 4. It
follows that f(x) > 0 for all x € K.
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It follows from the Extreme Value Theorem for continuous
real-valued functions on closed bounded subsets of Euclidean
spaces (Theorem 1.20) that the function f: K — R attains its
minimum value at some point of K. Let that minimum value be ¢.
Then f(x) > e > 0 for all x € K, and therefore [x — z| > & > 0 for
allx € K and z € X\ V. It follows that Bx(K,e) C V, as
required. |



2. Correspondences and Hemicontinuity (continued)

Example
Let
F={(x,y)eR?:x>0, y>0and xy >1}.

and let

V ={(x,y) €R?:y > 0}.
Note that if (x,y) € F then x > 0 and y > 0, because xy = 1. It
follows that F C V. Also F is a closed set in R? and V is an open
set in R?. However F is not a compact subset of R? because F is
not bounded.
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We now show that there does not exist any positive real number &
with the property that Bg2(F,e) C V, where Bg:(F,¢) denotes
the set of points of R? that lie within a distance ¢ of some point of
F. Indeed let some positive real number ¢ be given, let x be a
positive real number satisfying x > 2c71, and let y = x~1 — %5.
Then y < 0, and therefore (x,y) € V. But (x,y + 3¢) € F, and
therefore (x, y) € Brz2(F,¢). This shows that there does not exist
any positive real number ¢ for which Bg2(F,g) C V.
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