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1. Review of Basic Results of Analysis in Euclidean Spaces (continued)

1.3. The Extreme Value Theorem

We use the Bolzano-Weierstrass Theorem in order to prove the
following important result.

Theorem 1.20 (The Multidimensional Extreme Value
Theorem)

Let X be a closed bounded set in n-dimensional Euclidean space,
and let f : X → R be a continuous real-valued function defined on
X . Then there exist points u and v of X such that
f (u) ≤ f (x) ≤ f (v) for all x ∈ X.
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Proof
We first prove that if f : X → R is a bounded continuous
real-valued function on X then f attains a maximum and a
minimum value on the set X . We then apply this result to show
that all continuous real-valued functions on X are bounded. It will
then follow that all continuous real-valued functions on X attain a
maximum and a minimum value on the set X .
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Thus suppose that f : X → R is a bounded continuous real-valued
function on the closed bounded set X . Then the set

{f (x) : x ∈ X}

of values of the function f is a bounded non-empty set and thus
has a least upper bound M. There then exists an infinite sequence
x1, x2, x3, . . . of points of X such that f (xj) > M − 1/j for all
positive integers j . The infinite sequence x1, x2, x3, . . . is a
bounded sequence, because it is contained in the bounded set X .
It follows from the Bolzano-Weierstrass Theorem Theorem 1.4 that
the infinite sequence has a subsequence xk1 , xk2 , xk3 , . . . that
converges to some point v of Rm. But then v ∈ X , because the
set X is closed (Lemma 1.10). But the continuity of f then
ensures that M = lim

j→+∞
f (xkj ) = f (v). Therefore f (x) ≤ f (v) for

all points x of X .
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Applying this result with f replaced by −f , we deduce also that
there exists some point u of X with the property that f (x) ≥ f (u)
for all points x of X . We have thus shown that if f : X → R is
both continuous and bounded, and if the set X is both closed and
bounded, then there exist points u and v ∈ X such that
f (u) ≤ f (x) ≤ f (v) for all x ∈ X .
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Now let f : X → R be any continuous real-valued function on X ,
and let g : X → R be defined such that

g(x) =
1

1 + f (x)2

for all x ∈ X . Then the function g is both continuous on X , and
0 < g(x) ≤ 1 for all x ∈ X . It follows from the result already
obtained that there exists some point w of X such that
g(x) ≥ g(w) for all x ∈ X . Moreover g(w) > 0. Let K be a
positive constant chosen large enough to ensure that
1/K 2 < g(w). Then −K < f (x < K for all points x of X . The
function f is thus bounded in X . The general result therefore
follows from the result already proved under the assumption that
the function is both continuous and bounded.
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1.4. Lebesgue Numbers

Definition

Let X be a subset of n-dimensional Euclidean space Rn. A
collection of subsets of Rn is said to cover X if and only if every
point of X belongs to at least one of these subsets.

Definition

Let X be a subset of n-dimensional Euclidean space Rn. An open
cover of X is a collection of subsets of X that are open in X and
cover the set X .
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Proposition 1.21

Let X be a closed bounded set in n-dimensional Euclidean space,
and let V be an open cover of X . Then there exists a positive real
number δL with the property that, given any point u of X , there
exists a member V of the open cover V for which

{x ∈ X : |x− u| < δL} ⊂ V .

Proof
Let

BX (u, δ) = {x ∈ X : |x− u| < δ}

for all u ∈ X and for all positive real numbers δ. Suppose that
there did not exist any positive real number δL with the stated
property.
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Then, given any positive number δ, there would exist a point u of
X for which the ball BX (u, δ) would not be wholly contained
within any open set V belonging to the open cover V. Then

BX (u, δ) ∩ (X \ V ) 6= ∅

for all members V of the open cover V. There would therefore
exist an infinite sequence

u1,u2,u3, . . .

of points of X with the property that, for all positive integers j , the
open ball

BX (uj , 1/j) ∩ (X \ V ) 6= ∅

for all members V of the open cover V.
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The sequence
u1,u2,u3, . . .

would be bounded, because the set X is bounded. It would then
follow from the multidimensional Bolzano-Weierstrass Theorem
(Theorem 1.4) that there would exist a convergent subsequence

uj1 ,uj2 ,uj3 , . . .

of
u1,u2,u3, . . . .
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Let p be the limit of this convergent subsequence. Then the
point p would then belong to X , because X is closed (see
Lemma 1.10). But then the point p would belong to an open
set V belonging to the open cover V. It would then follow from
the definition of open sets that there would exist a positive real
number δ for which BX (p, 2δ) ⊂ V . Let j = jk for a positive
integer k large enough to ensure that both 1/j < δ and
uj ∈ BX (p, δ). The Triangle Inequality would then ensure that
every point of X within a distance 1/j of the point uj would lie
within a distance 2δ of the point p, and therefore

BX (uj , 1/j) ⊂ BX (p, 2δ) ⊂ V .
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But B(uj , 1/j) ∩ (X \ V ) 6= ∅ for all members V of the open cover
V, and therefore it would not be possible for this open set to be
contained in the open set V . Thus the assumption that there is no
positive number δL with the required property has led to a
contradiction. Therefore there must exist some positive number δL
with the property that, for all u ∈ X the open ball BX (u, δL) in X
is contained wholly within at least one open set belonging to the
open cover V, as required.
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Definition

Let X be a subset of n-dimensional Euclidean space, and let V be
an open cover of X . A positive real number δL is said to be a
Lebesgue number for the open cover V if, given any point p of X ,
there exists some member V of the open cover V for which

{x ∈ X : |x− p| < δL} ⊂ V .

Proposition 1.21 ensures that, given any open cover of a closed
bounded subset of n-dimensional Euclidean space, there exists a
positive real number that is a Lebesgue number for that open
cover.
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Definition

The diameter diam(A) of a bounded subset A of n-dimensional
Euclidean space is defined so that

diam(A) = sup{|x− y| : x, y ∈ A}.

It follows from this definition that diam(A) is the smallest real
number K with the property that |x− y| ≤ K for all x, y ∈ A.
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Lemma 1.22

Let X be a bounded subset of n-dimensional Euclidean space, and
let δ be a positive real number. Then there exists a finite collection
A1,A2, . . . ,As of subsets of X such that the diam(Ai ) < δ for
i = 1, 2, . . . , s and

X = A1 ∪ A2 ∪ · · · ∪ Ak .

Proof
Let b be a real number satisfying 0 <

√
n b < δ and, for each

n-tuple (j1, j2, . . . , jn) of integers, let H(j1,j2,...,jn) denote the
hypercube in Rn defined such that

H(j1,j2,...,jn) = {(x1, x2, . . . , xn) ∈ Rn :

jib ≤ xi ≤ (ji + 1)b for i = 1, 2, . . . , n}.
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Note that if u and v are points of H(j1,j2,...,jn) for some n-tuple
(j1, j2, . . . , jn) of integers then |ui − vi | < b for i = 1, 2, . . . , n, and
therefore |u− v| ≤

√
n b < δ. Therefore the diameter of each

hypercube H(j1,j2,...,jn) is less than δ.
The boundedness of the set X ensures that there are only finitely
many n-tuples (j1, j2, . . . , jn) of integers for which X ∩H(j1,j2,...,jn) is
non-empty. It follows that X is covered by a finite collection
A1,A2, . . . ,Ak of subsets of X , where each of these subsets is of
the form X ∩H(j1,j2,...,jn) for some n-tuple (j1, j2, . . . , jn) of integers.
These subsets all have diameter less than δ. The result follows.
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Definition

Let V and W be open covers of some subset X of a Euclidean
space. Then W is said to be a subcover of V if and only if every
open set belonging to W also belongs to V.

Definition

A subset X of a Euclidean space is said to be compact if and only
if every open cover of X possesses a finite subcover.
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Theorem 1.23

(The Multidimensional Heine-Borel Theorem) A subset of
n-dimensional Euclidean space Rn is compact if and only if it is
both closed and bounded.

Proof
Let X be a compact subset of Rn and let

Vj = {x ∈ X : |x| < j}

for all positive integers j . Then the sets V1,V2,V3, . . . constitute
an open cover of X . This open cover has a finite subcover, and
therefore there exist positive integers j1, j2, . . . , jk such that

X ⊂ Vj1 ∪ Vj2 ∪ · · · ∪ Vjk .

Let M be the largest of the positive integers j1, j2, . . . , jk . Then
|x| ≤ M for all x ∈ X . Thus the set X is bounded.
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Let q be a point of Rn that does not belong to X , and let

Wj =

{
x ∈ X : |x− q| > 1

j

}
for all positive integers j . Then the sets W1,W2,W3, . . . constitute
an open cover of X . This open cover has a finite subcover, and
therefore there exist positive integers j1, j2, . . . , jk such that

X ⊂Wj1 ∪Wj2 ∪ · · · ∪Wjk .

Let δ = 1/M, where M is the largest of the positive integers
j1, j2, . . . , jk . Then |x− q| ≥ δ for all x ∈ X and thus the open ball
of radius δ about the point q does not intersect the set X . We
conclude that the set X is closed. We have now shown that every
compact subset of Rn is both closed and bounded.
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We now prove the converse. Let X be a closed bounded subset of
Rn, and let V be an open cover of X . It follows from
Proposition 1.21 that there exists a Lebesgue number δL for the
open cover V. It then follows from Lemma 1.22 that there exist
subsets A1,A2, . . . ,As of X such that diam(Ai ) < δL for
i = 1, 2, . . . , s and

X = A1 ∪ A2 ∪ · · · ∪ As .
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We may suppose that Ai is non-empty for i = 1, 2, . . . , s (because
if Ai = ∅ then Ai could be deleted from the list). Choose pi ∈ Ai

for i = 1, 2, . . . , s. Then Ai ⊂ BX (pi , δL) for i = 1, 2, . . . , s. The
definition of the Lebesgue number δL then ensures that there exist
members V1,V2, . . . ,Vs of the open cover V such that
BX (pi , δL) ⊂ Vi for i = 1, 2, . . . , s. Then Ai ⊂ Vi for
i = 1, 2, . . . , s, and therefore

X ⊂ V1 ∪ V2 ∪ · · · ∪ Vs .

Thus V1,V2, . . . ,Vs constitute a finite subcover of the open
cover U . We have therefore proved that every closed bounded
subset of n-dimensional Euclidean space is compact, as
required.
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