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1.1. Basic Properties of Vectors and Norms

We denote by R” the set consisting of all n-tuples (x1, x2, ..., xn)
of real numbers. The set R” represents n-dimensional Euclidean
space (with respect to the standard Cartesian coordinate system).
Let x and y be elements of R”, where

X:(Xl,X2,...,Xn), y:(yl’y27""yn)?

and let \ be a real number. We define

x+y = (xa+y,x+yo. X0+ Yn),

x—y = (X1 =Yy, X2—Y2,...sXn — ¥n),
Ax = (Axg, Ax2, ..., Axp),

Xy = Xiy1 +xX¥2+ -+ XpYn,

x| = \/x12+x22+---+x,%.
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The quantity x -y is the scalar product (or inner product) of x and
y, and the quantity |x| is the Euclidean norm of x. Note that

|x|?2 = x - x. The Euclidean distance between two points x and y of
R" is defined to be the Euclidean norm |y — x| of the vector y — x.

Let x and y be elements in R”, Let p(t) = |tx + y|? for all real
numbers t. Then

p(t) = (tx+y).(tx+y)
= x4+ 2tx.y+ |y

for all real numbers t. But p(t) > 0 for all real numbers ¢. It
follows that |x - y| < |x||y|. This inquality is known as Schwarz’s
Inequality.
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Moreover, given any elements x and y of R”,

x+y[? = (x+y).(x+y)=x>+]y+2x-y
< IxPP+ ly[P+20x|ly] = (x| + |y])*

It follows that [x +y| < |x| + |y|. It follows from this inequality that
x—z[ < |x—y|+]y -2

for all x,y,z € R". This identity is known as the Triangle
Inequality. It expresses the geometric result that the length of any
side of a triangle in a Euclidean space of any dimension is the sum
of the lengths of the other two sides of that triangle.
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Definition
A sequence X1, X2, X3, ... of points in R" is said to converge to a
point p if and only if the following criterion is satisfied:—
given any real number € satisfying € > 0 there exists
some positive integer N such that |x; — p| < ¢ whenever
Jj=N.

We refer to p as the limit ET x; of the sequence xi,x2,X3,. ...
J (0.0
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Let p be a point of R", where p = (p1,p2,...,pPn). Then a
sequence Xi,Xp, X3, ... of points in R" converges to p if and only
if the ith components of the elements of this sequence converge to
pi fori =1,2,...,n.

A proof of Lemma 1.1 is to be found in Appendix A.
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1.2. The Bolzano-Weierstrass Theorem

An infinite sequence xi, X2, X3, ... of real numbers is said to be
strictly increasing if x;11 > x; for all positive integers j, strictly
decreasing if x;11 < x; for all positive integers j, non-decreasing if
xj+1 > x; for all positive integers j, non-increasing if xj 1 < x; for
all positive integers j. A sequence satisfying any one of these
conditions is said to be monotonic; thus a monotonic sequence is
either non-decreasing or non-increasing.
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Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real
numbers that is bounded below is convergent.

A proof of Theorem 1.2 is to be found in Appendix A.
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Definition

Let x1, X2, X3, ... be an infinite sequence of real numbers. A
subsequence of this infinite sequence is a sequence of the form

Xj1 s Xjys Xj3, - - - Where ji, o, j3, ... is an infinite sequence of positive

integers with
N<p<p<--.
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Theorem 1.3 (Bolzano-Weierstrass in One Dimension)

Every bounded sequence of real numbers has a convergent
subsequence.

A proof of Theorem 1.3 is to be found in Appendix A.
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Theorem 1.4 (Multidimensional Bolzano-Weierstrass
Theorem)

Every bounded sequence of points in a Euclidean space has a
convergent subsequence.

A proof of Theorem 1.4 is to be found in Appendix A.
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Definition

Let X be a subset of R”. Given a point p of X and a non-negative
real number r, the open ball Bx(p, r) in X of radius r about p is
defined to be the subset of X defined so that

Bx(p,r)={xe X:|x—p| <r}.

(Thus Bx(p, r) is the set consisting of all points of X that lie
within a sphere of radius r centred on the point p.)

| A\

Definition

Let X be a subset of R". A subset V of X is said to be open in X
if, given any point p of V, there exists some strictly positive real
number § such that Bx(p,d) C V, where Bx(p, d) is the open ball
in X of radius § about on the point p. The empty set () is also
defined to be an open set in X.
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Let X be a subset of R", and let p be a point of X. Then, for any
positive real number r, the open ball Bx(p, r) in X of radius r
about p is open in X.

A proof of Lemma 1.5 is to be found in Appendix A.
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Proposition 1.6

Let X be a subset of R". The collection of open sets in X has the
following properties:—

(i) the empty set () and the whole set X are both open in X;
(ii) the union of any collection of open sets in X is itself open in
X;
(iii) the intersection of any finite collection of open sets in X is
itself open in X.

A proof of Proposition 1.6 is to be found in Appendix A.



1. Review of Basic Results of Analysis in Euclidean Spaces (continued)

Proposition 1.7

Let X be a subset of R", and let U be a subset of X. Then U is
open in X if and only if there exists some open set V in R" for
which U =V N X.

A proof of Proposition 1.7 is to be found in Appendix A.
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A sequence X1, X2, X3, ... of points in R" converges to a point p if
and only if, given any open set U which contains p, there exists
some positive integer N such that x; € U for all j satisfying j > N.

A proof of Lemma 1.8 is to be found in Appendix A.
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Definition

Let X be a subset of R"”. A subset F of X is said to be closed in X
if and only if its complement X \ F in X is open in X. (Recall that
X\F={xeX:x¢F})
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Proposition 1.9

Let X be a subset of R". The collection of closed sets in X has the
following properties:—
(i) the empty set () and the whole set X are both closed in X;
(ii) the intersection of any collection of closed sets in X is itself
closed in X;

(iii) the union of any finite collection of closed sets in X is itself
closed in X.

A proof of Proposition 1.9 is to be found in Appendix A.
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Let X be a subset of R", and let F be a subset of X which is
closed in X. Let x1,X»,X3,... be a sequence of points of F which
converges to a point p of X. Thenp € F.

A proof of Lemma 1.10 is to be found in Appendix A.
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Definition

Let X and Y be a subsets of R™ and R" respectively. A function
f: X =Y from X to Y is said to be continuous at a point p of X
if and only if the following criterion is satisfied:—

given any strictly positive real number ¢, there exists
some strictly positive real number § such that
|f(x) — f(p)| < € whenever x € X satisfies |x — p| < 4.

The function f: X — Y is said to be continuous on X if and only
if it is continuous at every point p of X.
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Lemma 1.11

Let X, Y and Z be subsets of R™, R" and RX respectively, and let
f: X — Y andg:Y — Z be functions satisfying f(X) C Y.
Suppose that f is continuous at some point p of X and that g is
continuous at f(p). Then the composition function gof: X — Z
is continuous at p.

A proof of Lemma 1.11 is to be found in Appendix A.
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Lemma 1.12

Let X and Y be a subsets of R™ and R" respectively, and let
f: X = Y be a continuous function from X to Y. Let
X1,X2,X3, ... be a sequence of points of X which converges to
some point p of X. Then the sequence f(x1), f(x2), f(x3),...
converges to f(p).

A proof of Lemma 1.12 is to be found in Appendix A.
Let X and Y be a subsets of R™ and R” respectively, and let
f: X = Y be a function from X to Y. Then

f(x) = (A(x), 2(x), - -, fa(x))

for all x € X, where fi, f5, ..., f, are functions from X to R,
referred to as the components of the function f.
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Proposition 1.13

Let X and Y be a subsets of R™ and R" respectively, and let
p € X. A function f: X — Y is continuous at the point p if and
only if its components are all continuous at p.

A proof of Proposition 1.13 is to be found in Appendix A.
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Proposition 1.14

Let X be a subset of R”, and let f: X — R and g: X — R be
continuous functions from X to R. Then the functions f + g,
f—g and f - g are continuous. If in addition g(x) # 0 for all
x € X then the quotient function f /g is continuous.

A proof of Proposition 1.14 is to be found in Appendix A.
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Let X be a subset of R™, let f: X — R" be a continuous function
mapping X into R", and let |f|: X — R be defined such that
|f|(x) = |f(x)| for all x € X. Then the real-valued function |f| is
continuous on X.

A proof of Proposition 1.15 is to be found in Appendix A.
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Given any function f: X — Y, we denote by f~1(V) the preimage
of a subset V of Y under the map f, defined by
fI(V)={xe X:f(x) e V}.

Proposition 1.16

Let X and Y be subsets of R™ and R", and let f: X — Y be a
function from X to Y. The function f is continuous if and only if
f=1(V) is open in X for every open subset VV of Y.

A proof of Proposition 1.16 is to be found in Appendix A.

Let X be a subset of R”, let f: X — R be continuous, and let ¢
be some real number. Then the sets {x € X : f(x) > ¢} and

{x € X : f(x) < c} are open in X, and, given real numbers a and
b satisfying a < b, the set {x € X : a < f(x) < b} is open in X.
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Corollary 1.17

Let X and Y be subsets of R" and R™ respectively, and let
@: X — Y be a continuous function from X to Y. Then o~ 1(F)
is closed in X for every subset F of Y that is closed in Y.

Proof

Let F be a subset of Y that is closed in Y, and let let V =Y \ F.
Then V is open in Y. It follows from Proposition 1.16 that

0 (V) is open in X. But

P V)= Y\ F) =X\ o (F).
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Indeed let x € X. Then

x € (V)

x € (Y \F)
p(x) € Y\ F
p(x) ¢ F

x & ¢ (F)

x € X\ ¢ }F).

rreny

It follows that the complement X \ ¢ ~1(F) of ¢~(F) in X is open
in X, and therefore ¢ ~1(F) itself is closed in X, as required. |
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Lemma 1.18

Let X be a closed subset of n-dimensional Euclidean space R".
Then a subset of X is closed in X if and only if it is closed in R".

Proof

Let F be a subset of X. Then F is closed in X if and only if, given
any point p of X for which p € F, there exists some strictly
positive real number 0 such that there is no point of F whose
distance from the point p is less than §. It follows easily from this
that is F is closed in R" then F is closed in X.
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Conversely suppose that F is closed in X, where X itself is closed
in R". Let p be a point of R” that satisfies p € F. Then either
peXorpé¢gX.

Suppose that p € X. Then there exists some strictly positive real
number § such that there is no point of F whose distance from the
point p is less than §.

Otherwise p ¢ X. Then there exists some strictly positive real
number § such that there is no point of X whose distance from the
point p is less than §, because X is closed in R”. But F C X. It
follows that there is no point of F whose distance from the point p
is less than §. We conclude that the set F is closed in R”, as
required. |

The following result, together with its generalizations, is sometimes
referred to as the Glueing Lemma.
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Lemma 1.19 (Glueing Lemma)

Let p: X — R" be a function mapping a subset X of R™ into R".
Let F1, Fp, ..., Fx be a finite collection of subsets of X such that
F; is closed in X fori=1,2,...,k and

FRUFRU---UF, = X.

Then the function ¢ is continuous on X if and only if the
restriction of ¢ to F; is continuous on F; for i = 1,2, ... k.

Proof

Suppose that ¢: X — R” is continuous. Then it follows directly
from the definition of continuity that the restriction of ¢ to each
subset of X is continuous on that subset. Therefore the restriction
of ¢ to F; is continuous on F; for i =1,2,... k.
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Conversely we must prove that if the restriction of the function ¢

to F; is continuous on F; for i = 1,2,..., k then the function

p: X — R™ is continuous. Let p be a point of X, and let some

positive real number £ be given. Then there exist positive real

numbers 1, &2, . .. 0k satisfying the following conditions:—

(i) if p € Fi, where 1 < i < k, and if x € F; satisfies |x — p| < 0;
then [o(x) — @(p)| <¢;

(i) if p & F;, where 1 < < k, and if x € X satisfies |x — p| < §;
then x £ F;.

Indeed the continuity of the function ¢ on each set F; ensures that

d; may be chosen to satisfy (i) for each integer i between 1 and k

for which p € F;. Also the requirement that F; be closed in X

ensures that X \ F; is open in X and therefore J; may be chosen to

to satisfy (ii) for each integer i between 1 and k for which p & F;.
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Let § be the minimum of §1,d2,...,d0x. Then § > 0. Let x € X
satisfy |[x — p| < 6. If p € F; then the choice of d; ensures that if
x & F;. But X is the union of the sets Fi, F;, ..., Fx, and therefore
there must exist some integer i between 1 and k for which x € F;.
Then p € F;, and the choice of d; ensures that |o(x) — p(p)| < €.
We have thus shown that |p(x) — ¢(p)| < € for all points x of X
that satisfy [x — p| < J. It follows that ¢: X — R” is continuous,
as required. |
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