MA3486—Fixed Point Theorems and Economic Equilibria School of Mathematics, Trinity College Hilary Term 2018 Lecture 2 (January 19, 2018)

David R. Wilkins

1. Review of Basic Results of Analysis in Euclidean Spaces

1.1. Basic Properties of Vectors and Norms

We denote by \mathbb{R}^n the set consisting of all *n*-tuples (x_1, x_2, \ldots, x_n) of real numbers. The set \mathbb{R}^n represents *n*-dimensional *Euclidean* space (with respect to the standard Cartesian coordinate system). Let **x** and **y** be elements of \mathbb{R}^n , where

$$\mathbf{x} = (x_1, x_2, \dots, x_n), \quad \mathbf{y} = (y_1, y_2, \dots, y_n),$$

and let λ be a real number. We define

$$\begin{aligned} \mathbf{x} + \mathbf{y} &= (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n), \\ \mathbf{x} - \mathbf{y} &= (x_1 - y_1, x_2 - y_2, \dots, x_n - y_n), \\ \lambda \mathbf{x} &= (\lambda x_1, \lambda x_2, \dots, \lambda x_n), \\ \mathbf{x} \cdot \mathbf{y} &= x_1 y_1 + x_2 y_2 + \dots + x_n y_n, \\ |\mathbf{x}| &= \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}. \end{aligned}$$

The quantity $\mathbf{x} \cdot \mathbf{y}$ is the scalar product (or inner product) of \mathbf{x} and \mathbf{y} , and the quantity $|\mathbf{x}|$ is the Euclidean norm of \mathbf{x} . Note that $|\mathbf{x}|^2 = \mathbf{x} \cdot \mathbf{x}$. The Euclidean distance between two points \mathbf{x} and \mathbf{y} of \mathbb{R}^n is defined to be the Euclidean norm $|\mathbf{y} - \mathbf{x}|$ of the vector $\mathbf{y} - \mathbf{x}$. Let \mathbf{x} and \mathbf{y} be elements in \mathbb{R}^n , Let $p(t) = |t\mathbf{x} + \mathbf{y}|^2$ for all real

numbers t. Then

$$p(t) = (t\mathbf{x} + \mathbf{y}) \cdot (t\mathbf{x} + \mathbf{y})$$
$$= t^2 |\mathbf{x}|^2 + 2t\mathbf{x} \cdot \mathbf{y} + |\mathbf{y}|^2$$

for all real numbers t. But $p(t) \ge 0$ for all real numbers t. It follows that $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$. This inquality is known as *Schwarz's Inequality*.

Moreover, given any elements \mathbf{x} and \mathbf{y} of \mathbf{R}^{n} ,

$$\begin{aligned} |\mathbf{x} + \mathbf{y}|^2 &= (\mathbf{x} + \mathbf{y}).(\mathbf{x} + \mathbf{y}) = |\mathbf{x}|^2 + |\mathbf{y}|^2 + 2\mathbf{x} \cdot \mathbf{y} \\ &\leq |\mathbf{x}|^2 + |\mathbf{y}|^2 + 2|\mathbf{x}||\mathbf{y}| = (|\mathbf{x}| + |\mathbf{y}|)^2. \end{aligned}$$

It follows that $|\mathbf{x}+\mathbf{y}| \leq |\mathbf{x}|+|\mathbf{y}|.$ It follows from this inequality that

$$|\mathbf{x} - \mathbf{z}| \le |\mathbf{x} - \mathbf{y}| + |\mathbf{y} - \mathbf{z}|$$

for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$. This identity is known as the *Triangle Inequality*. It expresses the geometric result that the length of any side of a triangle in a Euclidean space of any dimension is the sum of the lengths of the other two sides of that triangle.

Definition

A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n is said to *converge* to a point \mathbf{p} if and only if the following criterion is satisfied:—

given any real number ε satisfying $\varepsilon > 0$ there exists some positive integer N such that $|\mathbf{x}_j - \mathbf{p}| < \varepsilon$ whenever $j \ge N$.

We refer to \mathbf{p} as the *limit* $\lim_{j \to +\infty} \mathbf{x}_j$ of the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots$

Let **p** be a point of \mathbb{R}^n , where $\mathbf{p} = (p_1, p_2, ..., p_n)$. Then a sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, ...$ of points in \mathbb{R}^n converges to **p** if and only if the *i*th components of the elements of this sequence converge to p_i for i = 1, 2, ..., n.

A proof of Lemma 1.1 is to be found in Appendix A.

1.2. The Bolzano-Weierstrass Theorem

An infinite sequence $x_1, x_2, x_3, ...$ of real numbers is said to be strictly increasing if $x_{j+1} > x_j$ for all positive integers j, strictly decreasing if $x_{j+1} < x_j$ for all positive integers j, non-decreasing if $x_{j+1} \ge x_j$ for all positive integers j, non-increasing if $x_{j+1} \le x_j$ for all positive integers j. A sequence satisfying any one of these conditions is said to be monotonic; thus a monotonic sequence is either non-decreasing or non-increasing.

Theorem 1.2

Any non-decreasing sequence of real numbers that is bounded above is convergent. Similarly any non-increasing sequence of real numbers that is bounded below is convergent.

A proof of Theorem 1.2 is to be found in Appendix A.

Definition

Let x_1, x_2, x_3, \ldots be an infinite sequence of real numbers. A *subsequence* of this infinite sequence is a sequence of the form $x_{j_1}, x_{j_2}, x_{j_3}, \ldots$ where j_1, j_2, j_3, \ldots is an infinite sequence of positive integers with

 $j_1 < j_2 < j_3 < \cdots$

Theorem 1.3 (Bolzano-Weierstrass in One Dimension)

Every bounded sequence of real numbers has a convergent subsequence.

A proof of Theorem 1.3 is to be found in Appendix A.

Theorem 1.4 (Multidimensional Bolzano-Weierstrass Theorem)

Every bounded sequence of points in a Euclidean space has a convergent subsequence.

A proof of Theorem 1.4 is to be found in Appendix A.

Definition

Let X be a subset of \mathbb{R}^n . Given a point **p** of X and a non-negative real number r, the open ball $B_X(\mathbf{p}, r)$ in X of radius r about **p** is defined to be the subset of X defined so that

$$B_X(\mathbf{p},r) = \{\mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| < r\}.$$

(Thus $B_X(\mathbf{p}, r)$ is the set consisting of all points of X that lie within a sphere of radius r centred on the point \mathbf{p} .)

Definition

Let X be a subset of \mathbb{R}^n . A subset V of X is said to be open in X if, given any point **p** of V, there exists some strictly positive real number δ such that $B_X(\mathbf{p}, \delta) \subset V$, where $B_X(\mathbf{p}, \delta)$ is the open ball in X of radius δ about on the point **p**. The empty set \emptyset is also defined to be an open set in X.

Let X be a subset of \mathbb{R}^n , and let **p** be a point of X. Then, for any positive real number r, the open ball $B_X(\mathbf{p}, r)$ in X of radius r about **p** is open in X.

A proof of Lemma 1.5 is to be found in Appendix A.

Proposition 1.6

Let X be a subset of \mathbb{R}^n . The collection of open sets in X has the following properties:—

- (i) the empty set \emptyset and the whole set X are both open in X;
- (ii) the union of any collection of open sets in X is itself open in X;
- (iii) the intersection of any finite collection of open sets in X is itself open in X.

A proof of Proposition 1.6 is to be found in Appendix A.

Proposition 1.7

Let X be a subset of \mathbb{R}^n , and let U be a subset of X. Then U is open in X if and only if there exists some open set V in \mathbb{R}^n for which $U = V \cap X$.

A proof of Proposition 1.7 is to be found in Appendix A.

A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n converges to a point \mathbf{p} if and only if, given any open set U which contains \mathbf{p} , there exists some positive integer N such that $\mathbf{x}_j \in U$ for all j satisfying $j \ge N$.

A proof of Lemma 1.8 is to be found in Appendix A.

Definition

Let X be a subset of \mathbb{R}^n . A subset F of X is said to be *closed* in X if and only if its complement $X \setminus F$ in X is open in X. (Recall that $X \setminus F = \{\mathbf{x} \in X : \mathbf{x} \notin F\}$.)

Proposition 1.9

Let X be a subset of \mathbb{R}^n . The collection of closed sets in X has the following properties:—

- (i) the empty set \emptyset and the whole set X are both closed in X;
- (ii) the intersection of any collection of closed sets in X is itself closed in X;
- (iii) the union of any finite collection of closed sets in X is itself closed in X.

A proof of Proposition 1.9 is to be found in Appendix A.

Let X be a subset of \mathbb{R}^n , and let F be a subset of X which is closed in X. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a sequence of points of F which converges to a point \mathbf{p} of X. Then $\mathbf{p} \in F$.

A proof of Lemma 1.10 is to be found in Appendix A.

Definition

Let X and Y be a subsets of \mathbb{R}^m and \mathbb{R}^n respectively. A function $f: X \to Y$ from X to Y is said to be *continuous* at a point **p** of X if and only if the following criterion is satisfied:—

given any strictly positive real number ε , there exists some strictly positive real number δ such that $|f(\mathbf{x}) - f(\mathbf{p})| < \varepsilon$ whenever $\mathbf{x} \in X$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta$.

The function $f: X \to Y$ is said to be continuous on X if and only if it is continuous at every point **p** of X.

Let X, Y and Z be subsets of \mathbb{R}^m , \mathbb{R}^n and \mathbb{R}^k respectively, and let $f: X \to Y$ and $g: Y \to Z$ be functions satisfying $f(X) \subset Y$. Suppose that f is continuous at some point **p** of X and that g is continuous at $f(\mathbf{p})$. Then the composition function $g \circ f: X \to Z$ is continuous at **p**.

A proof of Lemma 1.11 is to be found in Appendix A.

Let X and Y be a subsets of \mathbb{R}^m and \mathbb{R}^n respectively, and let $f: X \to Y$ be a continuous function from X to Y. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a sequence of points of X which converges to some point \mathbf{p} of X. Then the sequence $f(\mathbf{x}_1), f(\mathbf{x}_2), f(\mathbf{x}_3), \ldots$ converges to $f(\mathbf{p})$.

A proof of Lemma 1.12 is to be found in Appendix A. Let X and Y be a subsets of \mathbb{R}^m and \mathbb{R}^n respectively, and let $f: X \to Y$ be a function from X to Y. Then

$$f(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_n(\mathbf{x}))$$

for all $\mathbf{x} \in X$, where f_1, f_2, \ldots, f_n are functions from X to \mathbb{R} , referred to as the *components* of the function f.

Proposition 1.13

Let X and Y be a subsets of \mathbb{R}^m and \mathbb{R}^n respectively, and let $\mathbf{p} \in X$. A function $f: X \to Y$ is continuous at the point \mathbf{p} if and only if its components are all continuous at \mathbf{p} .

A proof of Proposition 1.13 is to be found in Appendix A.

Proposition 1.14

Let X be a subset of \mathbb{R}^n , and let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be continuous functions from X to \mathbb{R} . Then the functions f + g, f - g and $f \cdot g$ are continuous. If in addition $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$ then the quotient function f/g is continuous.

A proof of Proposition 1.14 is to be found in Appendix A.

Let X be a subset of \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ be a continuous function mapping X into \mathbb{R}^n , and let $|f|: X \to \mathbb{R}$ be defined such that $|f|(\mathbf{x}) = |f(\mathbf{x})|$ for all $\mathbf{x} \in X$. Then the real-valued function |f| is continuous on X.

A proof of Proposition 1.15 is to be found in Appendix A.

Given any function $f: X \to Y$, we denote by $f^{-1}(V)$ the preimage of a subset V of Y under the map f, defined by $f^{-1}(V) = \{\mathbf{x} \in X : f(\mathbf{x}) \in V\}.$

Proposition 1.16

Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n , and let $f: X \to Y$ be a function from X to Y. The function f is continuous if and only if $f^{-1}(V)$ is open in X for every open subset V of Y.

A proof of Proposition 1.16 is to be found in Appendix A. Let X be a subset of \mathbb{R}^n , let $f: X \to \mathbb{R}$ be continuous, and let c be some real number. Then the sets $\{\mathbf{x} \in X : f(\mathbf{x}) > c\}$ and $\{\mathbf{x} \in X : f(\mathbf{x}) < c\}$ are open in X, and, given real numbers a and b satisfying a < b, the set $\{\mathbf{x} \in X : a < f(\mathbf{x}) < b\}$ is open in X.

Corollary 1.17

Let X and Y be subsets of \mathbb{R}^n and \mathbb{R}^m respectively, and let $\varphi \colon X \to Y$ be a continuous function from X to Y. Then $\varphi^{-1}(F)$ is closed in X for every subset F of Y that is closed in Y.

Proof

Let F be a subset of Y that is closed in Y, and let let $V = Y \setminus F$. Then V is open in Y. It follows from Proposition 1.16 that $\varphi^{-1}(V)$ is open in X. But

$$\varphi^{-1}(V) = \varphi^{-1}(Y \setminus F) = X \setminus \varphi^{-1}(F).$$

Indeed let $\mathbf{x} \in X$. Then

$$\mathbf{x} \in \varphi^{-1}(V)$$

$$\iff \mathbf{x} \in \varphi^{-1}(Y \setminus F)$$

$$\iff \varphi(\mathbf{x}) \in Y \setminus F$$

$$\iff \varphi(\mathbf{x}) \notin F$$

$$\iff \mathbf{x} \notin \varphi^{-1}(F)$$

$$\iff \mathbf{x} \in X \setminus \varphi^{-1}(F).$$

It follows that the complement $X \setminus \varphi^{-1}(F)$ of $\varphi^{-1}(F)$ in X is open in X, and therefore $\varphi^{-1}(F)$ itself is closed in X, as required.

Let X be a closed subset of n-dimensional Euclidean space \mathbb{R}^n . Then a subset of X is closed in X if and only if it is closed in \mathbb{R}^n .

Proof

Let F be a subset of X. Then F is closed in X if and only if, given any point \mathbf{p} of X for which $\mathbf{p} \notin F$, there exists some strictly positive real number δ such that there is no point of F whose distance from the point \mathbf{p} is less than δ . It follows easily from this that is F is closed in \mathbb{R}^n then F is closed in X. Conversely suppose that F is closed in X, where X itself is closed in \mathbb{R}^n . Let **p** be a point of \mathbb{R}^n that satisfies $\mathbf{p} \notin F$. Then either $\mathbf{p} \in X$ or $\mathbf{p} \notin X$.

Suppose that $\mathbf{p} \in X$. Then there exists some strictly positive real number δ such that there is no point of F whose distance from the point \mathbf{p} is less than δ .

Otherwise $\mathbf{p} \notin X$. Then there exists some strictly positive real number δ such that there is no point of X whose distance from the point \mathbf{p} is less than δ , because X is closed in \mathbb{R}^n . But $F \subset X$. It follows that there is no point of F whose distance from the point \mathbf{p} is less than δ . We conclude that the set F is closed in \mathbb{R}^n , as required.

The following result, together with its generalizations, is sometimes referred to as the *Glueing Lemma*.

Lemma 1.19 (Glueing Lemma)

Let $\varphi: X \to \mathbb{R}^n$ be a function mapping a subset X of \mathbb{R}^m into \mathbb{R}^n . Let F_1, F_2, \ldots, F_k be a finite collection of subsets of X such that F_i is closed in X for $i = 1, 2, \ldots, k$ and

 $F_1 \cup F_2 \cup \cdots \cup F_k = X.$

Then the function φ is continuous on X if and only if the restriction of φ to F_i is continuous on F_i for i = 1, 2, ..., k.

Proof

Suppose that $\varphi: X \to \mathbb{R}^n$ is continuous. Then it follows directly from the definition of continuity that the restriction of φ to each subset of X is continuous on that subset. Therefore the restriction of φ to F_i is continuous on F_i for i = 1, 2, ..., k.

Conversely we must prove that if the restriction of the function φ to F_i is continuous on F_i for i = 1, 2, ..., k then the function $\varphi: X \to \mathbb{R}^m$ is continuous. Let **p** be a point of X, and let some positive real number ε be given. Then there exist positive real numbers $\delta_1, \delta_2, ..., \delta_k$ satisfying the following conditions:—

- (i) if $\mathbf{p} \in F_i$, where $1 \le i \le k$, and if $\mathbf{x} \in F_i$ satisfies $|\mathbf{x} \mathbf{p}| < \delta_i$ then $|\varphi(\mathbf{x}) - \varphi(\mathbf{p})| < \varepsilon$;
- (ii) if $\mathbf{p} \notin F_i$, where $1 \le i \le k$, and if $\mathbf{x} \in X$ satisfies $|\mathbf{x} \mathbf{p}| < \delta_i$ then $\mathbf{x} \notin F_i$.

Indeed the continuity of the function φ on each set F_i ensures that δ_i may be chosen to satisfy (i) for each integer *i* between 1 and *k* for which $\mathbf{p} \in F_i$. Also the requirement that F_i be closed in *X* ensures that $X \setminus F_i$ is open in *X* and therefore δ_i may be chosen to to satisfy (ii) for each integer *i* between 1 and *k* for which $\mathbf{p} \notin F_i$.

Let δ be the minimum of $\delta_1, \delta_2, \ldots, \delta_k$. Then $\delta > 0$. Let $\mathbf{x} \in X$ satisfy $|\mathbf{x} - \mathbf{p}| < \delta$. If $\mathbf{p} \notin F_i$ then the choice of δ_i ensures that if $\mathbf{x} \notin F_i$. But X is the union of the sets F_1, F_2, \ldots, F_k , and therefore there must exist some integer *i* between 1 and *k* for which $\mathbf{x} \in F_i$. Then $\mathbf{p} \in F_i$, and the choice of δ_i ensures that $|\varphi(\mathbf{x}) - \varphi(\mathbf{p})| < \varepsilon$. We have thus shown that $|\varphi(\mathbf{x}) - \varphi(\mathbf{p})| < \varepsilon$ for all points \mathbf{x} of X that satisfy $|\mathbf{x} - \mathbf{p}| < \delta$. It follows that $\varphi: X \to \mathbb{R}^n$ is continuous, as required.