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D.1. The Barycentric Subdivision of a Simplex

Proposition D.1

Let σ be a simplex in RN with vertices v0, v1, . . . , vq, and let
m0,m1, . . . ,mr be integers satisfying

0 ≤ m0 < m1 < · · · < mr ≤ q.

Let ρ be the simplex in RN with vertices τ̂0, τ̂1, . . . , τ̂r , where τ̂k
denotes the barycentre of the simplex τk with vertices
v0, v1, . . . , vmk

for k = 1, 2, . . . , r . Then the simplex ρ is the set
consisting of all points of RN that can be represented in the form∑q

j=0 tjvj , where t0, t1, . . . , tq are real numbers satisfying the
following conditions:
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(i) 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q;

(ii)
q∑

j=0
tj = 1;

(iii) t0 ≥ t1 ≥ · · · ≥ tq;

(iv) tj = tm0 for all integers j satisfying j ≤ m0;

(v) tj = tmk
for all integers j and k satisfying 0 < k ≤ r and

mk−1 < j ≤ mk ;

(vi) tj = 0 for all integers j satisfying j > mr .
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Moreover the interior of the simplex ρ is the set consisting of all

points of RN that can be represented in the form
q∑

j=0
tjvj , where

t0, t1, . . . , tq are real numbers satisfying conditions (i)–(iv) above
together with the following extra condition:

(vii) tmk−1
> tmk

> 0 for all integers k satisfying 0 < k ≤ r .
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Proof
Let wk = τ̂k for k = 0, 1, . . . , r . Then

wk =
1

mk + 1

mk∑
j=0

vj .

Let x ∈ ρ, and let the real numbers u0, u1, . . . , ur be the
barycentric coordinates of the point x with respect to the vertices
w0,w1, . . . ,wr of ρ, so that 0 ≤ uk ≤ 1 for k = 0, 1, . . . , r ,
r∑

k=0

ukwk = x, and
r∑

k=0

uk = 1.
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Also let
K (j) = {k ∈ Z : 0 ≤ k ≤ r and mk ≥ j}

for j = 0, 1, . . . , q. Then x =
q∑

j=0
tjvj , where

tj =
∑

k∈K(j)

uk
mk + 1

when 0 ≤ j ≤ mr , and tj = 0 when mr < j ≤ q.
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Moreover

q∑
j=0

tj =
mr∑
j=0

∑
k∈K(j)

uk
mk + 1

=
∑

(j ,k)∈L

uk
mk + 1

=
r∑

k=0

mk∑
j=0

uk
mk + 1

=
r∑

k=0

uk = 1,

where

L = {(j , k) ∈ Z2 : 0 ≤ j ≤ q, 0 ≤ k ≤ r and j ≤ mk}.
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Now tj ≥ 0 for j = 0, 1, . . . , q, because uk ≥ 0 for k = 0, 1, . . . , r ,
and therefore

0 ≤ tj ≤
q∑

j=0

tj = 1.

Also tj ′ ≤ tj for all integers j and j ′ satisfying 0 ≤ j < j ′ ≤ mr ,
because K (j ′) ⊂ K (j). If 0 ≤ j ≤ m0 then K (j) = K (m0), and
therefore tj = tm0 . Similarly if 0 < k ≤ r , and mk−1 < j ≤ mk

then K (j) = K (mk), and therefore tj = tmk
. Thus the real

numbers t0, t1, . . . , tk satisfy conditions (i)–(vi) above.
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Now let t0, t1, . . . , tq be real numbers satisfying conditions (i)-(vi),
let

ur = (mr + 1)tmr

and
uk = (mk + 1)(tmk

− tmk+1
)

for k = 0, 1, . . . , r − 1. Then

tmk
=

r∑
k ′=k

uk ′

mk ′ + 1

for k = 0, 1, . . . , r . Also uk ≥ 0 for k = 0, 1, . . . , r , and
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r∑
k=0

uk =
r−1∑
k=0

(mk + 1)(tmk
− tmk+1

) + (mr + 1)tmr

= (m0 + 1)tm0 +
r−1∑
k=1

(mk + 1)tmk
−

r−2∑
k=0

(mk + 1)tmk+1

− (mr−1 + 1)tmr + (mr + 1)tmr

= (m0 + 1)tm0 +
r−1∑
k=1

(mk + 1)tmk
−

r−1∑
k=1

(mk−1 + 1)tmk

+ (mr −mr−1)tmr

= (m0 + 1)tm0 +
r∑

k=1

(mk −mk−1)tmk
,
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But

q∑
j=0

tq =

m0∑
j=0

tj +
r∑

k=1

mk∑
j=mk−1+1

tj

= (m0 + 1)tm0 +
r∑

k=1

(mk −mk−1)tmk
,

because conditions (i)-(vi) satisfied by the real numbers
t0, t1, . . . , tq ensure that tj = tm0 when 0 ≤ j ≤ m0, tj = tmk

when
1 ≤ k ≤ r , and mk−1 < j ≤ mk and tj = 0 when j > mr . Thus

r∑
k=0

uk = (m0 + 1)tm0 +
r∑

k=1

(mk −mk−1)tmk
=

q∑
j=0

tj = 1.

It follows that u0, u1, . . . , ur are the barycentric coordinates of a
point of the simplex with vertices w0,w1, . . . ,wr .
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Moreover
tj =

∑
k∈K(j)

uk
mk + 1

for j = 0, 1, . . . , q, and therefore

r∑
k=0

ukwk =
r∑

k=0

mk∑
j=0

uk
mk + 1

vj

=
∑

(j ,k)∈L

uk
mk + 1

vj

=

q∑
j=0

∑
k∈K(j)

uk
mk + 1

vj

=

q∑
j=0

tjvj .
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We conclude the the simplex ρ is the set of all points of RN that

are representable in the form
q∑

j=0
tjvj , where the coefficients

t0, t1, . . . , tq are real numbers satisfying conditions (i)–(vi).

Now the point
q∑

j=0
tjvj belongs to the interior of the simplex ρ if

and only if uk > 0 for k = 0, 1, . . . , r , where ur = (mr + 1)tmr and
uk = (mk + 1)(tmk

− tmk+1
) for k = 0, 1, . . . , r − 1.
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This point therefore belongs to the interior of the simplex ρ if and
only if tmr > 0 and tmk

> tmk+1
for k = 0, 1, . . . , r − 1. Thus the

interior of the simplex ρ consists of those points
q∑

j=0
tjvj of σ whose

barycentric coordinates t0, t1, . . . , tq with respect to the vertices
v0, v1, . . . , vq of σ satisfy conditions (i)–(vii), as required.
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Corollary D.2

Let σ be a simplex in some Euclidean space RN , and let Kσ be the
simplicial complex consisting of the simplex σ together with all of
its faces. Let v0, v1, . . . , vq be the vertices of σ, and let
t0, t1, . . . , tq be the barycentric coordinates of some point x of σ,

so that 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q,
q∑

j=0
tjvj = x and

q∑
j=0

tj = 1.

Then there exists a permutation π of the set {0, 1, . . . , q} and
integers m0,m1, . . . ,mr satisfying

0 ≤ m0 < m1 < · · · < mr ≤ q.

such the following conditions are satisfied:
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(iii) tπ(0) ≥ tπ(1) ≥ · · · ≥ tπ(q);

(iv) tπ(j) = tπ(m0) for all integers j satisfying j ≤ m0;

(v) tπ(j) = tπ(mk ) for all integers j and k satisfying 0 < k ≤ r and
mk−1 < j ≤ mk ;

(vi) tπ(j) = 0 for all integers j satisfying j > mr .

(vii) tπ(mk−1)
> tπ(mk ) > 0 for all integers k satisfying 0 < k ≤ r .

Let ρ be the simplex of the first barycentric subdivision K ′σ of the
simplical complex Kσ with vertices τ̂0, τ̂1, . . . , τ̂r , where τ̂k is the
barycentre of the simplex τk with vertices vπ(0), vπ(1), . . . , vπ(mk )

for k = 0, 1, . . . , r . Then ρ is the unique simplex of K ′σ that
contains the point x in its interior.
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Proof
The required permutation π can be any permutation that
rearranges the barycentric coordinates in descending order, so that
1 ≥ tπ(0) ≥ tπ(1) ≥ . . . ≥ tπ(q) ≥ 0. The required result then
follows immediately on applying Proposition D.1.

Corollary D.2 may be applied to determine the simplices of the first
barycentric subdivision K ′σ of the simplicial complex Kσ that
consists of some simplex σ together with all of its faces.
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Example
Let K be the simplicial complex consisting of a triangle with
vertices v0, v1 and v2, together with all its edges and vertices, and
let K ′ be the first barycentric subdivision of the simplicial
complex K . Then K ′ consists of six triangles ρ012, ρ102, ρ021, ρ120,
ρ201 and ρ210, together with all the edges and vertices of those
triangles, where
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ρ012 =


2∑

j=0

tjvj : 1 ≥ t0 ≥ t1 ≥ t2 ≥ 0 and
2∑

j=0

tj = 1

 ,

ρ102 =


2∑

j=0

tjvj : 1 ≥ t1 ≥ t0 ≥ t2 ≥ 0 and
2∑

j=0

tj = 1

 ,

ρ021 =


2∑

j=0

tjvj : 1 ≥ t0 ≥ t2 ≥ t1 ≥ 0 and
2∑

j=0

tj = 1

 ,

ρ120 =


2∑

j=0

tjvj : 1 ≥ t1 ≥ t2 ≥ t0 ≥ 0 and
2∑

j=0

tj = 1

 ,
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ρ201 =


2∑

j=0

tjvj : 1 ≥ t2 ≥ t0 ≥ t1 ≥ 0 and
2∑

j=0

tj = 1

 ,

ρ210 =


2∑

j=0

tjvj : 1 ≥ t2 ≥ t1 ≥ t0 ≥ 0 and
2∑

j=0

tj = 1

 .

The intersection of any two of those triangles is a common edge or
vertex of those triangles. For example, the intersection of the
triangles ρ012 and ρ102 is the edge ρ012 ∩ ρ102, where

ρ012 ∩ ρ102 =


2∑

j=0

tjvj : 1 ≥ t0 = t1 ≥ t2 ≥ 0 and
2∑

j=0

tj = 1

 .
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And the intersection of the triangle ρ012 and ρ120 is the barycentre

of the triangle v0 v1 v2, and is thus the point
2∑

j=0
tjvj whose

barycentric coordinates t0, t1, t2 satisfy t0 = t1 = t2 = 1
3 .
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Let σ be a q-simplex with vertices v0, v1, . . . , vq, let Kσ be the
simplicial complex consisting of the simplex σ, together with all its
faces, and let K ′σ be the first barycentric subdivision of the
simplicial complex Kσ. Then the q-simplices of K ′σ are the
simplices of the form ρm0 m1 ...mq , where the list m0,m1, . . . ,mq is a
rearrangement of the list 0, 1, . . . , q (so that each integer between
0 and q occurs exactly one in the list m0,m1, . . . ,mq), and where

ρm0 m1 ...mq

=


q∑

j=0

tjvj : 1 ≥ tm0 ≥ tm1 ≥ · · · ≥ tmq ≥ 0 and

q∑
j=0

tj = 1

 .
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A point of σ belongs to the interior of one of the simplices of K ′σ if
and only if its barycentric coordinates t0, t1, . . . , tq are all distinct

and strictly positive. Moreover if a point
q∑

j=0
tjvj of σ with

barycentric coordinates t0, t1, . . . , tq belongs to the interior of
some r -simplex of K ′σ then there are exactly r + 1 distinct values
amongst the real numbers t0, t1, . . . , tq (i.e., {t0, t1, . . . , tq} is a
set with exactly r + 1 elements).
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