MA3486—Fixed Point Theorems and Economic Equilibria School of Mathematics, Trinity College Hilary Term 2018 Appendix D

David R. Wilkins

D. Further Results Concerning Barycentric Subdivision

D.1. The Barycentric Subdivision of a Simplex

Proposition D.1

Let σ be a simplex in \mathbb{R}^N with vertices $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$, and let m_0, m_1, \dots, m_r be integers satisfying

$$0 \leq m_0 < m_1 < \cdots < m_r \leq q.$$

Let ρ be the simplex in \mathbb{R}^N with vertices $\hat{\tau}_0, \hat{\tau}_1, \ldots, \hat{\tau}_r$, where $\hat{\tau}_k$ denotes the barycentre of the simplex τ_k with vertices $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_{m_k}$ for $k = 1, 2, \ldots, r$. Then the simplex ρ is the set consisting of all points of \mathbb{R}^N that can be represented in the form $\sum_{j=0}^{q} t_j \mathbf{v}_j$, where t_0, t_1, \ldots, t_q are real numbers satisfying the following conditions:

Moreover the interior of the simplex ρ is the set consisting of all points of \mathbb{R}^N that can be represented in the form $\sum_{j=0}^{q} t_j \mathbf{v}_j$, where t_0, t_1, \ldots, t_q are real numbers satisfying conditions (i)–(iv) above together with the following extra condition: (vii) $t_{m_{k-1}} > t_{m_k} > 0$ for all integers k satisfying $0 < k \leq r$.

Proof Let $\mathbf{w}_k = \hat{\tau}_k$ for $k = 0, 1, \dots, r$. Then

$$\mathbf{w}_k = rac{1}{m_k+1}\sum_{j=0}^{m_k}\mathbf{v}_j.$$

Let $\mathbf{x} \in \rho$, and let the real numbers u_0, u_1, \ldots, u_r be the barycentric coordinates of the point \mathbf{x} with respect to the vertices $\mathbf{w}_0, \mathbf{w}_1, \ldots, \mathbf{w}_r$ of ρ , so that $0 \le u_k \le 1$ for $k = 0, 1, \ldots, r$, $\sum_{k=0}^r u_k \mathbf{w}_k = \mathbf{x}$, and $\sum_{k=0}^r u_k = 1$. Also let $K(j) = \{k \in \mathbb{Z} : 0 \le k \le r \text{ and } m_k \ge j\}$ for j = 0, 1, ..., q. Then $\mathbf{x} = \sum_{j=0}^{q} t_j \mathbf{v}_j$, where $t_j = \sum_{k \in \mathcal{K}(j)} \frac{u_k}{m_k + 1}$

when $0 \le j \le m_r$, and $t_j = 0$ when $m_r < j \le q$.

Moreover

$$\sum_{j=0}^{q} t_{j} = \sum_{j=0}^{m_{r}} \sum_{k \in \mathcal{K}(j)} \frac{u_{k}}{m_{k}+1} = \sum_{(j,k)\in L} \frac{u_{k}}{m_{k}+1}$$
$$= \sum_{k=0}^{r} \sum_{j=0}^{m_{k}} \frac{u_{k}}{m_{k}+1} = \sum_{k=0}^{r} u_{k} = 1,$$

where

$$L = \{(j,k) \in \mathbb{Z}^2 : 0 \leq j \leq q, \ 0 \leq k \leq r \text{ and } j \leq m_k\}.$$

Now $t_j \ge 0$ for j = 0, 1, ..., q, because $u_k \ge 0$ for k = 0, 1, ..., r, and therefore

$$0\leq t_j\leq \sum_{j=0}^q t_j=1.$$

Also $t_{j'} \leq t_j$ for all integers j and j' satisfying $0 \leq j < j' \leq m_r$, because $K(j') \subset K(j)$. If $0 \leq j \leq m_0$ then $K(j) = K(m_0)$, and therefore $t_j = t_{m_0}$. Similarly if $0 < k \leq r$, and $m_{k-1} < j \leq m_k$ then $K(j) = K(m_k)$, and therefore $t_j = t_{m_k}$. Thus the real numbers t_0, t_1, \ldots, t_k satisfy conditions (i)–(vi) above. Now let t_0, t_1, \ldots, t_q be real numbers satisfying conditions (i)-(vi), let

$$u_r = (m_r + 1)t_{m_r}$$

and

$$u_k = (m_k + 1)(t_{m_k} - t_{m_{k+1}})$$

for k = 0, 1, ..., r - 1. Then

$$t_{m_k} = \sum_{k'=k}^r \frac{u_{k'}}{m_{k'}+1}$$

for $k = 0, 1, \ldots, r$. Also $u_k \ge 0$ for $k = 0, 1, \ldots, r$, and

D. Further Results Concerning Barycentric Subdivision (continued)

$$\sum_{k=0}^{r} u_{k} = \sum_{k=0}^{r-1} (m_{k}+1)(t_{m_{k}}-t_{m_{k+1}}) + (m_{r}+1)t_{m_{r}}$$

$$= (m_{0}+1)t_{m_{0}} + \sum_{k=1}^{r-1} (m_{k}+1)t_{m_{k}} - \sum_{k=0}^{r-2} (m_{k}+1)t_{m_{k+1}}$$

$$- (m_{r-1}+1)t_{m_{r}} + (m_{r}+1)t_{m_{r}}$$

$$= (m_{0}+1)t_{m_{0}} + \sum_{k=1}^{r-1} (m_{k}+1)t_{m_{k}} - \sum_{k=1}^{r-1} (m_{k-1}+1)t_{m_{k}}$$

$$+ (m_{r}-m_{r-1})t_{m_{r}}$$

$$= (m_{0}+1)t_{m_{0}} + \sum_{k=1}^{r} (m_{k}-m_{k-1})t_{m_{k}},$$

But

$$egin{array}{rcl} \sum_{j=0}^{q} t_{q} &=& \sum_{j=0}^{m_{0}} t_{j} + \sum_{k=1}^{r} \sum_{j=m_{k-1}+1}^{m_{k}} t_{j} \ &=& (m_{0}+1)t_{m_{0}} + \sum_{k=1}^{r} (m_{k}-m_{k-1})t_{m_{k}}, \end{array}$$

because conditions (i)-(vi) satisfied by the real numbers t_0, t_1, \ldots, t_q ensure that $t_j = t_{m_0}$ when $0 \le j \le m_0$, $t_j = t_{m_k}$ when $1 \le k \le r$, and $m_{k-1} < j \le m_k$ and $t_j = 0$ when $j > m_r$. Thus

$$\sum_{k=0}^{r} u_k = (m_0 + 1)t_{m_0} + \sum_{k=1}^{r} (m_k - m_{k-1})t_{m_k} = \sum_{j=0}^{q} t_j = 1.$$

It follows that u_0, u_1, \ldots, u_r are the barycentric coordinates of a point of the simplex with vertices $\mathbf{w}_0, \mathbf{w}_1, \ldots, \mathbf{w}_r$.

Moreover

$$t_j = \sum_{k \in \mathcal{K}(j)} \frac{u_k}{m_k + 1}$$

for $j = 0, 1, \ldots, q$, and therefore

$$\sum_{k=0}^{r} u_k \mathbf{w}_k = \sum_{k=0}^{r} \sum_{j=0}^{m_k} \frac{u_k}{m_k + 1} \mathbf{v}_j$$
$$= \sum_{(j,k)\in L} \frac{u_k}{m_k + 1} \mathbf{v}_j$$
$$= \sum_{j=0}^{q} \sum_{k\in K(j)} \frac{u_k}{m_k + 1} \mathbf{v}_j$$
$$= \sum_{j=0}^{q} t_j \mathbf{v}_j.$$

We conclude the the simplex ρ is the set of all points of \mathbb{R}^N that are representable in the form $\sum_{j=0}^{q} t_j \mathbf{v}_j$, where the coefficients t_0, t_1, \ldots, t_q are real numbers satisfying conditions (i)–(vi).

Now the point $\sum_{j=0}^{q} t_j \mathbf{v}_j$ belongs to the interior of the simplex ρ if and only if $u_k > 0$ for k = 0, 1, ..., r, where $u_r = (m_r + 1)t_{m_r}$ and $u_k = (m_k + 1)(t_{m_k} - t_{m_{k+1}})$ for k = 0, 1, ..., r - 1. This point therefore belongs to the interior of the simplex ρ if and only if $t_{m_r} > 0$ and $t_{m_k} > t_{m_{k+1}}$ for $k = 0, 1, \ldots, r - 1$. Thus the interior of the simplex ρ consists of those points $\sum_{j=0}^{q} t_j \mathbf{v}_j$ of σ whose barycentric coordinates t_0, t_1, \ldots, t_q with respect to the vertices $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ of σ satisfy conditions (i)–(vii), as required.

Corollary D.2

Let σ be a simplex in some Euclidean space \mathbb{R}^N , and let K_σ be the simplicial complex consisting of the simplex σ together with all of its faces. Let $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ be the vertices of σ , and let t_0, t_1, \ldots, t_q be the barycentric coordinates of some point \mathbf{x} of σ , so that $0 \le t_j \le 1$ for $j = 0, 1, \ldots, q$, $\sum_{j=0}^{q} t_j \mathbf{v}_j = \mathbf{x}$ and $\sum_{j=0}^{q} t_j = 1$. Then there exists a permutation π of the set $\{0, 1, \ldots, q\}$ and integers m_0, m_1, \ldots, m_r satisfying

$$0 \leq m_0 < m_1 < \cdots < m_r \leq q.$$

such the following conditions are satisfied:

Proof

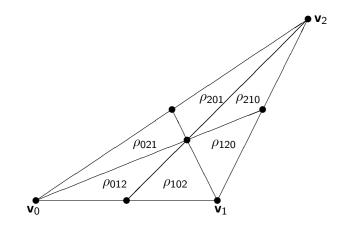
The required permutation π can be any permutation that rearranges the barycentric coordinates in descending order, so that $1 \ge t_{\pi(0)} \ge t_{\pi(1)} \ge \ldots \ge t_{\pi(q)} \ge 0$. The required result then follows immediately on applying Proposition D.1.

Corollary D.2 may be applied to determine the simplices of the first barycentric subdivision K'_{σ} of the simplicial complex K_{σ} that consists of some simplex σ together with all of its faces.

Example

Let *K* be the simplicial complex consisting of a triangle with vertices \mathbf{v}_0 , \mathbf{v}_1 and \mathbf{v}_2 , together with all its edges and vertices, and let *K'* be the first barycentric subdivision of the simplicial complex *K*. Then *K'* consists of six triangles ρ_{012} , ρ_{102} , ρ_{021} , ρ_{120} , ρ_{201} and ρ_{210} , together with all the edges and vertices of those triangles, where

D. Further Results Concerning Barycentric Subdivision (continued)



D. Further Results Concerning Barycentric Subdivision (continued)

$$\begin{split} \rho_{012} &= \left\{ \sum_{j=0}^{2} t_{j} \mathbf{v}_{j} : 1 \ge t_{0} \ge t_{1} \ge t_{2} \ge 0 \text{ and } \sum_{j=0}^{2} t_{j} = 1 \right\}, \\ \rho_{102} &= \left\{ \sum_{j=0}^{2} t_{j} \mathbf{v}_{j} : 1 \ge t_{1} \ge t_{0} \ge t_{2} \ge 0 \text{ and } \sum_{j=0}^{2} t_{j} = 1 \right\}, \\ \rho_{021} &= \left\{ \sum_{j=0}^{2} t_{j} \mathbf{v}_{j} : 1 \ge t_{0} \ge t_{2} \ge t_{1} \ge 0 \text{ and } \sum_{j=0}^{2} t_{j} = 1 \right\}, \\ \rho_{120} &= \left\{ \sum_{j=0}^{2} t_{j} \mathbf{v}_{j} : 1 \ge t_{1} \ge t_{2} \ge t_{0} \ge 0 \text{ and } \sum_{j=0}^{2} t_{j} = 1 \right\}, \end{split}$$

$$\begin{split} \rho_{201} &= \left\{ \sum_{j=0}^{2} t_{j} \mathbf{v}_{j} : 1 \ge t_{2} \ge t_{0} \ge t_{1} \ge 0 \text{ and } \sum_{j=0}^{2} t_{j} = 1 \right\},\\ \rho_{210} &= \left\{ \sum_{j=0}^{2} t_{j} \mathbf{v}_{j} : 1 \ge t_{2} \ge t_{1} \ge t_{0} \ge 0 \text{ and } \sum_{j=0}^{2} t_{j} = 1 \right\}. \end{split}$$

The intersection of any two of those triangles is a common edge or vertex of those triangles. For example, the intersection of the triangles ρ_{012} and ρ_{102} is the edge $\rho_{012} \cap \rho_{102}$, where

$$\rho_{012} \cap \rho_{102} = \left\{ \sum_{j=0}^{2} t_j \mathbf{v}_j : 1 \ge t_0 = t_1 \ge t_2 \ge 0 \text{ and } \sum_{j=0}^{2} t_j = 1 \right\}.$$

And the intersection of the triangle ρ_{012} and ρ_{120} is the barycentre of the triangle $\mathbf{v}_0 \, \mathbf{v}_1 \, \mathbf{v}_2$, and is thus the point $\sum_{j=0}^2 t_j \mathbf{v}_j$ whose barycentric coordinates t_0, t_1, t_2 satisfy $t_0 = t_1 = t_2 = \frac{1}{3}$.

~

Let σ be a *q*-simplex with vertices $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$, let K_σ be the simplicial complex consisting of the simplex σ , together with all its faces, and let K'_{σ} be the first barycentric subdivision of the simplicial complex K_{σ} . Then the *q*-simplices of K'_{σ} are the simplices of the form $\rho_{m_0 m_1 \ldots m_q}$, where the list m_0, m_1, \ldots, m_q is a rearrangement of the list $0, 1, \ldots, q$ (so that each integer between 0 and *q* occurs exactly one in the list m_0, m_1, \ldots, m_q), and where

$$= \left\{ \sum_{j=0}^q t_j \mathbf{v}_j : 1 \ge t_{m_0} \ge t_{m_1} \ge \cdots \ge t_{m_q} \ge 0 \text{ and } \sum_{j=0}^q t_j = 1 \right\}.$$

A point of σ belongs to the interior of one of the simplices of K'_{σ} if and only if its barycentric coordinates t_0, t_1, \ldots, t_q are all distinct and strictly positive. Moreover if a point $\sum_{j=0}^{q} t_j \mathbf{v}_j$ of σ with barycentric coordinates t_0, t_1, \ldots, t_q belongs to the interior of some *r*-simplex of K'_{σ} then there are exactly r + 1 distinct values amongst the real numbers t_0, t_1, \ldots, t_q (i.e., $\{t_0, t_1, \ldots, t_q\}$ is a set with exactly r + 1 elements).