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A. Proofs of Basic Results of Real Analysis

Lemma 1.1

Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then a
sequence x1, x2, x3, . . . of points in Rn converges to p if and only
if the ith components of the elements of this sequence converge to
pi for i = 1, 2, . . . , n.

Proof of Lemma 1.1
Let (xj)i denote the ith components of xj . Then
|(xj)i − pi | ≤ |xj − p| for i = 1, 2, . . . , n and for all positive
integers j . It follows directly from the definition of convergence
that if xj → p as j → +∞ then (xj)i → pi as j → +∞.
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Conversely suppose that, for each integer i between 1 and n,
(xj)i → pi as j → +∞. Let ε > 0 be given. Then there exist
positive integers N1,N2, . . . ,Nn such that |(xj)i − pi | < ε/

√
n

whenever j ≥ Ni . Let N be the maximum of N1,N2, . . . ,Nn. If
j ≥ N then j ≥ Ni for i = 1, 2, . . . , n, and therefore

|xj − p|2 =
n∑

i=1

((xj)i − pi )
2 < n

(
ε√
n

)2

= ε2.

Thus xj → p as j → +∞, as required.

The real number system satisfies the Least Upper Bound Principle:

Any set of real numbers which is non-empty and bounded
above has a least upper bound.
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Let S be a set of real numbers which is non-empty and bounded
above. The least upper bound, or supremum, of the set S is
denoted by supS , and is characterized by the following two
properties:

(i) x ≤ supS for all x ∈ S ;

(ii) if u is a real number, and if x ≤ u for all x ∈ S , then
supS ≤ u.

A straightforward application of the Least Upper Bound guarantees
that any set of real numbers that is non-empty and bounded below
has a greatest lower bound, or infimum. The greatest lower bound
of such a set S of real numbers is denoted by inf S .
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Theorem 1.2

Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real
numbers that is bounded below is convergent.

Proof of Theorem 1.2
Let x1, x2, x3, . . . be a non-decreasing sequence of real numbers
that is bounded above. It follows from the Least Upper Bound
Principle that there exists a least upper bound p for the set
{xj : j ∈ N}. We claim that the sequence converges to p.
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Let some strictly positive real number ε be given. We must show
that there exists some positive integer N such that |xj − p| < ε
whenever j ≥ N. Now p − ε is not an upper bound for the set
{xj : j ∈ N} (since p is the least upper bound), and therefore there
must exist some positive integer N such that xN > p− ε. But then
p − ε < xj ≤ p whenever j ≥ N, since the sequence is
non-decreasing and bounded above by p. Thus |xj − p| < ε
whenever j ≥ N. Therefore xj → p as j → +∞, as required.
If the sequence x1, x2, x3, . . . is non-increasing and bounded below
then the sequence −x1,−x2,−x3, . . . is non-decreasing and
bounded above, and is therefore convergent. It follows that the
sequence x1, x2, x3, . . . is also convergent.
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Theorem 1.3

Every bounded sequence of real numbers has a convergent
subsequence.

Proof of Theorem 1.3
Let a1, a2, a3, . . . be a bounded sequence of real numbers. We
define a peak index to be a positive integer j with the property
that aj ≥ ak for all positive integers k satisfying k ≥ j . Thus a
positive integer j is a peak index if and only if the jth member of
the infinite sequence a1, a2, a3, . . . is greater than or equal to all
succeeding members of the sequence. Let S be the set of all peak
indices. Then

S = {j ∈ N : aj ≥ ak for all k ≥ j}.
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First let us suppose that the set S of peak indices is infinite.
Arrange the elements of S in increasing order so that
S = {j1, j2, j3, j4, . . .}, where j1 < j2 < j3 < j4 < · · · . It follows
from the definition of peak indices that aj1 ≥ aj2 ≥ aj3 ≥ aj4 ≥ · · · .
Thus aj1 , aj2 , aj3 , . . . is a non-increasing subsequence of the original
sequence a1, a2, a3, . . .. This subsequence is bounded below (since
the original sequence is bounded). It follows from Theorem 1.2
that aj1 , aj2 , aj3 , . . . is a convergent subsequence of the original
sequence.
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Now suppose that the set S of peak indices is finite. Choose a
positive integer j1 which is greater than every peak index. Then j1
is not a peak index. Therefore there must exist some positive
integer j2 satisfying j2 > j1 such that aj2 > aj1 . Moreover j2 is not
a peak index (because j2 is greater than j1 and j1 in turn is greater
than every peak index). Therefore there must exist some positive
integer j3 satisfying j3 > j2 such that aj3 > aj2 . We can continue in
this way to construct (by induction on j) a strictly increasing
subsequence aj1 , aj2 , aj3 , . . . of our original sequence. This
increasing subsequence is bounded above (since the original
sequence is bounded) and thus is convergent, by Theorem 1.2.
This completes the proof of the Bolzano-Weierstrass Theorem.
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We introduce some terminology and notation for discussing
convergence along subsequences of bounded sequences of points in
Euclidean spaces. This will be useful in proving the
multi-dimensional version of the Bolzano-Weierstrass Theorem.

Definition

Let x1, x2, x3, . . . be an infinite sequence of points in Rn, let J be
an infinite subset of the set N of positive integers, and let p be a
point of Rn. We say that p is the limit of xj as j tends to infinity
in the set J, and write “xj → p as j → +∞ in J” if the following
criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists
some positive integer N such that |xj − p| < ε whenever
j ∈ J and j ≥ N.
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The one-dimensional version of the Bolzano-Weierstrass Theorem
asserts that every bounded sequence of real numbers has a
convergent subsequence. We seek to generalize this result to
bounded sequences of points in n-dimensional Euclidean space Rn.
Now the one-dimensional version of the Bolzano-Weierstrass
Theorem is equivalent to the following statement:

Given any bounded infinite sequence x1, x2, x3, . . . of real
numbers, there exists an infinite subset J of the set N of
positive integers and a real number p such that xj → p
as j → +∞ in J.
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Given an infinite subset J of N, the elements of J can be labelled
as k1, k2, k3, . . ., where k1 < k2 < k3 < · · · , so that k1 is the
smallest positive integer belonging of J, k2 is the next smallest,
etc. Therefore any standard result concerning convergence of
sequences of points can be applied in the context of the
convergence of subsequences of a given sequence of points.
The following result is therefore a direct consequence of the
one-dimensional Bolzano-Weierstrass Theorem:

Given any bounded infinite sequence x1, x2, x3, . . . of real
numbers, and given an infinite subset J of the set N of
positive integers, there exists an infinite subset K of J
and a real number p such that xj → p as j → +∞ in K .

The above statement in fact corresponds to the following
assertion:—
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Given any bounded infinite sequence x1, x2, x3, . . . of real
numbers, and given any subsequence

xk1 , xk2 , xk3 , · · ·

of the given infinite sequence, there exists a convergent
subsequence

xkm1
, xkm2

, xkm3
, . . .

of the given subsequence. Moreover this convergent
subsequence of the given subsequence is itself a
convergent subsequence of the given infinite sequence,
and it contains only members of the given subsequence
of the given sequence.
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The basic principle can be presented purely in words as follows:

Given a bounded sequence of real numbers, and given a
subsequence of that original given sequence, there exists
a convergent subsequence of the given subsequence.
Moreover this subsequence of the subsequence is a
convergent subsequence of the original given sequence.

We employ this principle in the following proof of the
Multidimensional Bolzano-Weierstrass Theorem.
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Theorem 1.4

Every bounded sequence of points in a Euclidean space has a
convergent subsequence.

Proof of Theorem 1.4
Let x1, x2, x3, . . . be a bounded infinite sequence of points in Rn,
and, for each positive integer j , and for each integer i between 1
and n, let (xj)i denote the ith component of xj . Then

xj =
(

(xj)1, (xj)2, . . . , (xj)n
)
.

for all positive integers j . It follows from the one-dimensional
Bolzano-Weierstrass Theorem that there exists an infinite subset J1
of the set N of positive integers and a real number p1 such that
(xj)1 → p1 as j → +∞ in J1.
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Let k be an integer between 1 and n− 1. Suppose that there exists
an infinite subset Jk of N and real numbers p1, p2, . . . , pk such
that, for each integer i between 1 and k , (xj)i → pi as j → +∞ in
Jk . It then follows from the one-dimensional Bolzano-Weierstrass
Theorem that there exists an infinite subset Jk+1 of Jk and a real
number pk+1, such that (xj)k+1 → pk+1 as j → +∞ in Jk+1.
Moreover the requirement that Jk+1 ⊂ Jk then ensures that, for
each integer i between 1 and k + 1, (xj)i → pi as j → +∞ in Jk+1.
Repeated application of this result then ensures the existence of an
infinite subset Jn of N and real numbers p1, p2, . . . , pn such that,
for each integer i between 1 and n, (xj)i → pi as j → +∞ in Jn.
Let

Jn = {k1, k2, k3, . . .},
where k1 < k2 < k3 < · · · . Then lim

j→+∞
(xkj )i = pi for

i = 1, 2, . . . , n. It then follows from Proposition 1.1 that
lim

j→+∞
xkj = p. The result follows.
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Lemma 1.5

Let X be a subset of Rn, and let p be a point of X . Then, for any
positive real number r , the open ball BX (p, r) in X of radius r
about p is open in X .

Proof of Lemma 1.5
Let x be an element of BX (p, r). We must show that there exists
some δ > 0 such that BX (x, δ) ⊂ BX (p, r). Let δ = r − |x− p|.
Then δ > 0, since |x− p| < r . Moreover if y ∈ BX (x, δ) then

|y − p| ≤ |y − x|+ |x− p| < δ + |x− p| = r ,

by the Triangle Inequality, and hence y ∈ BX (p, r). Thus
BX (x, δ) ⊂ BX (p, r). This shows that BX (p, r) is an open set, as
required.
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Proposition 1.6

Let X be a subset of Rn. The collection of open sets in X has the
following properties:—

(i) the empty set ∅ and the whole set X are both open in X ;

(ii) the union of any collection of open sets in X is itself open in
X ;

(iii) the intersection of any finite collection of open sets in X is
itself open in X .

Proof of Proposition 1.6
The empty set ∅ is an open set by convention. Moreover the
definition of an open set is satisfied trivially by the whole set X .
This proves (i).
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Let A be any collection of open sets in X , and let U denote the
union of all the open sets belonging to A. We must show that U is
itself open in X . Let x ∈ U. Then x ∈ V for some set V belonging
to the collection A. It follows that there exists some δ > 0 such
that BX (x, δ) ⊂ V . But V ⊂ U, and thus BX (x, δ) ⊂ U. This
shows that U is open in X . This proves (ii).
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Finally let V1,V2,V3, . . . ,Vk be a finite collection of subsets of X
that are open in X , and let V denote the intersection
V1 ∩ V2 ∩ · · · ∩ Vk of these sets. Let x ∈ V . Now x ∈ Vj for
j = 1, 2, . . . , k , and therefore there exist strictly positive real
numbers δ1, δ2, . . . , δk such that BX (x, δj) ⊂ Vj for j = 1, 2, . . . , k.
Let δ be the minimum of δ1, δ2, . . . , δk . Then δ > 0. (This is
where we need the fact that we are dealing with a finite collection
of sets.) Now BX (x, δ) ⊂ BX (x, δj) ⊂ Vj for j = 1, 2, . . . , k, and
thus BX (x, δ) ⊂ V . Thus the intersection V of the sets
V1,V2, . . . ,Vk is itself open in X . This proves (iii).
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Proposition 1.7

Let X be a subset of Rn, and let U be a subset of X . Then U is
open in X if and only if there exists some open set V in Rn for
which U = V ∩ X .

Proof of Proposition 1.7
First suppose that U = V ∩ X for some open set V in Rn. Let
u ∈ U. Then the definition of open sets in Rn ensures that there
exists some positive real number δ such that

{x ∈ Rn : |x− u| < δ} ⊂ V .

Then
{x ∈ X : |x− u| < δ} ⊂ U.

This shows that U is open in X .
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Conversely suppose that the subset U of X is open in X . For each
point u of U there exists some positive real number δu such that

{x ∈ X : |x− u| < δu} ⊂ U.

For each u ∈ U, let B(u, δu) denote the open ball in Rn of radius
δu about the point u, so that

B(u, δu) = {x ∈ Rn : |x− u| < δu}

for all u ∈ U, and let V be the union of all the open balls B(u, δu)
as u ranges over all the points of U. Then V is an open set in Rn.
Indeed every open ball in Rn is an open set (Lemma 1.5), and any
union of open sets in Rn is itself an open set (Proposition 1.6).
The set V is a union of open balls. It is therefore a union of open
sets, and so must itself be an open set.
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Now B(u, δu) ∩ X ⊂ U. for all u ∈ U. Also every point of V
belongs to B(u, δu) for at least one point u of U. It follows that
V ∩X ⊂ U. But u ∈ B(u, δu) and B(u, δu) ⊂ V for all u ∈ U, and
therefore U ⊂ V , and thus U ⊂ V ∩ X . It follows that
U = V ∩ X , as required.

Lemma 1.8

A sequence x1, x2, x3, . . . of points in Rn converges to a point p if
and only if, given any open set U which contains p, there exists
some positive integer N such that xj ∈ U for all j satisfying j ≥ N.
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Proof of Lemma 1.8
Suppose that the sequence x1, x2, x3, . . . has the property that,
given any open set U which contains p, there exists some positive
integer N such that xj ∈ U whenever j ≥ N. Let ε > 0 be given.
The open ball B(p, ε) of radius ε about p is an open set by
Lemma 1.5. Therefore there exists some positive integer N such
that xj ∈ B(p, ε) whenever j ≥ N. Thus |xj − p| < ε whenever
j ≥ N. This shows that the sequence converges to p.
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Conversely, suppose that the sequence x1, x2, x3, . . . converges
to p. Let U be an open set which contains p. Then there exists
some ε > 0 such that the open ball B(p, ε) of radius ε about p is a
subset of U. Thus there exists some ε > 0 such that U contains all
points x of X that satisfy |x− p| < ε. But there exists some
positive integer N with the property that |xj − p| < ε whenever
j ≥ N, since the sequence converges to p. Therefore xj ∈ U
whenever j ≥ N, as required.
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Lemma 1.10

Let X be a subset of Rn, and let F be a subset of X which is
closed in X . Let x1, x2, x3, . . . be a sequence of points of F which
converges to a point p of X . Then p ∈ F .

Proof of Lemma 1.10
The complement X \ F of F in X is open, since F is closed.
Suppose that p were a point belonging to X \ F . It would then
follow from Lemma 1.8 that xj ∈ X \ F for all values of j greater
than some positive integer N, contradicting the fact that xj ∈ F
for all j . This contradiction shows that p must belong to F , as
required.
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Lemma 1.11

Let X , Y and Z be subsets of Rm, Rn and Rk respectively, and let
f : X → Y and g : Y → Z be functions satisfying f (X ) ⊂ Y .
Suppose that f is continuous at some point p of X and that g is
continuous at f (p). Then the composition function g ◦ f : X → Z
is continuous at p.

Proof of Lemma 1.11
Let ε > 0 be given. Then there exists some η > 0 such that
|g(y)− g(f (p))| < ε for all y ∈ Y satisfying |y − f (p)| < η. But
then there exists some δ > 0 such that |f (x)− f (p)| < η for all
x ∈ X satisfying |x− p| < δ. It follows that
|g(f (x))− g(f (p))| < ε for all x ∈ X satisfying |x− p| < δ, and
thus g ◦ f is continuous at p, as required.
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Lemma 1.12

Let X and Y be a subsets of Rm and Rn respectively, and let
f : X → Y be a continuous function from X to Y . Let
x1, x2, x3, . . . be a sequence of points of X which converges to
some point p of X . Then the sequence f (x1), f (x2), f (x3), . . .
converges to f (p).

Proof of Lemma 1.12
Let ε > 0 be given. Then there exists some δ > 0 such that
|f (x)− f (p)| < ε for all x ∈ X satisfying |x− p| < δ, since the
function f is continuous at p.
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X

Y

p

f(p)

BX(p, δ)

BY (f(p), ε)

f(BX(p, δ))

f

xN

f(xN)
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Also there exists some positive integer N such that |xj − p| < δ
whenever j ≥ N, since the sequence x1, x2, x3, . . . converges to p.
Thus if j ≥ N then |f (xj)− f (p)| < ε. Thus the sequence
f (x1), f (x2), f (x3), . . . converges to f (p), as required.
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Proposition 1.11

Let X , Y and Z be subsets of Rm, Rn and Rk respectively, and let
f : X → Y and g : Y → Z be functions satisfying f (X ) ⊂ Y .
Suppose that f is continuous at some point p of X and that g is
continuous at f (p). Then the composition function g ◦ f : X → Z
is continuous at p.

Proof of Proposition 1.11
Note that the ith component fi of f is given by fi = πi ◦ f , where
πi : Rn → R is the continuous function which maps
(y1, y2, . . . , yn) ∈ Rn onto its ith coordinate yi . Now any
composition of continuous functions is continuous, by Lemma 1.11.
Thus if f is continuous at p, then so are the components of f .
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Conversely suppose that the components of f are continuous at
p ∈ X . Let ε > 0 be given. Then there exist positive real numbers
δ1, δ2, . . . , δn such that |fi (x)− fi (p)| < ε/

√
n for x ∈ X satisfying

|x− p| < δi . Let δ be the minimum of δ1, δ2, . . . , δn. If x ∈ X
satisfies |x− p| < δ then

|f (x)− f (p)|2 =
n∑

i=1

|fi (x)− fi (p)|2 < ε2,

and hence |f (x)− f (p)| < ε. Thus the function f is continuous at
p, as required.
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Proposition 1.14

Let X be a subset of Rn, and let f : X → R and g : X → R be
continuous functions from X to R. Then the functions f + g ,
f − g and f · g are continuous. If in addition g(x) 6= 0 for all
x ∈ X then the quotient function f /g is continuous.

Proof of Proposition 1.14
First we prove that f + g is continuous. Let some strictly positive
real number ε be given. Then there exist strictly positive real
numbers δ1 and δ2 such that |f (x)− f (p)| < 1

2ε whenever x ∈ X
satisfies |x− p| < δ1 and |g(x)− g(p)| < 1

2ε whenever x ∈ X
satisfies |x− p| < δ2. Let δ be the minimum of δ1 and δ2. If x ∈ X
satisfies |x− p| < δ then

|(f +g)(x)−(f +g)(p)| ≤ |f (x)−f (p)|+|g(x)−g(p)| < 1
2ε+ 1

2ε = ε.

Thus the function f + g is continuous at p.
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The function −g is also continuous at p, and f − g = f + (−g). It
follows that the function f − g is continuous at p.

Next we prove that f · g is continuous. Let some strictly positive
real number ε be given. There exists some strictly positive real
number δ0 such that |f (x)− f (p)| < 1 and |g(x)− g(p)| < 1
whenever x ∈ X satisfies |x− p| < δ0. Let M be the maximum of
|f (p)|+ 1 and |g(p)|+ 1. Then |f (x)| < M and |g(x)| < M
whenever x ∈ X satisfies |x− p| < δ0. Now

f (x)g(x)− f (p)g(p) = (f (x)− f (p))g(x) + f (p)(g(x)− g(p)),

and thus

|f (x)g(x)− f (p)g(p)| ≤ M
(
|f (x)− f (p)|+ |g(x)− g(p)|

)
whenever x ∈ X satisfies |x− p| < δ0.
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There then exists some strictly positive real number δ, where
0 < δ ≤ δ0, such that

|f (x)− f (p)| < ε

2M
and |g(x)− g(p)| < ε

2M

whenever x ∈ X satisfies |x− p| < δ. But then

|f (x)g(x)− f (p)g(p)| < ε

whenever x ∈ X satisfies |x− p| < δ. Thus the function f · g is
continuous at p.
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Now suppose that g(x) 6= 0 for all x ∈ X . Note that 1/g = r ◦ g ,
where r : R \ {0} → R is the reciprocal function, defined by
r(t) = 1/t. Now the reciprocal function r is continuous. Thus the
function 1/g is a composition of continuous functions and is thus
continuous. But then, using the fact that a product of continuous
real-valued functions is continuous, we deduce that f /g is
continuous.
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Lemma 1.15

Let X be a subset of Rm, let f : X → Rn be a continuous function
mapping X into Rn, and let |f | : X → R be defined such that
|f |(x) = |f (x)| for all x ∈ X . Then the real-valued function |f | is
continuous on X .

Proof of Lemma 1.15
Let x and p be elements of X . Then

|f (x)| = |(f (x)− f (p)) + f (p)| ≤ |f (x)− f (p)|+ |f (p)|

and

|f (p)| = |(f (p)− f (x)) + f (x)| ≤ |f (x)− f (p)|+ |f (x)|,

and therefore ∣∣∣|f (x)| − |f (p)|
∣∣∣ ≤ |f (x)− f (p)|.
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The result now follows from the definition of continuity, using the
above inequality. Indeed let p be a point of X , and let some
positive real number ε be given. Then there exists a positive real
number δ small enough to ensure that |f (x)− f (p)| < ε for all
x ∈ X satisfying |x− p| < δ. But then∣∣∣|f (x)| − |f (p)|

∣∣∣ ≤ |f (x)− f (p)| < ε

for all x ∈ X satisfying |x− p| < δ, and thus the function |f | is
continuous, as required.
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Proposition 1.16

Let X and Y be subsets of Rm and Rn, and let f : X → Y be a
function from X to Y . The function f is continuous if and only if
f −1(V ) is open in X for every open subset V of Y .

Proof of Proposition 1.16
Suppose that f : X → Y is continuous. Let V be an open set
in Y . We must show that f −1(V ) is open in X . Let p ∈ f −1(V ).
Then f (p) ∈ V . But V is open, hence there exists some ε > 0
with the property that BY (f (p), ε) ⊂ V . But f is continuous at p.
Therefore there exists some δ > 0 such that f maps BX (p, δ) into
BY (f (p), ε) (see the remarks above). Thus f (x) ∈ V for all
x ∈ BX (p, δ), showing that BX (p, δ) ⊂ f −1(V ). This shows that
f −1(V ) is open in X for every open set V in Y .
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X

Yp

f(p)

BX(p, δ)

BY (f(p), ε)

f(BX(p, δ))
V

f−1(V )

f
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Conversely suppose that f : X → Y is a function with the property
that f −1(V ) is open in X for every open set V in Y . Let p ∈ X .
We must show that f is continuous at p.
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X

Yp

f(p)

f−1(BY (f(p), ε))

BX(p, δ)

BY (f(p), ε)

f(BX(p, δ))

f
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Let ε > 0 be given. Then BY (f (p), ε) is an open set in Y , by
Lemma 1.5, hence f −1 (BY (f (p), ε)) is an open set in X which
contains p. It follows that there exists some δ > 0 such that
BX (p, δ) ⊂ f −1 (BY (f (p), ε)). Thus, given any ε > 0, there exists
some δ > 0 such that f maps BX (p, δ) into BY (f (p), ε). We
conclude that f is continuous at p, as required.
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