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8. Convexity and the Kakutani Fixed Point Theorem (continued)

8.3. Zero-Sum Two-Person Games

Example
Consider the following hand game. This is a zero-sum two-person
game. At each go, the two players present simultaneously either
and open hand or a fist. If both players present fists, or if both
players present open hands, then no money changes hands. If one
player presents a fist and the other player presents an open hand
then the player presenting the fist receives ten cents from the
player presenting the open hand.



8. Convexity and the Kakutani Fixed Point Theorem (continued)

The payoff for the first player can be represented by the following
payoff matrix: (

0 −10
10 0

)
.

In this matrix the entry in the first row represent the payoffs when
the first player presents an open hand; those in the second row
represent the payoffs when the first player presents a fist. The
entries in the first column represent the payoff when the second
player presents an open hand; those in the second column
represent the payoffs when the second player presents a fist. In this
game the second player, choosing the best strategy, is always going
to play a fist, because that reduces the payoff for the first player,
whatever the first player chooses to play. Similarly the first player,
choosing the best strategy, is going to play a fist, because that
maximizes the payoff for the first player whatever the second player
does. Thus in this game, both players choosing the best strategies,
play fists.



8. Convexity and the Kakutani Fixed Point Theorem (continued)

It should be noticed that, in this situation, if the second player
always plays a fist, the first player would not be tempted to move
from a strategy of always playing a fist in order get a better payoff.
Similarly if the first player always plays a fist, then the second
player would not be tempted to move from a strategy of always
playing a fist in order to reduce the payoff to the first player. This
is a very simple example of a Nash Equilibrium. This equilibrium
arises because the element in the second row and second column of
the payoff matrix is simultaneously the largest element in its
column and the smallest element in its row. Matrix elements with
this property as said to be saddle points of the matrix.



8. Convexity and the Kakutani Fixed Point Theorem (continued)

Example
Now consider the game of Rock, Paper, Scissors. This game has a
long history, and versions of this game were well-established in
China and Japan in particular for many centuries.
Two players simultaneously present hand symbols representing
Rock (a closed fist), Paper (a flat hand), or Scissors (first two
fingers outstretched in a ‘V’). Paper beats Rock, Scissors beats
Paper, Rock beats Scissors. If both players present the same hand
symbol then that round is a draw.



8. Convexity and the Kakutani Fixed Point Theorem (continued)

Ordering the strategies for the playes in the order Rock (1st),
Paper (2nd) and Scissors (3rd), the payoff matrix for the first
player is the following:— 0 −1 1

1 0 −1
−1 1 0

 .

The entry in the ith row and jth column of this payoff matrix
represents the return to the first player on a round of the game if
the first player plays strategy i and the second player plays
strategy j .



8. Convexity and the Kakutani Fixed Point Theorem (continued)

A pure strategy would be one in which a player presents the same
hand symbol in every round. But it is not profitable for any player
in this game to adopt a pure strategy. If the first player adopts a
strategy of playing Paper, then the second player, on observing
this, would adopt a strategy of always playing Scissors, and would
beat the first player on every round. A preferable strategy, for each
player, is the mixed strategy of playing Rock, Paper and Scissors
with equal probability, and seeking to ensure that the sequence of
plays is as random as possible.



8. Convexity and the Kakutani Fixed Point Theorem (continued)

Let us denote by M the payoff matrix above. A mixed strategy for
the first player is one in which, on any given round Rock is played
with probability p1, Paper is played with probability p2 and Scissors
is played with probability p3. The mixed strategies for the first
player can therefore be represented by points of a triangle ∆P ,
where

∆P={(p1,p2,p3)∈R3:p1≥0, p2≥0, p3≥0, p1+p2+p3=1}.

A mixed strategy for the second player is one in which Rock is
played with probability q1, Paper with probability q2 and Scissors
with probability q3. The mixed strategies for the second player can
therefore be represented by points of a triangle ∆Q , where

∆Q={(q1,q2,q3)∈Rm:q1≥0, q2≥0, q3≥0, q1+q2+q3=1}.



8. Convexity and the Kakutani Fixed Point Theorem (continued)

Let p ∈ ∆P represent the mixed strategy chosen by the first player,
and qin∆Q the mixed strategy chosen by the second player, where

p = (p1, p2, p3), q = (q1, q2, q3).

Let Mij the payoff for the first player when the first player plays
strategy i and the second player plays strategy j . Then Mij is the
entry in the ith row and jth column of the payoff matrix M. In
matrix equations we consider p and q to be column vectors,
denoting their transposes by the row matrices pT and qT . The
expected payoff for the first player is then f (p,q), where

f (p,q) = pTMq =
3∑

i=1

3∑
j=1

piMijqj .



8. Convexity and the Kakutani Fixed Point Theorem (continued)

Let p∗ = (p∗1 , p
∗
2 , p
∗
3), where

p∗1 = p∗2 = p∗3 = 1
3 .

Then p∗TM = (0, 0, 0), and therefore

f (p∗,q) = 0

for all q ∈ ∆Q . Similarly let q∗ = (q∗1 , q
∗
2 , q
∗
3), where

q∗1 = q∗2 = q∗3 = 1
3 .

Then
f (p,q∗) = 0

for all p ∈ ∆Q . Thus the inequalities

f (p,q∗) ≤ f (p∗,q∗) ≤ f (p∗,q)

are satisfied for all p ∈ ∆P and q ∈ ∆q, because each of the
quantities occurring is equal to zero.



8. Convexity and the Kakutani Fixed Point Theorem (continued)

Were the first player to adopt a mixed strategy p, where
p = (p1, p2, p3), pi ≥ 0 for i = 1, 2, 3 and p1 + p2 + p3 = 1, the
second player could adopt mixed strategy q, where
q = (q1, q2, q3) = (p3, p1, p2). The payoff f (p,q) is then

f (p,q) = −p1q2 + p1q3 − p2q3 + p2q1 − p3q1 + p3q2

= −p2
1 + p1p2 − p2

2 + p2p3 − p2
3 + p3p1

= −1
6

(
(2p1 − p2 − p3)2 + (2p2 − p3 − p1)2

+ (2p3 − p1 − p2)2
)

≤ 0.



8. Convexity and the Kakutani Fixed Point Theorem (continued)

Moreover if f (p,q) = 0, where q1 = p3, q2 = p1 and q3 = p2, then

(2p1 − p2 − p3)2 + (2p2 − p3 − p1)2 + (2p3 − p1 − p2)2 = 0

and therefore 2p1 = p2 + p3, 2p2 = p3 + p1 and 2p3 = p1 + p2.
But then

3p1 = 3p2 = 3p3 = p1 + p2 + p3 = 1,

and thus p = p∗. It follows that if p ∈ ∆Q and p 6= p∗ then there
exists q ∈ ∆Q for which f (p,q) < 0. Thus if the first player
adopts a mixed strategy other than the strategy p∗ in which Rock,
Paper, Scissors are played with equal probability on each round,
there is a mixed strategy for the second player that ensures that
the average payoff for the first player is negative, and thus the first
player will lose in the long run over many rounds. Thus strategy p∗

is the only sensible mixed strategy that the first player can adopt.
The corresponding strategy q∗ is the only sensible mixed strategy
that the second player can adopt. The average payoff for each
player is then equal to zero.



8. Convexity and the Kakutani Fixed Point Theorem (continued)

8.4. Von Neumann’s Minimax Theorem

In 1920, John Von Neumann published a paper entitled “Zur
Theorie der Gesellschaftsspielle” (Mathematische Annalen, Vol.
100 (1928), pp. 295–320). The title translates as “On the Theory
of Social Games”. This paper included a proof of the following
“Minimax Theorem”, which made use of the Brouwer Fixed Point
Theorem. An alternative proof using results concerning convexity
was presented in the book On the Theory of Games and Economic
Behaviour by John Von Neumann and Oskar Morgenstern
(Princeton University Press, 1944). George Dantzig, in a paper
published in 1951, showed how the theorem could be solved using
linear programming methods (see Joel N. Franklin, Methods of
Mathematical Economics, (Springer Verlag, 1980, republished by
SIAM in 1982).



8. Convexity and the Kakutani Fixed Point Theorem (continued)

Theorem 8.7 (Von Neumann’s Minimax Theorem)

Let M be an m × n matrix, and let

∆P =

{
(p1, p2, . . . , pm) ∈ Rm : pi ≥ 0 for i = 1, 2, . . . ,m, and

m∑
i=1

pi = 1

}
,

∆Q =

(q1, q2, . . . , qn) ∈ Rn : qi ≥ 0 for i = 1, 2, . . . , n, and
n∑

j=1

qj = 1

 ,

and let

f (p,q) = pTMq =
m∑
i=1

n∑
j=1

Mi ,jpiqj

for all p ∈ ∆P and q ∈ ∆Q . Then there exist p∗ ∈ ∆P and
q∗ ∈ ∆Q such that

f (p,q∗) ≤ f (p∗,q∗) ≤ f (p∗,q)

for all p ∈ ∆P and q ∈ ∆Q .



8. Convexity and the Kakutani Fixed Point Theorem (continued)

Proof
Let f (p,q) = pTMq for all p ∈ ∆P and q ∈ ∆Q . Given q ∈ ∆Q ,
let

µP(q) = sup{f (p,q) : p ∈ ∆P}

and let
P(q) = {p ∈ ∆P : f (p,q) = µP(q)}.

Similarly given p ∈ ∆P , let

µQ(p) = inf{f (p,q) : q ∈ ∆Q}

and let
Q(p) = {q ∈ ∆Q : f (p,q) = µQ(q)}.



8. Convexity and the Kakutani Fixed Point Theorem (continued)

An application of Berge’s Maximum Theorem (Theorem 4.24)
ensures that the functions µP : ∆P → R and µQ : ∆Q → R are
continuous, and that the correspondences P : ∆Q ⇒ ∆P and
Q : ∆P ⇒ ∆Q are non-empty, compact-valued and upper
hemicontinuous. These correspondences therefore have closed
graphs (see Proposition 4.11). Morever P(q) is convex for all
q ∈ ∆Q and Q(p) is convex for all p ∈ ∆P . Let X = ∆P ×∆Q ,
and let Φ: X ⇒ X be defined such that

Φ(p,q) = P(q)× Q(p)

for all (p,q) ∈ X . Kakutani’s Fixed Point Theorem (Theorem 8.6)
then ensures that there exists (p∗,q∗) ∈ X such that
(p∗,q∗) ∈ Φ(p∗,q∗). Then p∗ ∈ P(q∗) and q∗ ∈ Q(p∗) and
therefore

f (p,q∗) ≤ f (p∗,q∗) ≤ f (p∗,q)

for all p ∈ ∆P and q ∈ ∆Q , as required.



9. Exchange Economies (continued)

9.1. The Existence of Equilibria in an Exchange Economy

We consider an exchange economy consisting of a finite number of
commodities and a finite number of households, each provided
with an initial endowment of each of the commodities. The
commodities are required to be infinitely divisible: this means that
a household can hold an amount x of that commodity for any
non-negative real number x . (Thus salt, for example, could be
regarded as an ‘infinitely divisible’ quantity whereas cars cannot: it
makes little sense to talk about a particular household owning
2.637 of a car, for example, though such a household may well own
2.637 kilograms of salt.) Now the households may well wish to
exchange commodities with one another so as improve on their
initial endowment. They might for example seek to barter
commodities with one another: however this method of
redistribution would not work very efficiently in a large economy.



9. Exchange Economies (continued)

Alternatively they might attempt to set up a price mechanism to
simplify the task of redistributing the commodities. Thus suppose
that each commodity is assigned a given price. Then each
household could sell its initial endowment to the market, receiving
in return the value of its initial endowment at the given prices.
The household could then purchase from the market a quantity of
each commodity so as to maximize its own preference, subject to
the constraint that the total value of the commodities purchased
by any household cannot exceed the value of its initial endowment
at the given prices. The problem of redistribution then becomes
one of fixing prices so that there is exactly enough of each
commodity to go around: if the price of any commodity is too low
then the demand for that commodity is likely to outstrip supply,
whereas if the price is too high then supply will exceed demand. A
Walras equilibrium is achieved if prices can be found so that the
supply of each commodity matches its demand. We shall use the
Brouwer fixed point theorem to prove the existence of a Walras
equilibrium in this idealized economy.



9. Exchange Economies (continued)

Let our exchange economy consist of n commodities and
m households. We suppose that household h is provided with an
initial endowment xhi of commodity i , where xhi ≥ 0. Thus the
initial endowment of household h can be represented by a vector
xh in Rn whose ith component is xhi . The prices of the
commodities are given by a price vector p whose ith component pi
specifies the price of a unit of the ith commodity: a price vector p
is required to satisfy pi ≥ 0 for all i . Then the value of the initial
endowment of household h at the given prices is p.xh. Let xhi (p)
be the quantity of commodity i that household h seeks to purchase
at prices p, and let xh(p) ∈ Rn be the vector whose ith component
is xhi (p). The budget constraint certainly ensures that
p.(xh(p)− xh) ≤ 0 (i.e., the value of the goods purchased cannot
exceed the value of the initial endowment at the given prices).



9. Exchange Economies (continued)

We assume that the value of the commodities that each household
seeks to purchase is equal to the value of its initial endowment,
and thus p.xh(p) = p.xh. Also the preferences of the household
will only depend on the relative prices of the commodities, and
therefore xh(λp) = xh(p) for all λ > 0.

Now the total supply of each commodity in the economy is
represented by the vector

∑
h xh, and the total demand at prices p

is represented by
∑

h xh(p). The excess demand in the economy at
prices p is therefore represented by the vector z(p), where
z(p) =

∑
h(xh(p)− xh). Let zi (p) be the ith component of z(p).

Then zi (p) > 0 when the demand for the ith commodity exceeds
supply, whereas zi (p) < 0 when the supply exceeds demand. Note
that p.z(p) = 0 for any price vector p. This identity, known as
Walras’ Law, follows immediately on summing the budget
constraint p.xh(p) = p.xh over all households.



9. Exchange Economies (continued)

Consider an exchange economy consisting of a finite number of
infinitely divisible commodities and a finite number of households.
Let the excess demand in the economy at prices p be given by
z(p), where

(i) the excess demand vector z(p) is well-defined for any price
vector p, and depends continuously on p,

(ii) p.z(p) = 0 for any price vector p (Walras’ Law).

It then follows from Corollary 7.4 that there exist equilibrium prices
p∗ at which zi (p

∗) ≤ 0 for all i .



9. Exchange Economies (continued)

The proof of the existence of Walras equilibria can readily be
generalized to Arrow-Debreu models where economic activity is
carried out by both households and firms. The problem of
existence of equilibria was studied by L. Walras in the 1870s,
though a rigorous proof of the existence of equilibria was not found
till the 1930s, when A. Wald proved existence for a limited range
of economic models. Proofs of existence using the Brouwer Fixed
Point Theorem, or a more general fixed point theorem due to
Katukani, were first published in 1954 by K. J. Arrow and
G. Debreu and by L. McKenzie. Subsequent research has centred
on problems of uniqueness and stability, and the existence theorems
have been generalized to economies with an infinite number of
commodities and economic agents (households and firms). An
alternative approach to the existence theorems using techniques of
differential topology was pioneered by G. Debreu and by S. Smale.



9. Exchange Economies (continued)

More detailed accounts of the theory of ‘general equilibrium’ can
be found in, for example, The theory of value, by G. Debreu,
General competitive analysis, by K. J. Arrow and F. H. Hahn, or
Economics for mathematicians by J. W. S. Cassels.
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