MA3486 Fixed Point Theorems and Economic Equilibria School of Mathematics, Trinity College Hilary Term 2016 Lectures 23 and 24 (March 18 and 21, 2016)

David R. Wilkins

8. Convexity and the Kakutani Fixed Point Theorem

8. Convexity and the Kakutani Fixed Point Theorem

8.1. Convex Subsets of Euclidean Spaces

Definition

A subset X of *n*-dimensional Euclidean space \mathbb{R}^n is said to be convex if $(1 - t)\mathbf{u} + t\mathbf{v} \in X$ for all points \mathbf{u} and \mathbf{v} of X and for all real numbers t satisfying $0 \le t \le 1$.

Lemma 8.1

An simplex in a Euclidean space is a convex subset of that Euclidean space.

Proof

Let σ be a *q*-simplex in *n*-dimensional Euclidean space, and let $\mathbf{w}_0, \mathbf{w}_1, \ldots, \mathbf{w}_q$ be the vertices of σ . Let \mathbf{u} and \mathbf{v} be points of σ . Then there exist non-negative real numbers y_0, y_1, \ldots, y_q and z_0, z_1, \ldots, z_q , where $\sum_{i=0}^q y_i = 1$ and $\sum_{i=0}^q z_i = 1$, such that

$$\mathbf{u} = \sum_{i=0}^{q} y_i \mathbf{w}_i, \quad \mathbf{v} = \sum_{i=0}^{q} z_i \mathbf{w}_i$$

Then

$$(1-t)\mathbf{u}+t\mathbf{v}=\sum_{i=0}^q((1-t)y_i+tz_i)\mathbf{w}_i$$

Moreover $(1 - t)y_i + tz_i \ge 0$ for i = 0, 1, ..., q and for all real numbers t satisfying $0 \le t \le 1$. Also

$$\sum_{i=0}^{q} ((1-t)y_i + tz_i) = (1-t) \sum_{i=0}^{q} y_i + t \sum_{i=0}^{q} z_i = 1.$$

It follows that $(1 - t)\mathbf{u} + t\mathbf{v} \in \sigma$. Thus σ is a convex subset of \mathbb{R}^n .

Lemma 8.2

Let X be a convex subset of n-dimensional Euclidean space \mathbb{R}^n , and let σ be a simplex contained in \mathbb{R}^n . Suppose that the vertices of σ belong to X. Then $\sigma \subset X$.

Proof

We prove the result by induction on the dimension q of the simplex σ . The result is clearly true when q = 0, because in that case the simplex σ consists of a single point which is the unique vertex of the simplex. Thus let σ be a q-dimensional simplex, and suppose that the result is true for all (q - 1)-dimensional simplices whose vertices belong to the convex set X. Let $\mathbf{w}_0, \mathbf{w}_1, \ldots, \mathbf{w}_q$ be the vertices of σ . Let \mathbf{x} be a point of σ . Then there exist non-negative real numbers t_0, t_1, \ldots, t_q satisfying $\sum_{i=1}^{q} t_i = 1$ such

ion-negative real numbers
$$t_0, t_1, \ldots, t_q$$
 satisfying $\sum_{i=0}^{n} t_i = 1$ such

that
$$\mathbf{x} = \sum_{i=0}^{r} t_i \mathbf{w}_i$$
. If $t_0 = 1$ then $\mathbf{x} = \mathbf{w}_0$, and therefore $\mathbf{x} \in X$.

It remains to consider the case when $t_0 < 1$. In that case let $s_i = t_i/(1 - t_0)$ for i = 1, 2, ..., q, and let

$$\mathbf{v} = \sum_{i=1}^{q} s_i \mathbf{w}_i.$$

Now $s_i \ge 0$ for $i = 1, 2, \ldots, q$, and

$$\sum_{i=1}^{q} s_i = \frac{1}{1-t_0} \sum_{i=1}^{q} t_i = \frac{1}{1-t_0} \left(\sum_{i=0}^{q} t_i - t_0 \right) = 1,$$

It follows that **v** belongs to the proper face of σ spanned by vertices $\mathbf{w}_1, \ldots, \mathbf{w}_q$. The induction hypothesis then ensures that $\mathbf{v} \in X$. But then

$$\mathbf{x} = t_0 \mathbf{w}_0 + (1 - t_0) \mathbf{v}_s$$

where $\mathbf{w}_0 \in X$ and $\mathbf{v} \in X$ and $0 \le t_0 \le 1$. It follows from the convexity of X that $\mathbf{x} \in X$, as required.

Let X be a convex set in *n*-dimensional Euclidean space \mathbb{R}^{\ltimes} . A point **x** of X is said to belong to the *topological interior* of X if there exists some $\delta > 0$ such that $B(\mathbf{x}, \delta) \subset X$, where

$$B(\mathbf{x},\delta) = \{\mathbf{x}' \in \mathbb{R}^n : |\mathbf{x}' - \mathbf{x}| < \delta\}.$$

Lemma 8.3

Let X be a convex set in n-dimensional Euclidean space \mathbb{R}^n , and let $\mathbf{x} = (1 - t)\mathbf{u} + t\mathbf{v}$ where $\mathbf{u}, \mathbf{v} \in X$ and 0 < t < 1. Suppose that either \mathbf{u} or \mathbf{v} belongs to the topological interior of X. Then \mathbf{x} belongs to the topological interior of X.

Proof

Suppose that **v** belongs to the topological interior of X. Then there exists $\delta > 0$ such that $B(\mathbf{v}, \delta) \subset X$, where

$$B(\mathbf{v}, \delta) = \{\mathbf{x}' \in \mathbb{R}^n : |\mathbf{x}' - \mathbf{v}| < \delta\}.$$

We claim that $B(\mathbf{x}, t\delta) \subset X$. Let $\mathbf{x}' \in B(\mathbf{x}, t\delta)$, and let

$$\mathbf{z} = \frac{1}{t}(\mathbf{x}' - \mathbf{x}).$$

Then $\mathbf{v} + \mathbf{z} \in B(\mathbf{v}, \delta)$ and

$$\mathbf{x}' = (1-t)\mathbf{u} + t(\mathbf{v} + \mathbf{z}),$$

and therefore $\mathbf{x}' \in X$. This proves the result when \mathbf{v} belongs to the topological interior of X. The result when \mathbf{u} belongs to the topological interior of X then follows on interchanging \mathbf{u} and \mathbf{v} and replacing t by 1 - t. The result follows.

Proposition 8.4

Let X be a closed bounded convex subset of n-dimensional Euclidean space \mathbb{R}^n whose topological interior contains the origin, let S^{n-1} be the unit sphere in \mathbb{R}^n , defined such that

$$S^{n-1} = \{\mathbf{u} \in \mathbb{R}^n : |\mathbf{u}| = 1\},\$$

and let $\lambda\colon S^{n-1}\to\mathbb{R}$ be the real-valued function on S^{n-1} defined such that

$$\lambda(\mathbf{u}) = \sup\{t \in \mathbf{R} : t\mathbf{u} \in X\}$$

for all $\mathbf{u} \in S^{n-1}$. Then the function $\lambda \colon S^{n-1} \to \mathbb{R}$ is continuous.

Proof

Let $\mathbf{u}_0 \in S^{n-1}$, let $t_0 = \lambda(\mathbf{u}_0)$, and let some positive real number ε be given, where $0 < \varepsilon < t_0$. It follows from Lemma 8.3 that $(t_0 - \varepsilon)\mathbf{u}$ belongs to the topological interior of X. It then follows from the continuity of the function sending $\mathbf{u} \in S^{n-1}$ to $(t_0 - \varepsilon)\mathbf{u}$ that there exists some positive real number δ_1 such that $(t_0 - \varepsilon)\mathbf{u} \in X$ for all $\mathbf{u} \in S^{n-1}$ satisfying $|\mathbf{u} - \mathbf{u}_0| < \delta_1$. Therefore $\lambda(\mathbf{u}) \ge t_0 - \varepsilon$ whenever $|\mathbf{u} - \mathbf{u}_0| < \delta_1$.

Next we note that $(t_0 + \varepsilon) \mathbf{u}_0 \notin X$. Now X is closed in \mathbb{R}^n , and therefore the complement $\mathbb{R}^n \setminus X$ of X in \mathbb{R}^n is open. It follows that there exists an open ball of positive radius about the point $(t_0 + \varepsilon)\mathbf{u}_0$ that is wholly contained in the complement of X. It then follows from the continuity of the function sending $\mathbf{u} \in S^{n-1}$ to $(t_0 + \varepsilon)\mathbf{u}$ that there exists some positive real number δ_2 such that $(t_0 + \varepsilon)\mathbf{u} \notin X$ for all $\mathbf{u} \in S^{n-1}$ satisfying $|\mathbf{u} - \mathbf{u}_0| < \delta_2$. It then follows from the convexity of X that $t\mathbf{u} \notin X$ for all positive real numbers t satisfying $t \ge t_0 + \varepsilon$. Therefore $\lambda(\mathbf{u}) \le t_0 + \varepsilon$ whenever $|\mathbf{u} - \mathbf{u}_0| < \delta_2$. Let δ be the minimum of δ_1 and δ_2 . Then $\delta > 0$. and

$$\lambda(\mathbf{u}_0) - \varepsilon \leq \lambda(\mathbf{u}) \leq \lambda(\mathbf{u}_0) + \varepsilon$$

for all $\mathbf{u} \in S^{n-1}$ satisfying $|\mathbf{u} - \mathbf{u}_0| < \delta$. The result follows.

Proposition 8.5

Let X be a closed bounded convex subset of n-dimensional Euclidean space \mathbb{R}^n . Then there exists a continuous map $r \colon \mathbb{R}^n \to X$ such that $r(\mathbb{R}^n) = X$ and $r(\mathbf{x}) = \mathbf{x}$ for all $\mathbf{x} \in X$.

Proof

We first prove the result in the special case in which the convex set X has non-empty topological interior. Without loss of generality, we may assume that the origin of \mathbb{R}^n belongs to the topological interior of X. Let

$$S^{n-1} = \{\mathbf{u} \in \mathbb{R}^n : |\mathbf{u}| = 1\},\$$

and let $\lambda\colon S^{n-1}\to\mathbb{R}$ be the real-valued function on S^{n-1} defined such that

$$\lambda(\mathbf{u}) = \sup\{t \in \mathbf{R} : t\mathbf{u} \in X\}$$

for all $\mathbf{u} \in S^{n-1}$. Then the function $\lambda \colon S^{n-1} \to \mathbb{R}$ is continuous (Proposition 8.4).

We may therefore define a function $r: \mathbb{R}^n \to X$ such that

$$r(\mathbf{x} = \begin{cases} \mathbf{x} & \text{if } \mathbf{x} \in X; \\ |\mathbf{x}|^{-1}\lambda(|\mathbf{x}|^{-1}\mathbf{x})\mathbf{x} & \text{if } \mathbf{x} \notin X. \end{cases}$$

Let $\mathbf{x} \in X$ and let $\mathbf{u} = |\mathbf{x}|^{-1}\mathbf{x}$. Then $\mathbf{x} = |\mathbf{x}| \mathbf{u}$, $|\mathbf{x}| \le \lambda(\mathbf{u})$ and $\lambda(\mathbf{u})\mathbf{u} \in X$. It follows from Lemma 8.3 that if $|\mathbf{x}| < \lambda(\mathbf{u})$ then the point \mathbf{x} belongs to the topological interior of \mathbf{u} . Thus if the point \mathbf{x} of X belongs to the closure of the complement $\mathbb{R}^n \setminus X$ of X then it does not belong to the topological interior of X, and therefore $|\mathbf{x}| = \lambda(|\mathbf{x}|^{-1}\mathbf{x})$, and therefore

$$\mathbf{x} = |\mathbf{x}|^{-1}\lambda(|\mathbf{x}|^{-1}\mathbf{x})\mathbf{x}.$$

The function r defined above is therefore continuous on the closure of $\mathbb{R}^n \setminus X$. It is obviously continuous on X itself. It follows that $r: \mathbb{R}^n \to X$ is continuous. This proves the result in the case when the topological interior of the set X is non-empty. We now extend the result to the case where the topological interior of X is empty. Now the number of points in an affinely independent list of points of \mathbb{R}^n cannot exceed n + 1. It follows that there exists an integer q not exceeding n such that the convex set X contains a q + 1 affinely independent points but does not contain q + 1 affinely independent points. Let $\mathbf{w}_0, \mathbf{w}_1, \dots, \mathbf{w}_q$ be affinely independent points of X. Let V be the q-dimensional subspace of \mathbb{R}^n spanned by the vectors

$$\mathbf{w}_1 - \mathbf{w}_0, \mathbf{w}_2 - \mathbf{w}_0, \dots, \mathbf{w}_q - \mathbf{w}_0.$$

Now if there were to exist a point \mathbf{x} of X for which $\mathbf{x} - \mathbf{w}_0 \notin V$ then the points $\mathbf{w}_0, \mathbf{w}_1, \dots, \mathbf{w}_q, \mathbf{x}$ would be affinely independent. The definition of q ensures that this is not the case. Thus if

$$X_V = \{\mathbf{x} - \mathbf{w}_0 : \mathbf{x} \in X\}.$$

then $X_V \subset V$. Moreover X_V is a closed convex subset of V.

Now it follows from Lemma 8.2 that the convex set X_V contains the *q*-simplex with vertices

$$\mathbf{0},\,\mathbf{w}_1-\mathbf{w}_0,\,\mathbf{w}_2-\mathbf{w}_0,\ldots\,\mathbf{w}_q-\mathbf{w}_0.$$

This *q*-simplex has non-empty topological interior with respect to the vector space *V*. It follows that X_V has non-empty topological interior with respect to *V*. It therefore follows from the result already proved that there exists a continuous function $r_V: V \to X_V$ that satisfies $r_V(\mathbf{x}) = \mathbf{x}$ for all $\mathbf{x} \in X_V$. Basic linear algebra ensures the existence of a linear transformation $T: \mathbb{R}^n \to V$ satisfying $T(\mathbf{x}) = \mathbf{x}$ for all $\mathbf{x} \in V$. Let

$$r(\mathbf{x}) = r_V(T(\mathbf{x} - \mathbf{w}_0)) + \mathbf{w}_0$$

for all $\mathbf{x} \in \mathbb{R}^n$. Then the function $r \colon \mathbb{R}^n \to X$ is continuous, and $r(\mathbf{x}) = \mathbf{x}$ for all $\mathbf{x} \in X$, as required.

8.2. The Kakutani Fixed Point Theorem

Theorem 8.6 (Kakutani's Fixed Point Theorem)

Let X be a non-empty, compact and convex subset of n-dimensional Euclidean space \mathbb{R}^n , and let $\Phi: X \rightrightarrows X$ be a correspondence mapping X into itself. Suppose that the graph of the correspondence Φ is closed and that $\Phi(\mathbf{x})$ is non-empty and convex for all $\mathbf{x} \in X$. Then there exists a point \mathbf{x}^* of X that satisfies $\mathbf{x}^* \in \Phi(\mathbf{x}^*)$.

Proof

There exists a continuous map $r: \mathbb{R}^n \to X$ from \mathbb{R}^n to X with the property that $r(\mathbf{x}) = \mathbf{x}$ for all $\mathbf{x} \in X$. (see Proposition 8.5). Let Δ be an *n*-dimensional simplex chosen such that $X \subset \Delta$, and let $\Psi(\mathbf{x}) = \Phi(r(\mathbf{x}))$ for all $\mathbf{x} \in \Delta$. If $\mathbf{x}^* \in \Delta$ satisfies $\mathbf{x}^* \in \Psi(\mathbf{x}^*)$ then $\mathbf{x}^* \in X$ and $r(\mathbf{x}^*) = \mathbf{x}^*$, and therefore $\mathbf{x} \in \Phi(\mathbf{x}^*)$. It follows that the result in the general case follows from that in the special case in which the closed bounded convex subset X of \mathbb{R}^n is an *n*-dimensional simplex.

Thus let Δ be an *n*-dimensional simplex contained in \mathbb{R}^n , and let $\Phi: \Delta \rightrightarrows \Delta$ be a correspondence with closed graph, where $\Phi(\mathbf{x})$ is a non-empty closed convex subset of Δ for all $\mathbf{x} \in X$. We must prove that there exists some point \mathbf{x}^* of Δ with the property that $\mathbf{x}^* \in \Phi(\mathbf{x}^*)$.

Let K be the simplicial complex consisting of the *n*-simplex Δ together with all its faces, and let $K^{(j)}$ be the *i*th barycentric subdivision of K for all positive integers j. Then $|K^{(j)}| = \Delta$ for all positive integers j. Now $\Phi(\mathbf{v})$ is non-empty for all vertices \mathbf{v} of $\mathcal{K}^{(j)}$. Now any function mapping the vertices of a simplicial complex into a Euclidean space extends uniquely to a piecewise linear map defined over the polyhedron of that simplicial complex (Proposition 6.10). Therefore there exists a sequence f_1, f_2, f_3, \ldots of continuous functions mapping the simplex Δ into itself such that, for each positive integer *j*, the continuous map $f_i : \Delta \to \Delta$ is piecewise linear on the simplices of $K^{(j)}$ and satisfies $f_i(\mathbf{v}) \in \Phi(\mathbf{v})$ for all vertices **v** of $K^{(j)}$.

Now it follows from the Brouwer Fixed Point Theorem Theorem 7.3 that, for each positive integer j, there exists $\mathbf{z}_j \in \Delta$ for which $f_j(\mathbf{z}_j) = \mathbf{z}_j$. For each positive integer j, there exist vertices

$$v_{0,j}, v_{1,j}, \ldots, v_{n,j}$$

of $K^{(j)}$ spanning a simplex of K and non-negative real numbers $t_{0,j}, t_{1,j}, \ldots, t_{n,j}$ satisfying $\sum_{i=1}^{n} t_{i,j} = 1$ such that

$$\mathbf{z}_j = \sum_{i=0}^n t_{i,j} \mathbf{v}_{i,j}$$

for all positive integers j. Let $\mathbf{y}_{i,j} = f_j(\mathbf{v}_{i,j})$ for i = 0, 1, ..., n and for all positive integers j. Then $\mathbf{y}_{i,j} \in \Phi(\mathbf{v}_{i,j})$ for i = 0, 1, ..., n and for all positive integers j.

The function f_j is piecewise linear on the simplices of $K^{(j)}$. It follows that

$$\sum_{i=0}^{m} t_{i,j} \mathbf{v}_{i,j} = \mathbf{z}_j = f_j(\mathbf{z}_j) = f_j\left(\sum_{i=0}^{m} t_{i,j} \mathbf{v}_{i,j}\right)$$
$$= \sum_{i=0}^{m} t_{i,j} f_j(\mathbf{v}_{i,j}) = \sum_{i=0}^{m} t_{i,j} \mathbf{y}_{i,j}$$

for all positive integers *j*. Also $|\mathbf{v}_{i,j} - \mathbf{v}_{0,j}| \le \mu(K^{(j)})$ for i = 0, 1, ..., n and for all positive integers *j*, where $\mu(K^{(j)})$ denotes the mesh of the simplicial complex $K^{(j)}$ (i.e., the length of the longest side of that simplicial complex). Moreover $\mu(K^j) \to 0$ as $j \to +\infty$ (see Lemma 6.8). It follows that

$$\lim_{j\to+\infty}|\mathbf{v}_{i,j}-\mathbf{v}_{0,j}|=0.$$

Now the multidimensional Bolzano-Weierstrass Theorem (Theorem 2.5) ensures the existence of points \mathbf{x}^* , $\mathbf{y}_0, \mathbf{y}_1, \ldots, \mathbf{y}_n$ of the simplex Δ , non-negative real numbers t_0, t_1, \ldots, t_n and an infinite sequence m_1, m_2, m_3, \ldots of positive integers, where

 $m_1 < m_2 < m_3 < \cdots,$

such that

$$\begin{aligned} \mathbf{x}^* &= \lim_{j \to +\infty} \mathbf{v}_{0,m_j}, \\ \mathbf{y}_i &= \lim_{j \to +\infty} \mathbf{y}_{i,m_j} \quad (0 \le i \le n), \\ t_i &= \lim_{j \to +\infty} t_{i,m_j} \quad (0 \le i \le n). \end{aligned}$$

Now

$$|\mathbf{v}_{i,m_j} - \mathbf{x}^*| \leq |\mathbf{v}_{i,m_j} - \mathbf{v}_{0,m_j}| + |\mathbf{v}_{0,m_j} - \mathbf{x}^*|$$

for i = 0, 1, ..., n and for all positive integers j. Moreover $\lim_{\substack{j \to +\infty}} |\mathbf{v}_{i,m_j} - \mathbf{v}_{0,m_j}| = 0 \text{ and } \lim_{\substack{j \to +\infty}} |\mathbf{v}_{i,m_j} - \mathbf{x}^*| = 0. \text{ It follows that}$ $\lim_{\substack{j \to +\infty}} \mathbf{v}_{i,m_j} = \mathbf{x}^* \text{ for } i = 0, 1, ..., n. \text{ Also}$

$$\sum_{i=0}^{n} t_i = \lim_{j \to +\infty} \left(\sum_{i=0}^{n} t_{i,m_j} \right) = 1.$$

It follows that

$$\lim_{j \to +\infty} \left(\sum_{i=0}^{n} t_{i,m_j} \mathbf{v}_{i,m_j} \right) = \sum_{i=0}^{n} \left(\lim_{j \to +\infty} t_{i,m_j} \right) \left(\lim_{j \to +\infty} \mathbf{v}_{i,m_j} \right)$$
$$= \sum_{i=0}^{n} t_i \mathbf{x}^* = \mathbf{x}^*.$$

But we have also shown that
$$\sum_{i=0}^{m} t_{i,j} \mathbf{y}_{i,j} = \sum_{i=0}^{m} t_{i,j} \mathbf{v}_{i,j}$$
 for all positive integers *j*. It follows that

$$\sum_{i=0}^{m} t_i \mathbf{y}_i = \lim_{j \to +\infty} \left(\sum_{i=0}^{m} t_{i,m_j} \mathbf{y}_{i,m_j} \right) = \lim_{j \to +\infty} \left(\sum_{i=0}^{m} t_{i,m_j} \mathbf{v}_{i,m_j} \right) = \mathbf{x}^*.$$

Next we show that $\mathbf{y}_i \in \Phi(\mathbf{x}^*)$ for i = 0, 1, ..., n. Now

$$(\mathbf{v}_{i,m_j},\mathbf{y}_{i,m_j})\in \operatorname{Graph}(\Phi)$$

for all positive integers j, and the graph $\operatorname{Graph}(\Phi)$ of the correspondence Φ is closed. It follows that

$$(\mathbf{x}^*, \mathbf{y}_i) = \lim_{j \to +\infty} (\mathbf{v}_{i,m_j}, \mathbf{y}_{i,m_j}) \in \operatorname{Graph}(\Phi)$$

and thus $\mathbf{y}_i \in \Phi(\mathbf{x}_*)$ for $i = 0, 1, \dots, m$ (see Proposition 4.6).

It follows from the convexity of $\Phi(\mathbf{x}^*)$ that

$$\sum_{i=0}^q t_i \mathbf{y}_* \in \Phi(\mathbf{x}^*).$$

(see Lemma 8.2). But $\sum_{i=0}^{q} t_i \mathbf{y}_* = \mathbf{x}^*$. It follows that $\mathbf{x}^* \in \Phi(\mathbf{x}^*)$, as required.