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8. Convexity and the Kakutani Fixed Point Theorem

8. Convexity and the Kakutani Fixed Point Theorem

8.1. Convex Subsets of Euclidean Spaces

Definition

A subset X of n-dimensional Euclidean space Rn is said to be
convex if (1− t)u + tv ∈ X for all points u and v of X and for all
real numbers t satisfying 0 ≤ t ≤ 1.

Lemma 8.1

An simplex in a Euclidean space is a convex subset of that
Euclidean space.
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Proof
Let σ be a q-simplex in n-dimensional Euclidean space, and let
w0,w1, . . . ,wq be the vertices of σ. Let u and v be points of σ.
Then there exist non-negative real numbers y0, y1, . . . , yq and

z0, z1, . . . , zq, where
q∑

i=0
yi = 1 and

q∑
i=0

zi = 1, such that

u =

q∑
i=0

yiwi , v =

q∑
i=0

ziwi .

Then

(1− t)u + tv =

q∑
i=0

((1− t)yi + tzi )wi .
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Moreover (1− t)yi + tzi ≥ 0 for i = 0, 1, . . . , q and for all real
numbers t satisfying 0 ≤ t ≤ 1. Also

q∑
i=0

((1− t)yi + tzi ) = (1− t)

q∑
i=0

yi + t

q∑
i=0

zi = 1.

It follows that (1− t)u + tv ∈ σ. Thus σ is a convex subset of
Rn.
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Lemma 8.2

Let X be a convex subset of n-dimensional Euclidean space Rn,
and let σ be a simplex contained in Rn. Suppose that the vertices
of σ belong to X . Then σ ⊂ X.

Proof
We prove the result by induction on the dimension q of the
simplex σ. The result is clearly true when q = 0, because in that
case the simplex σ consists of a single point which is the unique
vertex of the simplex. Thus let σ be a q-dimensional simplex, and
suppose that the result is true for all (q − 1)-dimensional simplices
whose vertices belong to the convex set X . Let w0,w1, . . . ,wq be
the vertices of σ. Let x be a point of σ. Then there exist

non-negative real numbers t0, t1, . . . , tq satisfying
q∑

i=0
ti = 1 such

that x =
q∑

i=0
tiwi . If t0 = 1 then x = w0, and therefore x ∈ X .
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It remains to consider the case when t0 < 1. In that case let
si = ti/(1− t0) for i = 1, 2, . . . , q, and let

v =

q∑
i=1

siwi .

Now si ≥ 0 for i = 1, 2, . . . , q, and

q∑
i=1

si =
1

1− t0

q∑
i=1

ti =
1

1− t0

(
q∑

i=0

ti − t0

)
= 1,

It follows that v belongs to the proper face of σ spanned by
vertices w1, . . . ,wq. The induction hypothesis then ensures that
v ∈ X . But then

x = t0w0 + (1− t0)v,

where w0 ∈ X and v ∈ X and 0 ≤ t0 ≤ 1. It follows from the
convexity of X that x ∈ X , as required.
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Let X be a convex set in n-dimensional Euclidean space Rn. A
point x of X is said to belong to the topological interior of X if
there exists some δ > 0 such that B(x, δ) ⊂ X , where

B(x, δ) = {x′ ∈ Rn : |x′ − x| < δ}.

Lemma 8.3

Let X be a convex set in n-dimensional Euclidean space Rn, and
let x = (1− t)u + tv where u, v ∈ X and 0 < t < 1. Suppose that
either u or v belongs to the topological interior of X . Then x
belongs to the topological interior of X .
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Proof
Suppose that v belongs to the topological interior of X . Then
there exists δ > 0 such that B(v, δ) ⊂ X , where

B(v, δ) = {x′ ∈ Rn : |x′ − v| < δ}.

We claim that B(x, tδ) ⊂ X .
Let x′ ∈ B(x, tδ), and let

z =
1

t
(x′ − x).

Then v + z ∈ B(v, δ) and

x′ = (1− t)u + t(v + z),

and therefore x′ ∈ X . This proves the result when v belongs to the
topological interior of X . The result when u belongs to the
topological interior of X then follows on interchanging u and v and
replacing t by 1− t. The result follows.
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Proposition 8.4

Let X be a closed bounded convex subset of n-dimensional
Euclidean space Rn whose topological interior contains the origin,
let Sn−1 be the unit sphere in Rn, defined such that

Sn−1 = {u ∈ Rn : |u| = 1},

and let λ : Sn−1 → R be the real-valued function on Sn−1 defined
such that

λ(u) = sup{t ∈ R : tu ∈ X}

for all u ∈ Sn−1. Then the function λ : Sn−1 → R is continuous.
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Proof
Let u0 ∈ Sn−1, let t0 = λ(u0), and let some positive real number ε
be given, where 0 < ε < t0. It follows from Lemma 8.3 that
(t0 − ε)u belongs to the topological interior of X . It then follows
from the continuity of the function sending u ∈ Sn−1 to (t0 − ε)u
that there exists some positive real number δ1 such that
(t0 − ε)u ∈ X for all u ∈ Sn−1 satisfying |u− u0| < δ1. Therefore
λ(u) ≥ t0 − ε whenever |u− u0| < δ1.
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Next we note that (t0 + ε)u0 6∈ X . Now X is closed in Rn, and
therefore the complement Rn \ X of X in Rn is open. It follows
that there exists an open ball of positive radius about the point
(t0 + ε)u0 that is wholly contained in the complement of X . It
then follows from the continuity of the function sending u ∈ Sn−1

to (t0 + ε)u that there exists some positive real number δ2 such
that (t0 + ε)u 6∈ X for all u ∈ Sn−1 satisfying |u− u0| < δ2. It
then follows from the convexity of X that tu 6∈ X for all positive
real numbers t satisfying t ≥ t0 + ε. Therefore λ(u) ≤ t0 + ε
whenever |u− u0| < δ2. Let δ be the minimum of δ1 and δ2. Then
δ > 0, and

λ(u0)− ε ≤ λ(u) ≤ λ(u0) + ε

for all u ∈ Sn−1 satisfying |u− u0| < δ. The result follows.
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Proposition 8.5

Let X be a closed bounded convex subset of n-dimensional
Euclidean space Rn. Then there exists a continuous map
r : Rn → X such that r(Rn) = X and r(x) = x for all x ∈ X.

Proof
We first prove the result in the special case in which the convex
set X has non-empty topological interior. Without loss of
generality, we may assume that the origin of Rn belongs to the
topological interior of X . Let

Sn−1 = {u ∈ Rn : |u| = 1},
and let λ : Sn−1 → R be the real-valued function on Sn−1 defined
such that

λ(u) = sup{t ∈ R : tu ∈ X}
for all u ∈ Sn−1. Then the function λ : Sn−1 → R is continuous
(Proposition 8.4).
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We may therefore define a function r : Rn → X such that

r(x =

{
x if x ∈ X ;
|x|−1λ(|x|−1x)x if x 6∈ X .

Let x ∈ X and let u = |x|−1x. Then x = |x|u, |x| ≤ λ(u) and
λ(u)u ∈ X . It follows from Lemma 8.3 that if |x| < λ(u) then the
point x belongs to the topological interior of u. Thus if the point x
of X belongs to the closure of the complement Rn \X of X then it
does not belong to the topological interior of X , and therefore
|x| = λ(|x|−1x), and therefore

x = |x|−1λ(|x|−1x)x.

The function r defined above is therefore continuous on the closure
of Rn \ X . It is obviously continuous on X itself. It follows that
r : Rn → X is continuous. This proves the result in the case when
the topological interior of the set X is non-empty.
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We now extend the result to the case where the topological interior
of X is empty. Now the number of points in an affinely
independent list of points of Rn cannot exceed n + 1. It follows
that there exists an integer q not exceeding n such that the convex
set X contains a q + 1 affinely independent points but does not
contain q + 1 affinely independent points. Let w0,w1, . . . ,wq be
affinely independent points of X . Let V be the q-dimensional
subspace of Rn spanned by the vectors

w1 −w0,w2 −w0, . . . ,wq −w0.

Now if there were to exist a point x of X for which x−w0 6∈ V
then the points w0,w1, . . . ,wq, x would be affinely independent.
The definition of q ensures that this is not the case. Thus if

XV = {x−w0 : x ∈ X}.

then XV ⊂ V . Moreover XV is a closed convex subset of V .
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Now it follows from Lemma 8.2 that the convex set XV contains
the q-simplex with vertices

0, w1 −w0, w2 −w0, . . . wq −w0.

This q-simplex has non-empty topological interior with respect to
the vector space V . It follows that XV has non-empty topological
interior with respect to V . It therefore follows from the result
already proved that there exists a continuous function
rV : V → XV that satisfies rV (x) = x for all x ∈ XV . Basic linear
algebra ensures the existence of a linear transformation
T : Rn → V satisfying T (x) = x for all x ∈ V . Let

r(x) = rV (T (x−w0)) + w0

for all x ∈ Rn. Then the function r : Rn → X is continuous, and
r(x) = x for all x ∈ X , as required.
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8.2. The Kakutani Fixed Point Theorem

Theorem 8.6 (Kakutani’s Fixed Point Theorem)

Let X be a non-empty, compact and convex subset of
n-dimensional Euclidean space Rn, and let Φ: X ⇒ X be a
correspondence mapping X into itself. Suppose that the graph of
the correspondence Φ is closed and that Φ(x) is non-empty and
convex for all x ∈ X. Then there exists a point x∗ of X that
satisfies x∗ ∈ Φ(x∗).
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Proof
There exists a continuous map r : Rn → X from Rn to X with the
property that r(x) = x for all x ∈ X . (see Proposition 8.5). Let ∆
be an n-dimensional simplex chosen such that X ⊂ ∆, and let
Ψ(x) = Φ(r(x)) for all x ∈ ∆. If x∗ ∈ ∆ satisfies x∗ ∈ Ψ(x∗) then
x∗ ∈ X and r(x∗) = x∗, and therefore x ∈ Φ(x∗). It follows that
the result in the general case follows from that in the special case
in which the closed bounded convex subset X of Rn is an
n-dimensional simplex.

Thus let ∆ be an n-dimensional simplex contained in Rn, and let
Φ: ∆ ⇒ ∆ be a correspondence with closed graph, where Φ(x) is
a non-empty closed convex subset of ∆ for all x ∈ X . We must
prove that there exists some point x∗ of ∆ with the property that
x∗ ∈ Φ(x∗).
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Let K be the simplicial complex consisting of the n-simplex ∆
together with all its faces, and let K (j) be the jth barycentric
subdivision of K for all positive integers j . Then |K (j)| = ∆ for all
positive integers j . Now Φ(v) is non-empty for all vertices v of
K (j). Now any function mapping the vertices of a simplicial
complex into a Euclidean space extends uniquely to a piecewise
linear map defined over the polyhedron of that simplicial complex
(Proposition 6.10). Therefore there exists a sequence f1, f2, f3, . . .
of continuous functions mapping the simplex ∆ into itself such
that, for each positive integer j , the continuous map fj : ∆→ ∆ is
piecewise linear on the simplices of K (j) and satisfies fj(v) ∈ Φ(v)
for all vertices v of K (j).
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Now it follows from the Brouwer Fixed Point Theorem Theorem 7.3
that, for each positive integer j , there exists zj ∈ ∆ for which
fj(zj) = zj . For each positive integer j , there exist vertices

v0,j , v1,j , . . . , vn,j

of K (j) spanning a simplex of K and non-negative real numbers

t0,j , t1,j , . . . , tn,j satisfying
n∑

i=1
ti ,j = 1 such that

zj =
n∑

i=0

ti ,jvi ,j

for all positive integers j . Let yi ,j = fj(vi ,j) for i = 0, 1, . . . , n and
for all positive integers j . Then yi ,j ∈ Φ(vi ,j) for i = 0, 1, . . . , n and
for all positive integers j .
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The function fj is piecewise linear on the simplices of K (j). It
follows that

m∑
i=0

ti ,jvi ,j = zj = fj(zj) = fj

(
m∑
i=0

ti ,jvi ,j

)

=
m∑
i=0

ti ,j fj(vi ,j) =
m∑
i=0

ti ,jyi ,j

for all positive integers j . Also |vi ,j − v0,j | ≤ µ(K (j)) for
i = 0, 1, . . . , n and for all positive integers j , where µ(K (j)) denotes
the mesh of the simplicial complex K (j) (i.e., the length of the
longest side of that simplicial complex). Moreover µ(K j)→ 0 as
j → +∞ (see Lemma 6.8). It follows that

lim
j→+∞

|vi ,j − v0,j | = 0.
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Now the multidimensional Bolzano-Weierstrass Theorem
(Theorem 2.5) ensures the existence of points x∗, y0, y1, . . . , yn of
the simplex ∆, non-negative real numbers t0, t1, . . . , tn and an
infinite sequence m1,m2,m3, . . . of positive integers, where

m1 < m2 < m3 < · · · ,

such that

x∗ = lim
j→+∞

v0,mj ,

yi = lim
j→+∞

yi ,mj
(0 ≤ i ≤ n),

ti = lim
j→+∞

ti ,mj
(0 ≤ i ≤ n).
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Now
|vi ,mj

− x∗| ≤ |vi ,mj
− v0,mj |+ |v0,mj − x∗|

for i = 0, 1, . . . , n and for all positive integers j . Moreover
lim

j→+∞
|vi ,mj

− v0,mj | = 0 and lim
j→+∞

|vi ,mj
− x∗| = 0. It follows that

lim
j→+∞

vi ,mj
= x∗ for i = 0, 1, . . . , n. Also

n∑
i=0

ti = lim
j→+∞

(
n∑

i=0

ti ,mj

)
= 1.

It follows that

lim
j→+∞

(
n∑

i=0

ti ,mj
vi ,mj

)
=

n∑
i=0

(
lim

j→+∞
ti ,mj

)(
lim

j→+∞
vi ,mj

)

=
n∑

i=0

tix
∗ = x∗.
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But we have also shown that
m∑
i=0

ti ,jyi ,j =
m∑
i=0

ti ,jvi ,j for all positive

integers j . It follows that

m∑
i=0

tiyi = lim
j→+∞

(
m∑
i=0

ti ,mj
yi ,mj

)
= lim

j→+∞

(
m∑
i=0

ti ,mj
vi ,mj

)
= x∗.
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Next we show that yi ∈ Φ(x∗) for i = 0, 1, . . . , n. Now

(vi ,mj
, yi ,mj

) ∈ Graph(Φ)

for all positive integers j , and the graph Graph(Φ) of the
correspondence Φ is closed. It follows that

(x∗, yi ) = lim
j→+∞

(vi ,mj
, yi ,mj

) ∈ Graph(Φ)

and thus yi ∈ Φ(x∗) for i = 0, 1, . . . ,m (see Proposition 4.6).



8. Convexity and the Kakutani Fixed Point Theorem (continued)

It follows from the convexity of Φ(x∗) that

q∑
i=0

tiy∗ ∈ Φ(x∗).

(see Lemma 8.2). But
q∑

i=0
tiy∗ = x∗. It follows that x∗ ∈ Φ(x∗), as

required.
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