MA3486 Fixed Point Theorems and Economic Equilibria School of Mathematics, Trinity College Hilary Term 2016 Lecture 22 (March 14, 2016)

David R. Wilkins

Theorem 7.3

(Brouwer Fixed Point Theorem) Let X be a subset of a Euclidean space that is homeomorphic to the closed n-dimensional ball E^n , where

$$E^n = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x}| \le 1 \}.$$

Then any continuous function $f: X \to X$ mapping the set X into itself has at least one fixed point \mathbf{x}^* for which $f(\mathbf{x}^*) = \mathbf{x}^*$.

Proof

The closed *n*-dimensional ball E^n is itself homeomorphic to an *n*-dimensional simplex Δ . It follows that there exists a homeomorphism $h: X \to \Delta$ mapping the set X onto the simplex Δ . Then the continuous map $f: X \to X$ determines a continuous map $g: \Delta \to \Delta$, where $g(h(\mathbf{x}) = h(f(\mathbf{x}))$ for all $\mathbf{x} \in X$. Suppose that it were the case that $f(\mathbf{x}) \neq \mathbf{x}$ for all $\mathbf{x} \in X$. Then $g(z) \neq z$ for all $z \in \Delta$. There would then exist a well-defined continuous map $r: \Delta \to \partial \Delta$ mapping each point **z** of Δ to the unique point r(z) of the boundary $\partial \Delta$ of Δ at which the half line starting at $g(\mathbf{z})$ and passing through \mathbf{z} intersects $\partial \Delta$. Then $r: \Delta \to \partial \Delta$ would be continuous, and $r(\mathbf{z}) = \mathbf{z}$ for all $\mathbf{z} \in \partial \Delta$. However Proposition 7.2 guarantees that there does not exist any continuous map $r: \Delta \to \partial \Delta$ with these properties. Therefore the map f must have at least one fixed point, as required.

Corollary 7.4

Let

$$\Delta = \{ (p_1, p_2, \dots, p_n) \in \mathbb{R}^n : p_i \ge 0 \text{ for } i = 1, 2, \dots, n, \text{ and } \sum_{i=1}^n p_i = 1 \}$$

let $z \colon \Delta \to \mathbb{R}^n$ be a continuous function mapping Δ into $\mathbb{R}^n,$ and let

$$\mathbf{z}(\mathbf{p}) = (z_1(\mathbf{p}), z_2(\mathbf{p}), \dots, z_n(\mathbf{p}))$$

for all $\mathbf{p} \in \Delta$. Suppose that $\mathbf{p}.\mathbf{z}(\mathbf{p}) \leq 0$ for all $\mathbf{p} \in \Delta$. Then there exists $\mathbf{p}^* \in \Delta$ such that $z_i(\mathbf{p}^*) \leq 0$ for i = 1, 2, ..., n.

Proof

Let $\mathbf{v} \colon \Delta \to \mathbb{R}^n$ be the function with *i*th component v_i given by

$$v_i(\mathbf{p}) = \begin{cases} p_i + z_i(\mathbf{p}) & \text{if } z_i(\mathbf{p}) > 0; \\ p_i & \text{if } z_i(\mathbf{p}) \le 0. \end{cases}$$

Note that $\mathbf{v}(\mathbf{p}) \neq \mathbf{0}$ and the components of $\mathbf{v}(\mathbf{p})$ are non-negative for all $\mathbf{p} \in \Delta$. It follows that there is a well-defined map $\varphi \colon \Delta \to \Delta$ given by

$$\varphi(\mathbf{p}) = rac{1}{\sum\limits_{i=1}^{n} v_i(\mathbf{p})} \mathbf{v}(\mathbf{p}),$$

The Brouwer Fixed Point Theorem (Theorem 7.3) ensures that there exists $\mathbf{p}^* \in \Delta$ satisfying $\varphi(\mathbf{p}^*) = \mathbf{p}^*$. Then $\mathbf{v}(\mathbf{p}^*) = \lambda \mathbf{p}^*$ for some $\lambda \ge 1$. We claim that $\lambda = 1$. Suppose that it were the case that $\lambda > 1$. Then $v_i(\mathbf{p}^*) > p_i^*$, and thus $z_i(\mathbf{p}^*) > 0$ whenever $p_i^* > 0$. But $p_i^* \ge 0$ for all *i*, and $p_i^* > 0$ for at least one value of *i*, since $\mathbf{p}^* \in \Delta$. It would follow that $\mathbf{p}^*.\mathbf{z}(\mathbf{p}^*) > 0$, contradicting the requirement that $\mathbf{p}.\mathbf{z}(\mathbf{p}) \le 0$ for all $p \in \Delta$. We conclude that $\lambda = 1$, and thus $v_i = p_i^*$ and $z_i(\mathbf{p}^*) \le 0$ for all *i*, as required.