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7. The Brouwer Fixed Point Theorem (continued)

Theorem 7.3

(Brouwer Fixed Point Theorem) Let X be a subset of a Euclidean
space that is homeomorphic to the closed n-dimensional ball En,
where

En = {x ∈ Rn : |x| ≤ 1}.

Then any continuous function f : X → X mapping the set X into
itself has at least one fixed point x∗ for which f (x∗) = x∗.



7. The Brouwer Fixed Point Theorem (continued)

Proof
The closed n-dimensional ball En is itself homeomorphic to an
n-dimensional simplex ∆. It follows that there exists a
homeomorphism h : X → ∆ mapping the set X onto the
simplex ∆. Then the continuous map f : X → X determines a
continuous map g : ∆→ ∆, where g(h(x) = h(f (x)) for all x ∈ X .
Suppose that it were the case that f (x) 6= x for all x ∈ X . Then
g(z) 6= z for all z ∈ ∆. There would then exist a well-defined
continuous map r : ∆→ ∂∆ mapping each point z of ∆ to the
unique point r(z) of the boundary ∂∆ of ∆ at which the half line
starting at g(z) and passing through z intersects ∂∆. Then
r : ∆→ ∂∆ would be continuous, and r(z) = z for all z ∈ ∂∆.
However Proposition 7.2 guarantees that there does not exist any
continuous map r : ∆→ ∂∆ with these properties. Therefore the
map f must have at least one fixed point, as required.



7. The Brouwer Fixed Point Theorem (continued)

Corollary 7.4

Let

∆ = {(p1, p2, . . . , pn) ∈ Rn : pi ≥ 0 for i = 1, 2, . . . , n, and
n∑

i=1

pi = 1},

let z : ∆→ Rn be a continuous function mapping ∆ into Rn, and
let

z(p) = (z1(p), z2(p), . . . , zn(p))

for all p ∈ ∆. Suppose that p.z(p) ≤ 0 for all p ∈ ∆. Then there
exists p∗ ∈ ∆ such that zi (p

∗) ≤ 0 for i = 1, 2, . . . , n.



7. The Brouwer Fixed Point Theorem (continued)

Proof
Let v : ∆→ Rn be the function with ith component vi given by

vi (p) =

{
pi + zi (p) if zi (p) > 0;
pi if zi (p) ≤ 0.

Note that v(p) 6= 0 and the components of v(p) are non-negative
for all p ∈ ∆. It follows that there is a well-defined map
ϕ : ∆→ ∆ given by

ϕ(p) =
1

n∑
i=1

vi (p)

v(p),

The Brouwer Fixed Point Theorem (Theorem 7.3) ensures that
there exists p∗ ∈ ∆ satisfying ϕ(p∗) = p∗. Then v(p∗) = λp∗ for
some λ ≥ 1. We claim that λ = 1.



7. The Brouwer Fixed Point Theorem (continued)

Suppose that it were the case that λ > 1. Then vi (p
∗) > p∗i , and

thus zi (p
∗) > 0 whenever p∗i > 0. But p∗i ≥ 0 for all i , and p∗i > 0

for at least one value of i , since p∗ ∈ ∆. It would follow that
p∗.z(p∗) > 0, contradicting the requirement that p.z(p) ≤ 0 for all
p ∈ ∆. We conclude that λ = 1, and thus vi = p∗i and zi (p

∗) ≤ 0
for all i , as required.
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