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7. The Brouwer Fixed Point Theorem

7. The Brouwer Fixed Point Theorem

7.1. Sperner’s Lemma

Definition

Let K be a simplicial complex which is a subdivision of some
n-dimensional simplex ∆. We define a Sperner labelling of the
vertices of K to be a function, labelling each vertex of K with an
integer between 0 and n, with the following properties:—

for each j ∈ {0, 1, . . . , n}, there is exactly one vertex of ∆
labelled by j ,

if a vertex v of K belongs to some face of ∆, then some
vertex of that face has the same label as v.



7. The Brouwer Fixed Point Theorem (continued)

Lemma 7.1

(Sperner’s Lemma) Let K be a simplicial complex which is a
subdivision of an n-simplex ∆. Then, for any Sperner labelling of
the vertices of K , the number of n-simplices of K whose vertices
are labelled by 0, 1, . . . , n is odd.

Proof
Given integers i0, i1, . . . , iq between 0 and n, let N(i0, i1, . . . , iq)
denote the number of q-simplices of K whose vertices are labelled
by i0, i1, . . . , iq (where an integer occurring k times in the list
labels exactly k vertices of the simplex). We must show that
N(0, 1, . . . , n) is odd.



7. The Brouwer Fixed Point Theorem (continued)

We prove the result by induction on the dimension n of the
simplex ∆; it is clearly true when n = 0. Suppose that the result
holds in dimensions less than n. For each simplex σ of K of
dimension n, let p(σ) denote the number of (n − 1)-faces of σ
labelled by 0, 1, . . . , n − 1. If σ is labelled by 0, 1, . . . , n then
p(σ) = 1; if σ is labelled by 0, 1, . . . , n − 1, j , where j < n, then
p(σ) = 2; in all other cases p(σ) = 0. Therefore

∑
σ∈K

dimσ=n

p(σ) = N(0, 1, . . . , n) + 2
n−1∑
j=0

N(0, 1, . . . , n − 1, j).



7. The Brouwer Fixed Point Theorem (continued)

Now the definition of Sperner labellings ensures that the only
(n − 1)-face of ∆ containing simplices of K labelled by
0, 1, . . . , n − 1 is that with vertices labelled by 0, 1, . . . , n − 1.
Thus if M is the number of (n − 1)-simplices of K labelled by
0, 1, . . . , n − 1 that are contained in this face, then
N(0, 1, . . . , n − 1)−M is the number of (n − 1)-simplices labelled
by 0, 1, . . . , n − 1 that intersect the interior of ∆. It follows that∑

σ∈K
dimσ=n

p(σ) = M + 2
(
N(0, 1, . . . , n − 1)−M

)
,

since any (n− 1)-simplex of K that is contained in a proper face of
∆ must be a face of exactly one n-simplex of K , and any
(n − 1)-simplex that intersects the interior of ∆ must be a face of
exactly two n-simplices of K . On combining these equalities, we
see that N(0, 1, . . . , n)−M is an even integer. But the induction
hypothesis ensures that Sperner’s Lemma holds in dimension n− 1,
and thus M is odd. It follows that N(0, 1, . . . , n) is odd, as
required.



7. The Brouwer Fixed Point Theorem (continued)

7.2. Proof of Brouwer’s Fixed Point Theorem

Proposition 7.2

Let ∆ be an n-simplex with boundary ∂∆. Then there does not
exist any continuous map r : ∆→ ∂∆ with the property that
r(x) = x for all x ∈ ∂∆.

Proof
Suppose that such a map r : ∆→ ∂∆ were to exist. It would then
follow from the Simplicial Approximation Theorem (Theorem 6.16)
that there would exist a simplicial approximation s : K → L to the
map r , where L is the simplicial complex consisting of all of the
proper faces of ∆, and K is the jth barycentric subdivision, for
some sufficiently large j , of the simplicial complex consisting of the
simplex ∆ together with all of its faces.



7. The Brouwer Fixed Point Theorem (continued)

If v is a vertex of K belonging to some proper face Σ of ∆ then
r(v) = v, and hence s(v) must be a vertex of Σ, since s : K → L is
a simplicial approximation to r : ∆→ ∂∆. In particular s(v) = v
for all vertices v of ∆. Thus if v 7→ m(v) is a labelling of the
vertices of ∆ by the integers 0, 1, . . . , n, then v 7→ m(s(v)) is a
Sperner labelling of the vertices of K . Thus Sperner’s Lemma
(Lemma 7.1) guarantees the existence of at least one n-simplex σ
of K labelled by 0, 1, . . . , n. But then s(σ) = ∆, which is
impossible, since ∆ is not a simplex of L. We conclude therefore
that there cannot exist any continuous map r : ∆→ ∂∆ satisfying
r(x) = x for all x ∈ ∂∆.
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