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6. Simplicial Complexes and the Simplicial Approximation Theorem
(continued)

We define (by induction on j) the jth barycentric subdivision K (j)

of K to be the first barycentric subdivision of K (j−1) for each j > 1.

Lemma 6.6

Let σ be a q-simplex and let τ be a face of σ. Let σ̂ and τ̂ be the
barycentres of σ and τ respectively. If all the 1-simplices (edges) of
σ have length not exceeding d for some d > 0 then

|σ̂ − τ̂ | ≤ qd

q + 1
.



6. Simplicial Complexes and the Simplicial Approximation Theorem
(continued)

Proof
Let v0, v1, . . . , vq be the vertices of σ. Let x and y be points of σ.

We can write y =
q∑

j=0
tjvj , where 0 ≤ ti ≤ 1 for i = 0, 1, . . . , q and

q∑
j=0

tj = 1. Now

|x− y| =

∣∣∣∣∣
q∑

i=0

ti (x− vi )

∣∣∣∣∣ ≤
q∑

i=0

ti |x− vi |

≤ maximum (|x− v0|, |x− v1|, . . . , |x− vq|) .



6. Simplicial Complexes and the Simplicial Approximation Theorem
(continued)

Applying this result with x = σ̂ and y = τ̂ , we find that

|σ̂ − τ̂ | ≤ maximum (|σ̂ − v0|, |σ̂ − v1|, . . . , |σ̂ − vq|) .

But

σ̂ =
1

q + 1
vi +

q

q + 1
zi

for i = 0, 1, . . . , q, where zi is the barycentre of the (q − 1)-face of
σ opposite to vi , given by

zi =
1

q

∑
j 6=i

vj .



6. Simplicial Complexes and the Simplicial Approximation Theorem
(continued)

Moreover zi ∈ σ. It follows that

|σ̂ − vi | =
q

q + 1
|zi − vi | ≤

qd

q + 1

for i = 1, 2, . . . , q, and thus

|σ̂ − τ̂ | ≤ maximum (|σ̂ − v0|, |σ̂ − v1|, . . . , |σ̂ − vq|) ≤
qd

q + 1
,

as required.

Definition

The mesh µ(K ) of a simplicial complex K is the length of the
longest edge of K .



6. Simplicial Complexes and the Simplicial Approximation Theorem
(continued)

Lemma 6.7

Let K be a simplicial complex, and let n be the dimension of K.
Let K ′ be the first barycentric subdivision of K. Then

µ(K ′) ≤ n

n + 1
µ(K ).

Proof
A 1-simplex of K ′ is of the form (τ̂ , σ̂), where σ is a q-simplex of
K for some q ≤ n and τ is a proper face of σ. Then

|τ̂ − σ̂| ≤ q

q + 1
µ(K ) ≤ n

n + 1
µ(K )

by Lemma 6.6, as required.



6. Simplicial Complexes and the Simplicial Approximation Theorem
(continued)

Lemma 6.8

Let K be a simplicial complex, let K (j) be the jth barycentric
subdivision of K for all positive integers j , and let µ(K (j)) be the
mesh of K (j). Then lim

j→+∞
µ(K (j)) = 0.

Proof
The dimension of all barycentric subdivisions of a simplicial
complex is equal to the dimension of the simplicial complex itself.
It therefore follows from Lemma 6.7 that

µ(K (j)) ≤
(

n

n + 1

)j

µ(K ).

The result follows.
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