MA3486 Fixed Point Theorems and Economic Equilibria School of Mathematics, Trinity College Hilary Term 2016 Lecture 16 (February 22, 2016)

David R. Wilkins

5. Simplices

5.1. Affine Independence

Definition

Points $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$ in some Euclidean space \mathbb{R}^k are said to be *affinely independent* (or *geometrically independent*) if the only solution of the linear system

$$\begin{cases} \sum_{j=0}^{q} s_j \mathbf{v}_j = \mathbf{0}, \\ \sum_{j=0}^{q} s_j = \mathbf{0} \end{cases}$$

is the trivial solution $s_0 = s_1 = \cdots = s_q = 0$.

Lemma 5.1

Let $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$ be points of Euclidean space \mathbb{R}^k of dimension k. Then the points $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$ are affinely independent if and only if the displacement vectors $\mathbf{v}_1 - \mathbf{v}_0, \mathbf{v}_2 - \mathbf{v}_0, \dots, \mathbf{v}_q - \mathbf{v}_0$ are linearly independent.

Proof

Suppose that the points $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$ are affinely independent. Let s_1, s_2, \dots, s_q be real numbers which satisfy the equation

$$\sum_{j=1}^q s_j(\mathbf{v}_j-\mathbf{v}_0)=\mathbf{0}.$$

Then $\sum_{j=0}^{q} s_j \mathbf{v}_j = \mathbf{0}$ and $\sum_{j=0}^{q} s_j = 0$, where $s_0 = -\sum_{j=1}^{q} s_j$, and therefore

$$s_0=s_1=\cdots=s_q=0.$$

It follows that the displacement vectors $\mathbf{v}_1 - \mathbf{v}_0, \mathbf{v}_2 - \mathbf{v}_0, \dots, \mathbf{v}_q - \mathbf{v}_0$ are linearly independent.

5. Simplices (continued)

Conversely, suppose that these displacement vectors are linearly independent. Let $s_0, s_1, s_2, \ldots, s_q$ be real numbers which satisfy the equations $\sum_{j=0}^{q} s_j \mathbf{v}_j = \mathbf{0}$ and $\sum_{j=0}^{q} s_j = 0$. Then $s_0 = -\sum_{j=1}^{q} s_j$, and therefore

$$\mathbf{0} = \sum_{j=0}^q s_j \mathbf{v}_j = s_0 \mathbf{v}_0 + \sum_{j=1}^q s_j \mathbf{v}_j = \sum_{j=1}^q s_j (\mathbf{v}_j - \mathbf{v}_0).$$

It follows from the linear independence of the displacement vectors $\mathbf{v}_j - \mathbf{v}_0$ for $j = 1, 2, \dots, q$ that

$$s_1=s_2=\cdots=s_q=0.$$

But then $s_0 = 0$ also, because $s_0 = -\sum_{j=1}^{q} s_j$. It follows that the points $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$ are affinely independent, as required.

It follows from Lemma 5.1 that any set of affinely independent points in \mathbb{R}^k has at most k + 1 elements. Moreover if a set consists of affinely independent points in \mathbb{R}^k , then so does every subset of that set.

5. Simplices (continued)

5.2. Simplices in Euclidean Spaces

Definition

A *q-simplex* in \mathbb{R}^k is defined to be a set of the form

$$\left\{\sum_{j=0}^q t_j \mathbf{v}_j: 0 \leq t_j \leq 1 \text{ for } j=0,1,\ldots,q \text{ and } \sum_{j=0}^q t_j = 1\right\},$$

where $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ are affinely independent points of \mathbb{R}^k . The points $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ are referred to as the *vertices* of the simplex. The non-negative integer q is referred to as the *dimension* of the simplex.

Example

A 0-simplex in a Euclidean space \mathbb{R}^k is a single point of that space.

Example

A 1-simplex in a Euclidean space \mathbb{R}^k of dimension at least one is a line segment in that space. Indeed let λ be a 1-simplex in \mathbb{R}^k with vertices **v** and **w**. Then

$$\begin{aligned} \lambda &= \{ s \mathbf{v} + t \mathbf{w} : 0 \le s \le 1, \ 0 \le t \le 1 \text{ and } s + t = 1 \} \\ &= \{ (1-t)\mathbf{v} + t \mathbf{w} : 0 \le t \le 1 \}, \end{aligned}$$

and thus λ is a line segment in \mathbb{R}^k with endpoints **v** and **w**.

Example

A 2-simplex in a Euclidean space \mathbb{R}^k of dimension at least two is a triangle in that space. Indeed let τ be a 2-simplex in \mathbb{R}^k with vertices \mathbf{u} , \mathbf{v} and \mathbf{w} . Then

$$\tau = \{ r \mathbf{u} + s \mathbf{v} + t \mathbf{w} : 0 \le r, s, t \le 1 \text{ and } r + s + t = 1 \}.$$

Let $\mathbf{x} \in \tau$. Then there exist $r, s, t \in [0, 1]$ such that $\mathbf{x} = r \mathbf{u} + s \mathbf{v} + t \mathbf{w}$ and r + s + t = 1. If r = 1 then $\mathbf{x} = \mathbf{u}$. Suppose that r < 1. Then

$$\mathbf{x} = r \mathbf{u} + (1-r) \Big((1-p)\mathbf{v} + p\mathbf{w} \Big)$$

where $p = \frac{t}{1-r}$. Moreover $0 < r \le 1$ and $0 \le p \le 1$. Moreover the above formula determines a point of the 2-simplex τ for each pair of real numbers r and p satisfying $0 \le r \le 1$ and $0 \le p \le 1$.

Thus

$$\tau = \left\{ r \mathbf{u} + (1-r) \left((1-p)\mathbf{v} + p\mathbf{w} \right) : 0 \le p, r \le 1. \right\}.$$

Now the point $(1 - p)\mathbf{v} + p\mathbf{w}$ traverses the line segment $\mathbf{v} \mathbf{w}$ from \mathbf{v} to \mathbf{w} as p increases from 0 to 1. It follows that τ is the set of points that lie on line segments with one endpoint at \mathbf{u} and the other at some point of the line segment $\mathbf{v} \mathbf{w}$. This set of points is thus a triangle with vertices \mathbf{u} , \mathbf{v} and \mathbf{w} .

Example

A 3-simplex in a Euclidean space \mathbb{R}^k of dimension at least three is a tetrahedron on that space. Indeed let **x** be a point of a 3-simplex σ in \mathbb{R}^3 with vertices **a**, **b**, **c** and **d**. Then there exist non-negative real numbers *s*, *t*, *u* and *v* such that

 $\mathbf{x} = s \, \mathbf{a} + t \, \mathbf{b} + u \, \mathbf{c} + v \, \mathbf{d},$

and s + t + u + v = 1. These real numbers s, t, u and v all have values between 0 and 1, and moreover $0 \le t \le 1 - s$, $0 \le u \le 1 - s$ and $0 \le v \le 1 - s$. Suppose that $\mathbf{x} \ne \mathbf{a}$. Then $0 \le s < 1$ and $\mathbf{x} = s \mathbf{a} + (1 - s)\mathbf{y}$, where

$$\mathbf{y} = \frac{t}{1-s} \, \mathbf{b} + \frac{u}{1-s} \, \mathbf{c} + \frac{v}{1-s} \, \mathbf{d}$$

5. Simplices (continued)

and

Moreover \mathbf{y} is a point of the triangle $\mathbf{b} \mathbf{c} \mathbf{d}$, because

$$0 \le \frac{t}{1-s} \le 1, \quad 0 \le \frac{u}{1-s} \le 1, \quad 0 \le \frac{v}{1-s} \le 1$$

$$\frac{t}{1-s} + \frac{u}{1-s} + \frac{v}{1-s} = 1.$$

d X) v b С

A simplex of dimension q in \mathbb{R}^k determines a subset of \mathbb{R}^k that is a translate of a q-dimensional vector subspace of \mathbb{R}^k . Indeed let the points $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ be the vertices of a q-dimensional simplex σ in \mathbb{R}^k . Then these points are affinely independent. It follows from Lemma 5.1 that the displacement vectors

$$\mathbf{v}_1 - \mathbf{v}_0, \mathbf{v}_2 - \mathbf{v}_0, \dots, \mathbf{v}_q - \mathbf{v}_0$$

are linearly independent. These vectors therefore span a q-dimensional vector subspace V of \mathbb{R}^k . Now, given any point \mathbf{x} of σ , there exist real numbers t_0, t_1, \ldots, t_q such that $0 \le t_j \le 1$ for

$$j=0,1,\ldots,q$$
, $\sum\limits_{j=0}^{q}t_{j}=1$ and $\mathbf{x}=\sum\limits_{j=0}^{q}t_{j}\mathbf{v}_{j}.$ Then

$$\mathbf{x} = \left(\sum_{j=0}^{q} t_j\right) \mathbf{v}_0 + \sum_{j=1}^{q} t_j (\mathbf{v}_j - \mathbf{v}_0) = \mathbf{v}_0 + \sum_{j=1}^{q} t_j (\mathbf{v}_j - \mathbf{v}_0).$$

It follows that

$$\sigma = \left\{ \mathbf{v}_0 + \sum_{j=1}^q t_j (\mathbf{v}_j - \mathbf{v}_0) : 0 \le t_j \le 1 \text{ for } j = 1, 2, \dots, q \right.$$

and
$$\sum_{j=1}^q t_j \le 1 \right\},$$

and therefore $\sigma \subset \mathbf{v_0} + V$. Moreover the *q*-dimensional vector subspace V of \mathbb{R}^k is the unique *q*-dimensional vector subspace of \mathbb{R}^k that contains the displacement vectors between each pair of points belonging to the simplex σ .

5. Simplicial Complexes and the Simplicial Approximation Theorem

6.1. Faces of Simplices

Definition

Let σ and τ be simplices in \mathbb{R}^k . We say that τ is a *face* of σ if the set of vertices of τ is a subset of the set of vertices of σ . A face of σ is said to be a *proper face* if it is not equal to σ itself. An *r*-dimensional face of σ is referred to as an *r*-face of σ . A 1-dimensional face of σ is referred to as an *edge* of σ .

Note that any simplex is a face of itself. Also the vertices and edges of any simplex are by definition faces of the simplex.

6. Simplicial Complexes and the Simplicial Approximation Theorem (continued)

6.2. Simplical Complexes in Euclidean Spaces

Definition

A finite collection K of simplices in \mathbb{R}^k is said to be a *simplicial complex* if the following two conditions are satisfied:—

- if σ is a simplex belonging to K then every face of σ also belongs to K,
- if σ_1 and σ_2 are simplices belonging to K then either $\sigma_1 \cap \sigma_2 = \emptyset$ or else $\sigma_1 \cap \sigma_2$ is a common face of both σ_1 and σ_2 .

The dimension of a simplicial complex K is the greatest non-negative integer n with the property that K contains an n-simplex. The union of all the simplices of K is a compact subset |K| of \mathbb{R}^k referred to as the *polyhedron* of K. (The polyhedron is compact since it is both closed and bounded in \mathbb{R}^k .)

Example

Let K_{σ} consist of some *n*-simplex σ together with all of its faces. Then K_{σ} is a simplicial complex of dimension *n*, and $|K_{\sigma}| = \sigma$.

Lemma 6.1

Let K be a simplicial complex, and let X be a subset of some Euclidean space. A function $f: |K| \to X$ is continuous on the polyhedron |K| of K if and only if the restriction of f to each simplex of K is continuous on that simplex.

Proof

Each simplex of the simplicial complex K is a closed subset of the polyhedron |K| of the simplicial complex K. The numbers of simplices belonging to the simplicial complex is finite. The result therefore follows from a straightforward application of Proposition 2.19.