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4. Correspondences and Hemicontinuity (continued)

Corollary 4.19

Let X and Y be subsets of Rn and Rm respectively, and let
Φ: X ⇒ Y be a correspondence from X to Y that is both upper
hemicontinuous and compact-valued. Let K be a compact subset
of X . Then

{(x, y) ∈ X × Y : x ∈ K and y ∈ Φ(x)}

is a compact subset of X × Y .
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Proof
Let V be an open cover of L where

L = {(x, y) ∈ X × Y : x ∈ K and y ∈ Φ(x)}

For each p ∈ K let

Lp = {(p, y) : y ∈ Φ(p)} = {(p, y) : (p, y) ∈ L}.

Then Lp is a compact subset of X × Y for all p ∈ K . (Indeed this
set is the image of the compact set Φ(p) under the continuous
function that sends each point y of Φ(p) to (p, y), and any
continuous function maps compact sets to compact sets.) It
follows that, for each point p of K , there is some finite
subcollection Wp of V that covers Lp.
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Let Up be the union of the sets belonging to the collection Wp.
Then Up is an open subset of X × Y . Let

Np = {x ∈ X : (x, y) ∈ Up for all y ∈ Φ(x)}

for all p ∈ K . It then follows from Proposition 4.18 that that Np is
open in X for all p ∈ K . Moreover the definition of Np ensures that

{(x, y) ∈ L : x ∈ Np}

is covered by the finite subcollection Wp of the given open cover V.
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It then follows from the compactness of K that there exist points

p1,p2, . . . ,pk

of K such that
K ⊂ Np1 ∪ Np2 ∪ · · · ∪ Npk .

Let
W =Wp1 ∪Wp2 ∪ · · · ∪Wpk .

Then W is a finite subcollection of V that covers L. The result
follows.
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4.4. A Criterion characterizing Lower Hemicontinuity

Proposition 4.20

Let X and Y be subsets of Rn and Rm respectively. A
correspondence Φ: X ⇒ Y is lower hemicontinuous at a point p of
X if and only if given any infinite sequence

x1, x2, x3, . . .

in X for which lim
j→+∞

xj = p and given any point q of Φ(p), there

exists an infinite sequence

y1, y2, y3, . . .

of points of F such that yj ∈ Φ(xj) for all positive integers j and
lim

j→+∞
yj = q.
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Proof
First suppose that Φ: X → Y is lower hemicontinuous at some
point p of X . Let q ∈ Φ(p), and let some positive number ε be
given. Then the open ball BY (q, ε) in Y of radius ε centred on the
point q is an open set in Y . It follows from the lower
hemicontinuity of Φ: X → Y that there exists some positive real
number δ such that Φ(x) ∩ BY (q, ε) is non-empty whenever
|x− p| < δ. Then, given any point x of X satisfying |x− p| < δ
there exists some y ∈ Φ(x) that satisfies |y − q| < ε. In particular,
given any positive integer s, there exists some positive integer δs
such that, given any point x of X satisfying |x− p| < δs , there
exists some y ∈ Φ(x) that satisfies |y − q| < 1/s.
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Now xj → p as j → +∞. It follows that there exist positive
integers k(1), k(2), k(3), . . ., where

k(1) < k(2) < k(3) < · · ·

such that |xj − p| < δs for all positive integers j satisfying
j ≥ k(s). There then exists an infinite sequence

y1, y2, y3, . . .

such that yj ∈ Φ(xj) for all positive integers j and |yj − q| < 1/s
for all positive integers j and s satisfying k(s) ≤ j < k(s + 1).
Then lim

j→+∞
yj = q. We have thus shown that if Φ: X → Y is

lower hemicontinuous at the point p, if x1, x2, x3, . . . is a sequence
in X converging to the point p, and if q ∈ Φ(p), then there exists
an infinite sequence y1, y2, y3, . . . in Y such that yj ∈ Φ(xj) for all
positive integer j and lim

j→+∞
yj = q.
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Next suppose that the correspondence Φ: X ⇒ Y is not lower
hemicontinuous at p. Then there exists an open set V in Y such
that Φ(p) ∩ V is non-empty but there does not exist any positive
real number δ with the property that Φ(x) ∩ V 6= ∅ for all x ∈ X
satisfying |p− x| < δ. Let q ∈ Φ(p). There then exists an infinite
sequence

x1, x2, x3, . . .

converging to the point p with the property that Φ(xj) ∩ V = ∅ for
all positive integers j . It is not then possible to construct an
infinite sequence

y1, y2, y3, . . .

such that yj ∈ Φ(xj) for all positive integers j and lim
j→+∞

yj = q.

The result follows.
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4.5. Intersections of Correspondences

Let X and Y be subsets of Rn and Rm respectively, and let
Φ: X ⇒ Y and Ψ: X → Y be correspondences between X and Y .
The intersection Φ ∩Ψ of the correspondences Φ and Ψ is defined
such that

(Φ ∩Ψ)(x) = Φ(x) ∩Ψ(x)

for all x ∈ X .
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Proposition 4.21

Let X and Y be subsets of Rn and Rm respectively, let Φ: X ⇒ Y
and Ψ: X ⇒ Y be correspondences from X to Y , where the
correspondence Φ: X ⇒ Y is compact-valued and upper
hemicontinuous and the correspondence Ψ: X ⇒ Y has closed
graph. Let Φ∩Ψ: X ⇒ Y be the correspondence defined such that

(Φ ∩Ψ)(x) = Φ(x) ∩Ψ(x)

for all x ∈ X. Then the correspondence Let Φ ∩Ψ: X ⇒ Y is
compact-valued and upper hemicontinuous.
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Proof
Let

W = {(x, y) ∈ X × Y : y 6∈ Ψ(x)}.

Then W is the complement of the graph Graph(Ψ) of Ψ in
X × Y . The graph of Ψ is closed in X × Y , by assumption. It
follows that W is open in X × Y .

Let x ∈ X . The subset Ψ(x) of Y is closed in Y , because the
graph of the correspondence Ψ is closed. It follows from the
compactness of Φ(x) that Φ(x) ∩Ψ(x) is a closed subset of the
compact set Φ(x), and must therefore be compact. Thus the
correspondence Φ ∩Ψ is compact-valued.
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Now let p be a point of X , and let V be any open set in Y for
which Φ(p) ∩Ψ(p) ⊂ V . In order to prove that Φ ∩Ψ is upper
hemicontinuous we must show that there exists some positive real
number δ such that Φ(x) ∩Ψ(x) ⊂ V for all x ∈ X satisfying
|x− p| < δ. Let

U = {(x, y) ∈ X × Y : either y ∈ V or else y 6∈ Ψ(x)}.

Then U is the union of the subsets X ×V and W of X ×Y , where
both these subsets are open in X × Y . It follows that U is open in
X × Y . Moreover if y ∈ Φ(p) then either y ∈ Φ(p) ∩Ψ(p), in
which case y ∈ V , or else y 6∈ Ψ(p). It follows that (p, y) ∈ U for
all y ∈ Φ(p).
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Now it follows from Proposition 4.18 that

{x ∈ X : (x, y) ∈ U for all y ∈ Φ(x)}

is open in X . Therefore there exists some positive real number δ
such that (x, y) ∈ U for all (x, y) ∈ X × Y satisfying |x− p| < δ
and y ∈ Φ(x). Now if (x, y) satisfies |x− p| < δ and
y ∈ Φ(x) ∩Ψ(x) then (x, y) ∈ U but (x, y) 6∈W . It follows from
the definition of U that y ∈ V . Thus Φ(x) ∩Ψ(x) ⊂ V whenever
|x− p| < δ. The result follows.
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4.6. Berge’s Maximum Theorem

Lemma 4.22

Let X and Y be subsets of Rn and Rm respectively, and let
Φ: X ⇒ Y be a correspondence from X to Y that is both upper
hemicontinuous and compact-valued. Let f : X × Y → R be a
continuous real-valued function on X × Y , and let c be a real
number. Then

{x ∈ X : f (x, y) < c for all y ∈ Φ(x)}

is open in X .
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Proof
Let

U = {(x, y) ∈ X × Y : f (x, y) < c}.

It follows from the continuity of the function f that U is open in
X × Y . It then follows from Proposition 4.18 that

{x ∈ X : (x, y) ∈ U for all y ∈ Φ(x)}

is open in X . The result follows.
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Lemma 4.23

Let X and Y be subsets of Rn and Rm respectively, and let
Φ: X ⇒ Y be a correspondence from X to Y that is lower
hemicontinuous. Let f : X × Y → R be a continuous real-valued
function on X × Y , and let c be a real number. Then

{x ∈ X : there exists y ∈ Φ(x) for which f (x, y) > c}

is open in X .
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Proof
Let

U = {(x, y) ∈ X × Y : f (x, y) > c},

and let

W = {x ∈ X : there exists y ∈ Φ(x) for which f (x, y) > c},

Let p ∈W . Then there exists y ∈ Φ(p) for which (p, y) ∈ U.
There then exist subsets WX of X and WY of Y , where WX is
open in X and WY is open in Y , such that p ∈WX , y ∈WY and
WX ×WY ⊂ U (see Lemma 4.5). There then exists some positive
real number δ1 such that x ∈WX whenever |x− p| < δ1.
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Now Φ(p) ∩WY 6= ∅, because y ∈ Φ(p) ∩WY . It follows from the
lower hemicontinuity of the correspondence Φ that there exists
some positive real number δ2 such that Φ(x) ∩WY 6= ∅ whenever
|x− p| < δ2.

Let δ be the minimum of δ1 and δ2. If x ∈ X satisfies |x− p| < δ
then there exists y ∈ Φ(x) for which y ∈WY . But then
(x, y) ∈WX ×WY and therefore (x, y) ∈ U, and thus f (x, y) > c .
The result follows.
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Theorem 4.24 (Berge’s Maximum Theorem)

Let X and Y be subsets of Rn and Rm respectively, let
f : X × Y → R be a continuous real-valued function on X × Y ,
and let Φ: X ⇒ Y be a correspondence from X to Y . Suppose
that Φ(x) is both non-empty and compact for all x ∈ X and that
the correspondence Φ: X → Y is both upper hemicontinuous and
lower hemicontinuous. Let the real-valued function m : X → R be
defined on X such that

m(x) = sup{f (x, y) : y ∈ Φ(x)}

for all x ∈ X, and let the correspondence M : X ⇒ Y be defined
such that

M(x) = {y ∈ Φ(x) : f (x, y) = m(x)}

for all x ∈ X. Then m : X → R is continuous, M(x) is a
non-empty compact subset of Y for all x ∈ X, and the
correspondence M : X ⇒ Y is upper hemicontinuous.
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Proof
Let x ∈ X . Then Φ(x) is a non-empty compact subset of Y . It is
thus a closed bounded subset of Rm. It follows from the Extreme
Value Theorem (Theorem 2.20) that there exists at least one point
y∗ of Φ(x) with the property that f (x, y∗) ≥ f (x, y) for all
y ∈ Φ(x). Then m(x) = f (x, y∗) and y∗ ∈ M(x). Moreover

M(x) = {y ∈ Φ(x) : f (x, y) = m(x)}.

It follows from the continuity of f that the set M(x) is closed in Y
(see Corollary 2.18). It is thus a closed subset of the compact set
Φ(x) and must therefore itself be compact.



4. Correspondences and Hemicontinuity (continued)

Let some positive number ε be given. Then f (p, y) < m(p) + ε for
all y ∈ Φ(p). It follows from Lemma 4.22 that

{x ∈ X : f (x, y) < m(p) + ε for all y ∈ Φ(x)}

is open in X , and thus there exists some positive real number δ1
such that f (x, y) < m(p) + ε for all x ∈ X satisfying |x− p| < δ1
and y ∈ Φ(x) Then m(x) < m(p) + ε for all x ∈ X satisfying
|x− p| < δ1.
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The correspondence Φ: X ⇒ Y is also lower hemicontinuous. It
therefore follows from Lemma 4.23 that there exists some positive
real number δ2 such that, given any x ∈ X satisfying |x− p| < δ2,
there exists some y ∈ Φ(x) for which f (x, y) > m(p)− ε. It follows
that m(x) > m(p)− ε whenever x ∈ X satisfies |x− p| < δ2.

Let δ be the minimum of δ1 and δ2. Then δ > 0, and

m(p)− ε < m(x) < m(p) + ε

whenever x ∈ X satisfies |x− p| < δ. Thus the function
m : X → R is continuous on X .
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It only remains to prove that the correspondence M : X ⇒ Y is
upper hemicontinuous. Let

Ψ(x) = {y ∈ Y : f (x, y) = m(x)}

for all x ∈ X . Then

Graph(Ψ) = {(x, y) ∈ X × Y : f (x, y) = m(x)}

Thus Graph(Ψ) is the preimage of zero under the continuous
real-valued function that sends (x, y) ∈ X × Y to f (x, y)−m(x).
It follows that Graph(Ψ) is a closed subset of X × Y .
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Now M(x) = Φ(x) ∩Ψ(x) for all x ∈ X , where the
correspondence Φ is compact-valued and upper hemicontinuous
and the correspondence Ψ has closed graph. It follows from
Proposition 4.21 that the correspondence M must itself be both
compact-valued and upper hemicontinuous. This completes the
proof of Berge’s Maximum Theorem.
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