MA3486 Fixed Point Theorems and Economic Equilibria School of Mathematics, Trinity College Hilary Term 2016 Lecture 12 (February 12, 2016)

David R. Wilkins

### Lemma 4.8

Let X be a subset of n-dimensional Euclidean space  $\mathbb{R}^n$ , let S be a non-empty subset of X, and let

$$d(\mathbf{x}, S) = \inf\{|\mathbf{x} - \mathbf{s}| : \mathbf{s} \in S\}$$

for all  $\mathbf{x} \in X$ . Then the function sending  $\mathbf{x}$  to  $d(\mathbf{x}, S)$  for all  $\mathbf{x} \in X$  is a continuous function on X.

**Proof** Let  $f(\mathbf{x}) = d(\mathbf{x}, S) = \inf\{|\mathbf{x} - \mathbf{s}| : \mathbf{s} \in S\}$  for all  $\mathbf{x} \in X$ .

Let **x** and **x**' be points of X. It follows from the Triangle Inequality that

$$f(\mathbf{x}) \leq |\mathbf{x} - \mathbf{s}| \leq |\mathbf{x} - \mathbf{x}'| + |\mathbf{x}' - \mathbf{s}|$$

for all  $\mathbf{s} \in S$ , and therefore

$$|\mathbf{x}' - \mathbf{s}| \ge f(\mathbf{x}) - |\mathbf{x} - \mathbf{x}'|$$

for all  $\mathbf{s} \in S$ . Thus  $f(\mathbf{x}) - |\mathbf{x} - \mathbf{x}'|$  is a lower bound for the quantities  $|\mathbf{x}' - \mathbf{s}|$  as  $\mathbf{s}$  ranges over the set S, and therefore cannot exceed the greatest lower bound of these quantities.

It follows that

$$f(\mathbf{x}') = \inf\{|\mathbf{x}' - \mathbf{s}| : \mathbf{s} \in S\} \ge f(\mathbf{x}) - |\mathbf{x} - \mathbf{x}'|,$$

and thus

$$f(\mathbf{x}) - f(\mathbf{x}') \leq |\mathbf{x} - \mathbf{x}'|.$$

Interchanging  $\mathbf{x}$  and  $\mathbf{x}'$ , it follows that

$$f(\mathbf{x}') - f(\mathbf{x}) \leq |\mathbf{x} - \mathbf{x}'|.$$

Thus

$$|f(\mathbf{x}) - f(\mathbf{x}')| \le |\mathbf{x} - \mathbf{x}'|$$

for all  $\mathbf{x}, \mathbf{x}' \in X$ . It follows that the function  $f: X \to \mathbb{R}$  is continuous, as required.

The multidimensional Heine-Borel Theorem (Theorem 3.3) ensures that a subset of a Euclidean space is compact if and only if it is both closed and bounded.

### **Proposition 4.9**

Let X be a subset of n-dimensional Euclidean space  $\mathbb{R}^n$ , let V be a subset of X that is open in X, and let K be a compact subset of  $\mathbb{R}^n$  satisfying  $K \subset V$ . Then there exists some positive real number  $\varepsilon$  with the property that  $B_X(K, \varepsilon) \subset V$ , where  $B_X(K, \varepsilon)$ denotes the subset of X consisting of those points of X that lie within a distance less than  $\varepsilon$  of some point of K.

### Proof using the Bolzano-Weierstrass Theorem

Suppose that the proposition were false. Then there would exist infinite sequences  $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$  and  $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \ldots$  such that  $\mathbf{x}_j \in K$ ,  $\mathbf{w}_j \in X \setminus V$  and  $|\mathbf{w}_j - \mathbf{x}_j| < 1/j$  for all positive integers j. The set K is both closed and bounded in  $\mathbb{R}^n$ . The multidimensional Bolzano-Weierstrass Theorem (Theorem 2.5) would then ensure the existence of a subsequence  $\mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_3}, \ldots$  of  $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$  converging to some point  $\mathbf{q}$  of K. Moreover  $\lim_{j \to +\infty} (\mathbf{w}_j - \mathbf{x}_j) = \mathbf{0}$ , and therefore

$$\lim_{j\to\infty}\mathbf{w}_{k_j}=\lim_{j\to\infty}\mathbf{x}_{k_j}=\mathbf{q}.$$

But  $\mathbf{w}_j \in X \setminus V$ . Moreover  $X \setminus V$  is closed in X, and therefore any sequence of points in  $X \setminus V$  that converges in X must converge to a point of  $X \setminus V$  (see Lemma 2.16). It would therefore follow that  $\mathbf{q} \in K \cap (X \setminus V)$ . But this is impossible, because  $K \subset V$  and therefore  $K \cap (X \setminus V) = \emptyset$ . Thus a contradiction would follow were the proposition false. The result follows.

# Proof using the Heine-Borel Theorem

It follows from the multidimensional Heine-Borel Theorem (Theorem 3.3) that the set K is compact, and thus every open cover of K has a finite subcover. Given point **x** of K let  $\varepsilon_{\mathbf{x}}$  be a positive real number with the property that

 $B_X(\mathbf{x}, 2\varepsilon_{\mathbf{x}}) \subset V,$ 

where

$$B_X(\mathbf{x},r) = \{\mathbf{x}' \in X : |\mathbf{x}' - \mathbf{x}| < r\}$$

for all positive integers r. The collection of open balls  $B_X(\mathbf{x}, \varepsilon_{\mathbf{x}})$  determined by the points  $\mathbf{x}$  of K covers K. By compactness this open cover of K has a finite subcover. Therefore there exist points  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$  of K such that

$$K \subset B(\mathbf{x}_1, \varepsilon_{\mathbf{x}_1}) \cup B(\mathbf{x}_2, \varepsilon_{\mathbf{x}_2}) \cup \cdots \cup B(\mathbf{x}_k, \varepsilon_{\mathbf{x}_k}).$$

Let  $\varepsilon$  be the minimum of  $\varepsilon_{\mathbf{x}_1}, \varepsilon_{\mathbf{x}_2}, \ldots, \varepsilon_{\mathbf{x}_k}$ . If  $\mathbf{x}$  is a point of K then  $\mathbf{x} \in B_X(\mathbf{x}_j, \varepsilon_{\mathbf{x}_j})$  for some integer j between 1 and k. But it then follows from the Triangle Inequality that

$$B(\mathbf{x},\varepsilon) \subset B_X(\mathbf{x}_j, 2\varepsilon_{\mathbf{x}_j}) \subset V.$$

It follows from this that

$$B_X(K,\varepsilon) \subset V,$$

as required.

# **Proof using the Extreme Value Theorem** Let $f: K \to \mathbb{R}$ be defined such that

$$f(\mathbf{x}) = \inf\{|\mathbf{z} - \mathbf{x}| : \mathbf{z} \in X \setminus V\}.$$

for all  $\mathbf{x} \in K$ . It follows from Lemma 4.8 that the function f is continuous on K.

Now  $K \subset V$  and therefore, given any point  $\mathbf{x} \in K$ , there exists some positive real number  $\delta$  such that the open ball of radius  $\delta$ about the point  $\mathbf{x}$  is contained in V, and therefore  $f(\mathbf{x}) \geq \delta$ . It follows that  $f(\mathbf{x}) > 0$  for all  $\mathbf{x} \in K$ . It follows from the Extreme Value Theorem for continuous real-valued functions on closed bounded subsets of Euclidean spaces (Theorem 2.20) that the function  $f: K \to \mathbb{R}$  attains its minimum value at some point of K. Let that minimum value be  $\varepsilon$ . Then  $f(\mathbf{x}) \ge \varepsilon > 0$  for all  $\mathbf{x} \in K$ , and therefore  $|\mathbf{x} - \mathbf{x}| \ge \varepsilon > 0$  for all  $\mathbf{x} \in K$  and  $\mathbf{z} \in X \setminus V$ . It follows that  $B_X(K, \varepsilon) \subset V$ , as required.

# Example

Let

$$F = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0 \text{ and } xy \ge 1\}.$$

and let

$$V = \{(x, y) \in \mathbb{R}^2 : y > 0\}.$$

Note that if  $(x, y) \in F$  then x > 0 and y > 0, because xy = 1. It follows that  $F \subset V$ . Also F is a closed set in  $\mathbb{R}^2$  and V is an open set in  $\mathbb{R}^2$ . However F is not a compact subset of  $\mathbb{R}^2$  because F is not bounded.

We now show that there does not exist any positive real number  $\varepsilon$ with the property that  $B_{\mathbb{R}^2}(F,\varepsilon) \subset V$ , where  $B_{\mathbb{R}^2}(F,\varepsilon)$  denotes the set of points of  $\mathbb{R}^2$  that lie within a distance  $\varepsilon$  of some point of F. Indeed let some positive real number  $\varepsilon$  be given, let x be a positive real number satisfying  $x > 2\varepsilon^{-1}$ , and let  $y = x^{-1} - \frac{1}{2}\varepsilon$ . Then y < 0, and therefore  $(x, y) \notin V$ . But  $(x, y + \frac{1}{2}\varepsilon) \in F$ , and therefore  $(x, y) \in B_{\mathbb{R}^2}(F, \varepsilon)$ . This shows that there does not exist any positive real number  $\varepsilon$  for which  $B_{\mathbb{R}^2}(F, \varepsilon) \subset V$ .

### **Proposition 4.10**

Let X and Y be subsets of  $\mathbb{R}^n$  and  $\mathbb{R}^m$  respectively, let K be a non-empty compact subset of Y, and let U be an subset in  $X \times Y$  that is open in  $X \times Y$ . Let

$$d_Y(\mathbf{y}, K) = \inf\{|\mathbf{y} - \mathbf{z}| : \mathbf{z} \in K\}$$

for all  $\mathbf{y} \in Y$ . Let  $\mathbf{p}$  be a point of X with the property that  $(\mathbf{p}, \mathbf{z}) \in U$  for all  $\mathbf{z} \in K$ . Then there exists some positive number  $\delta$  such that  $(\mathbf{x}, \mathbf{y}) \in U$  for all  $\mathbf{x} \in X$  and  $\mathbf{y} \in Y$  satisfying  $|\mathbf{x} - \mathbf{p}| < \delta$  and  $d(\mathbf{y}, K) < \delta$ .

# Proof

Let

$$\tilde{\mathcal{K}} = \{ (\mathbf{p}, \mathbf{z}) : \mathbf{z} \in \mathcal{K} \}.$$

Then  $\tilde{K}$  is a closed bounded subset of  $\mathbb{R}^n \times \mathbb{R}^m$ . It follows from Proposition 4.9 that there exists some positive real number  $\varepsilon$  such that

$$B_{X imes Y}( ilde{K},arepsilon)\subset U$$

where  $B_{X \times Y}(\tilde{K}, \varepsilon)$  denotes that subset of  $X \times Y$  consisting of those points  $(\mathbf{x}, \mathbf{y})$  of  $X \times Y$  that lie within a distance  $\varepsilon$  of a point of  $\tilde{K}$ . Now a point  $(\mathbf{x}, \mathbf{y})$  of  $X \times Y$  belongs to  $B_{X \times Y}(\tilde{K}, \varepsilon)$  if and only if there exists some point  $\mathbf{z}$  of K for which

$$|\mathbf{x} - \mathbf{p}|^2 + |\mathbf{y} - \mathbf{z}|^2 < \varepsilon^2.$$

Let  $\delta = \varepsilon/\sqrt{2}$ . If  $\mathbf{x} \in X$  and  $\mathbf{y} \in Y$  satisfy  $|\mathbf{x} - \mathbf{p}| < \delta$  and  $d_Y(\mathbf{y}, K) < \delta$  then there exists some point  $\mathbf{z}$  of K for which  $|\mathbf{y} - \mathbf{z}| < \delta$ . But then

$$|\mathbf{x} - \mathbf{p}|^2 + |\mathbf{y} - \mathbf{z}|^2 < 2\delta^2 = \varepsilon^2,$$

and therefore  $(\mathbf{x}, \mathbf{y}) \in U$ , as required.

# **Proposition 4.11**

Let X and Y be subsets of  $\mathbb{R}^n$  and  $\mathbb{R}^m$  respectively, and let  $\Phi: X \rightrightarrows Y$  be a correspondence from X to Y. Suppose that  $\Phi(\mathbf{x})$ is closed in Y for every  $\mathbf{x} \in X$ . Suppose also that  $\Phi: X \rightrightarrows Y$  is upper hemicontinuous. Then the graph  $\operatorname{Graph}(\Phi)$  of  $\Phi: X \rightrightarrows Y$  is closed in  $X \times Y$ .

#### Proof

Let  $(\mathbf{p}, \mathbf{q})$  be a point of the complement  $X \times Y \setminus \text{Graph}(\Phi)$  of the graph  $\text{Graph}(\Phi)$  of  $\Phi$  in  $X \times Y$ . Then  $\Phi(\mathbf{p})$  is closed in Y and  $\mathbf{q} \notin \Phi(\mathbf{p})$ . It follows that there exists some positive real number  $\delta_Y$  such that  $|\mathbf{y} - \mathbf{q}| > \delta_Y$  for all  $\mathbf{y} \in \Phi(\mathbf{p})$ .

Let

$$V = \{\mathbf{y} \in Y : |\mathbf{y} - \mathbf{q}| > \delta_Y\}$$

and

$$W = \{ \mathbf{x} \in X : \Phi(\mathbf{x}) \subset V \}.$$

Then V is open in Y and  $\Phi(\mathbf{p}) \subset V$ . Now the correspondence  $\Phi: X \rightrightarrows Y$  is upper hemicontinuous. It therefore follows from the definition of upper hemicontinuity that the subset W of X is open in X. Moreover  $\mathbf{p} \in W$ . It follows that there exists some positive real number  $\delta_X$  such that  $\mathbf{x} \in W$  for all points  $\mathbf{x}$  of X satisfying  $|\mathbf{x} - \mathbf{p}| < \delta_X$ . Then  $\Phi(\mathbf{x}) \subset V$  for all points  $\mathbf{x}$  of X satisfying  $|\mathbf{x} - \mathbf{p}| < \delta_X$ .

Let  $\delta$  be the minimum of  $\delta_X$  and  $\delta_Y$ , and let  $(\mathbf{x}, \mathbf{y})$  be a point of  $X \times Y$  whose distance from the point  $(\mathbf{p}, \mathbf{q})$  is less than  $\delta$ . Then  $|\mathbf{x} - \mathbf{p}| < \delta_X$  and therefore  $\Phi(\mathbf{x}) \subset V$ . Also  $\mathbf{y} - \mathbf{q}| < \delta_Y$ , and therefore  $\mathbf{y} \notin V$ . It follows that  $\mathbf{y} \notin \Phi(\mathbf{x})$ , and therefore  $(\mathbf{x}, \mathbf{y}) \notin \operatorname{Graph}(\Phi)$ . We conclude from this that the complement of  $\operatorname{Graph}(\Phi)$  is open in  $X \times Y$ . It follows that  $\operatorname{Graph}(\Phi)$  itself is closed in  $X \times Y$ , as required.

### **Proposition 4.12**

Let X and Y be subsets of  $\mathbb{R}^n$  and  $\mathbb{R}^m$  respectively, and let  $\Phi: X \rightrightarrows Y$  be a correspondence from X to Y. Suppose that the graph  $\operatorname{Graph}(\Phi)$  of the correspondence  $\Phi$  is closed in  $X \times Y$ . Suppose also that Y is a compact subset of  $\mathbb{R}^m$ . Then the correspondence  $\Phi: X \rightrightarrows Y$  is upper hemicontinuous.

## Proof using Proposition 4.10

Let **p** be a point of X, let V be an open set satisfying  $\Phi(\mathbf{p}) \subset V$ , and let  $K = Y \setminus V$ . The compact set Y is closed and bounded in  $\mathbb{R}^m$ . Also K is closed in Y. It follows that K is a closed bounded subset of  $\mathbb{R}^m$  (see Lemma 2.23). Let U be the complement of  $\operatorname{Graph}(\Phi)$  in  $X \times Y$ . Then U is open in  $X \times Y$ , because  $\operatorname{Graph}(\Phi)$  is closed in  $X \times Y$ . Also  $(\mathbf{p}, \mathbf{y}) \in U$  for all  $\mathbf{y} \in K$ , because  $\Phi(\mathbf{p}) \cap K = \emptyset$ . It follows from Proposition 4.10 that there exists some positive number  $\delta$  such that  $(\mathbf{x}, \mathbf{y}) \in U$  for all  $\mathbf{x} \in X$ and  $\mathbf{y} \in K$  satisfying  $|\mathbf{x} - \mathbf{p}| < \delta$ . Thus if  $\mathbf{x} \in X$  satisfies  $|\mathbf{x} - \mathbf{p}| < \delta$  then  $\mathbf{y} \notin \Phi(\mathbf{x})$  for all  $\mathbf{y} \in K$ , and therefore  $\Phi(\mathbf{x}) \subset V$ , where  $V = Y \setminus K$ . Thus the correspondence  $\Phi$  is upper hemicontinuous at **p**, as required.

### Proof using the Bolzano-Weierstrass Theorem

Let V be a subset of Y that is open in Y, and let **p** be a point of X for which  $\Phi(\mathbf{p}) \subset V$ . Let  $F = Y \setminus V$ . Then the set F is a subset of Y that is closed in Y, and  $\Phi(\mathbf{p}) \cap F = \emptyset$ . Now Y is a closed bounded subset of  $\mathbb{R}^m$ , because it is compact (Theorem 3.3). It follows that F is closed in  $\mathbb{R}^m$  (Lemma 2.23).

Suppose that there did not exist any positive number  $\delta$  such that  $\Phi(\mathbf{x}) \subset V$  for all  $\mathbf{x} \in X$  satisfying  $|\mathbf{x} - \mathbf{p}| < \delta$ . Then there would exist an infinite sequence  $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$  of points of X converging to the point  $\mathbf{p}$  with the property that  $\Phi(\mathbf{x}_j) \cap F \neq \emptyset$  for all positive integers j. There would then exist an infinite sequence  $\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \ldots$  of elements of Y such that  $\mathbf{y}_j \in \Phi(\mathbf{x}_j) \cap F$  for all positive integers j. Then  $(\mathbf{x}_j, \mathbf{y}_j) \in \text{Graph}(\Phi)$  for all positive integers j. Moreover the infinite sequence  $\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \ldots$  would be bounded, because the set Y is bounded.

It would therefore follow from the multidimensional Bolzano-Weierstrass Theorem (Theorem 2.5) that there would exist a convergent subsequence

$$\mathbf{y}_{k_1}, \mathbf{y}_{k_2}, \mathbf{y}_{k_3}, \dots$$

of the sequence  $\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \dots$  Let  $\mathbf{q} = \lim_{j \to +\infty} \mathbf{y}_{k_j}$ . Then  $\mathbf{q} \in F$ , because the set F is closed in Y and  $\mathbf{y}_{k_j} \in F$  for all positive integers j (see Lemma 2.16). Similarly  $(\mathbf{p}, \mathbf{q}) \in \operatorname{Graph}(\Phi)$ , because the set  $\operatorname{Graph}(\Phi)$  is closed in  $X \times Y$ ,  $(\mathbf{x}_{k_j}, \mathbf{y}_{k_j}) \in \operatorname{Graph}(\Phi)$  for all positive integers j, and

$$(\mathbf{p},\mathbf{q}) = \lim_{j \to +\infty} (\mathbf{x}_{k_j},\mathbf{y}_{k_j}).$$

But were there to exist  $(\mathbf{p}, \mathbf{q}) \in X \times Y$  for which  $\mathbf{q} \in F$  and  $(\mathbf{p}, \mathbf{q}) \in \operatorname{Graph}(\Phi)$ , it would follow that  $\mathbf{q} \in \Phi(\mathbf{p}) \cap F$ . But this is impossible, because  $\Phi(\mathbf{p}) \cap F = \emptyset$ . Thus a contradiction would arise were there to exist an infinite sequence  $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$  of points of X for which  $\Phi(\mathbf{x}_j) \cap F \neq \emptyset$  and  $\lim_{j \to +\infty} \mathbf{x}_j = \mathbf{p}$ . Therefore no such infinite sequence can exist, and therefore there must exist some positive real number  $\delta$  such that  $\Phi(\mathbf{x}) \subset V$  whenever  $\mathbf{x} \in X$ satisfies  $|\mathbf{x} - \mathbf{p}| < \delta$ . We conclude that

$$\{\mathbf{x} \in X : \Phi(\mathbf{x}) \subset V\}$$

is open in X. The result follows.

# Corollary 4.13

Let X and Y be subsets of  $\mathbb{R}^n$  and  $\mathbb{R}^m$  respectively, and let  $\varphi \colon X \to Y$  be a function from X to Y. Suppose that the graph  $\operatorname{Graph}(\varphi)$  of the function  $\varphi$  is closed in  $X \times Y$ . Suppose also that Y is a compact subset of  $\mathbb{R}^m$ . Then the function  $\varphi \colon X \to Y$  is continuous.

#### Proof

Let  $\Phi: X \rightrightarrows Y$  be the correspondence defined such that  $\Phi(\mathbf{x}) = \{\varphi(\mathbf{x})\}$  for all  $\mathbf{x} \in X$ . Then  $\operatorname{Graph}(\Phi) = \operatorname{Graph}(\varphi)$ , and therefore  $\operatorname{Graph}(\Phi)$  is closed in  $X \times Y$ . The subset Y of  $\mathbb{R}^m$  is compact. It therefore follows from Proposition 4.12 that the correspondence  $\Phi$  is upper hemicontinuous. It then follows from Lemma 4.3 that the function  $\varphi: X \to Y$  is continuous, as required.