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4. Correspondences and Hemicontinuity (continued)

4.2. The Graph of a Correspondence

Let m and n be integers. Then the Cartesian product Rn × Rm of
the Euclidean spaces Rn and Rm of dimensions n and m is itself a
Euclidean space of dimension n + m whose Euclidean norm is
characterized by the property that

|(x, y)|2 = |x|2 + |y|2

for all x ∈ Rn and y ∈ Rm.
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Lemma 4.4

Let x1, x2, x3, . . . and y1, y2, y3, . . . be infinite sequences of points
in Rn and Rm respectively, and let p ∈ Rn and q ∈ Rm. Then the
infinite sequence

(x1, y1), (x2, y2), (x3, y3), . . .

converges in Rn × Rm to the point (p,q) if and only if the infinite
sequence Let x1, x2, x3, . . . converges to the point p and the
infinite sequence y1, y2, y3, . . . converges to the point q.
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Proof
Suppose that the infinite sequence

(x1, y1), (x2, y2), (x3, y3), . . .

converges in Rn × Rm to the point (p,q). Let some strictly
positive real number ε be given. Then there exists some positive
integer N such that

|xj − p|2 + |yj − q|2 < ε2

whenever j ≥ N. But then

|xj − p| < ε and |yj − q| < ε

whenever j ≥ N. It follows that xj → p and yj → q as j → +∞.
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Conversely suppose that xj → p and yj → q as j → +∞. Let
some positive real number ε be given. Then there exist positive
integers N1 and N2 such that |xj − p| < ε/

√
2 whenever j ≥ N1

and |yj − q| < ε/
√

2 whenever j ≥ N2. Let N be the maximum of
N1 and N2. Then

|xj − p|2 + |yj − q|2 < ε2

whenever j ≥ N. It follows that (xj , yj)→ (p,q) as j → +∞, as
required.



4. Correspondences and Hemicontinuity (continued)

Lemma 4.5

Let X and Y be subsets of Rn and Rm respectively, and let V be a
subset of X × Y . Then V is open in X × Y if and only if, given
any point (p,q) of V , where p ∈ X and q ∈ Y , there exist subsets
WX and WY of X and Y respectively such that p ∈WX , q ∈WY ,
WX is open in X , WY is open in Y and WX ×WY ⊂ V .
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Proof
Let V be a subset of X × Y and let (p,q) ∈ V , where p ∈ X and
q ∈ Y .

Suppose that V is open in X ×Y . Then there exists a positive real
number δ such that (x, y) ∈ V for all x ∈ X and y ∈ Y satisfying

|x− p|2 + |y − q|2 < δ2.
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Let

WX =

{
x ∈ X : |x− p| < δ√

2

}
and

WY =

{
y ∈ Y : |y − q| < δ√

2

}
If x ∈WX and y ∈WY then

|x− p|2 + |y − q|2 < 2

(
δ√
2

)2

= δ2

and therefore (x, y) ∈ V . It follows that WX ×WY ⊂ V .
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Conversely suppose that there exist open sets WX and WY in X
and Y respectively such that p ∈WX , q ∈WY and
WX ×WY ⊂ V . Then there exists some positive real number δ
such that x ∈WX for all x ∈ X satisfying |x− p| < δ and also
y ∈WY for all y ∈ Y satisfying |y − q| < δ. If (x, y) is a point of
X × Y that lies within a distance δ of (p,q) then |x− p| < δ and
|y − q| < δ, and therefore (x, y) ∈WX ×WY . But
WX ×WY ⊂ V . It follows that the open ball of radius δ about the
point (p,q) is wholly contained within the subset V of X × Y .
The result follows.
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Proposition 4.6

Let X and Y be subsets of Rn and Rm respectively, and let G be a
subset of X × Y . Then G is closed in X × Y if and only if

( lim
j→∞

xj , lim
j→∞

yj) ∈ G

for all convergent infinite sequences x1, x2, x3 in X and for all
convergent infinite sequences y1, y2, y3 in Y with the property that
(xj , yj) ∈ G for all positive integers j .
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Proof
Suppose that G is closed in X × Y . Let x1, x2, x3 be an infinite
sequence in X converging to some point p of X and let y1, y2, y3
be an infinite sequence in Y converging to a point q of Y , where
(xj , xj) ∈ G for all positive integers j . We must prove that
(p,q) ∈ G . Now the infinite sequence consisting of the ordered
pairs (xj , yj) converges in X × Y to (p,q) (see Lemma 4.4). Now
every infinite sequence contained in G that converges to a point of
X × Y must converge to a point of G , because G is closed in
X × Y (see Lemma 2.16). It follows that (p,q) ∈ G .
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Now suppose that G is not closed in X × Y . Then the
complement of G in X × Y is not open, and therefore there exists
a point (p,q) of X × Y that does not belong to G though every
open ball of positive radius about the point (p,q) intersects G . It
follows that, given any positive integer j , the open ball of radius
1/j about the point (p,q) intersects G and therefore there exist
xj ∈ X and yj ∈ Y for which |xj − p| < 1/j , |yj − q| < 1/j and
(xj , yj) ∈ G . Then lim

j→+∞
xj = p and lim

j→+∞
yj = q and therefore

( lim
j→∞

xj , lim
j→∞

yj) 6∈ G .

The result follows.
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Definition

Let X and Y be subsets of Rn and Rm respectively, and let
ϕ : X → Y be a function from X and Y . The graph Graph(ϕ) of
the function ϕ is the subset of Rn × Rm defined so that

Graph(ϕ) = {(x, y) ∈ Rn × Rm : x ∈ X and y = ϕ(x)}.

Definition

Let X and Y be subsets of Rn and Rm respectively, and let
Φ: X ⇒ Y be a correspondence between X and Y . The graph
Graph(Φ) of the correspondence Φ is the subset of Rn × Rm

defined so that

Graph(Φ) = {(x, y) ∈ Rn × Rm : x ∈ X and y ∈ Φ(x)}.
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Lemma 4.7

Let X and Y be subsets of Rn and Rm respectively, and let
ϕ : X → Y be a function from X to Y . Suppose that ϕ : X → Y
is continuous. Then the graph Graph(ϕ) of the function ϕ is
closed in X × Y .

Proof
Let ψ : X × Y → Y be the function defined such that

ψ(x, y) = y − ϕ(x)

for all x ∈ X and y ∈ Y . Then Graph(ϕ) = ψ−1({0}), and {0} is
closed in Rm. It follows that Graph(ϕ) is closed in X × Y (see
Corollary 2.18).
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Example
Let f : R→ R be defined such that

f (x) =


1

x
if x > 0;

0 if x ≤ 0.

Then the graph Graph(f ) of the function f satisfies
Graph(f ) = Z ∪ H, where

Z = {(x , y) ∈ R2 : x ≤ 0 and y = 0}

and
H = {(x , y) ∈ R2 : x ≥ 0 and xy = 1}.

Each of the sets Z and H is a closed set in R2. It follows that
Graph(f ) is a closed set in R2. However the function f : R→ R is
not continuous at 0.
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