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4. Correspondences and Hemicontinuity (continued)

4.1. Correspondences

Let X and Y be subsets of Rn and Rm respectively. A
correspondence Φ: X ⇒ Y assigns to each point x of X a subset
Φ(x) of Y .

The power set P(Y ) of Y is the set whose elements are the
subsets of Y . A correspondence Φ: X ⇒ Y may be regarded as a
function from X to P(Y ).



4. Correspondences and Hemicontinuity (continued)

Let X and Y be subsets of Rn and Rm respectively, and let
Φ: X ⇒ Y be a correspondence from X to Y . Then the following
definitions apply:—

the correspondence Φ: X → Y is said to be non-empty-valued
if Φ(x) is a non-empty subset of Y for all x ∈ X ;

the correspondence Φ: X → Y is said to be closed-valued if
Φ(x) is a closed subset of Y for all x ∈ X ;

the correspondence Φ: X → Y is said to be compact-valued if
Φ(x) is a compact subset of Y for all x ∈ X .

It follows from the multidimensional Heine-Borel Theorem
(Theorem 3.3) that the correspondence Φ: X → Y is
compact-valued if and only if Φ(x) is a closed bounded subset of Y
for all x ∈ X .



4. Correspondences and Hemicontinuity (continued)

Definition

Let X and Y be subsets of Rn and Rm respectively. A
correspondence Φ: X ⇒ Y is said to be upper hemicontinuous at
a point p of X if, given any set V in Y that is open in Y and
satisfies Φ(p) ⊂ V , there exists some positive real number δ such
that Φ(x) ⊂ V for all x ∈ X satisfying |x− p| < δ. The
correspondence Φ is upper hemicontinuous on X if it is upper
hemicontinuous at each point of X .



4. Correspondences and Hemicontinuity (continued)

Example
Let F : R ⇒ R and G : R ⇒ R be the correspondences from R to
R defined such that

F (x) =

{
[1, 2] if x < 0,
[0, 3] if x ≥ 0,

and

G (x) =

{
[1, 2] if x ≤ 0,
[0, 3] if x > 0,

The correspondences F and G are upper hemicontinuous at x for
all non-zero real numbers x . The correspondence F is also upper
hemicontinuous at 0, for if V is an open set in R and if F (0) ⊂ V
then [0, 3] ⊂ V and therefore F (x) ∈ V for all real numbers x .



4. Correspondences and Hemicontinuity (continued)

However the correspondence G is not upper hemicontinuous at 0.
Indeed let

V = {y ∈ R : 1
2 < y < 5

2}.

Then G (0) ⊂ V , but G (x) is not contained in V for any positive
real number x . Therefore there cannot exist any positive real
number δ such that G (x) ⊂ V whenever |x | < δ.

Let
Graph(F ) = {(x , y) ∈ R2 : y ∈ F (x)}

and
Graph(G ) = {(x , y) ∈ R2 : y ∈ G (x)}.

Then Graph(F ) is a closed subset of R2 but Graph(G ) is not a
closed subset of R2.



4. Correspondences and Hemicontinuity (continued)

Example
Let S1 be the unit circle in R2, defined such that

S1 = {(u, v) ∈ R2 : u2 + v2 = 1},

let Z be the closed square with corners at (1, 1), (−1, 1), (−1,−1)
and (1,−1), so that

Z = {(x , y) ∈ R2 : −1 ≤ x ≤ 1 and − 1 ≤ y ≤ 1}.

Let g(u,v) : R2 → R be defined for all (u, v) ∈ S1 such that

g(u,v)(x , y) = ux + vy ,

and let Φ: S1 ⇒ R2 be defined such that, for all (u, v) ∈ S1,
Φ(u, v) is the subset of R2 consisting of the point of points of Z at
which the linear functional g(u,v) attains its maximum value on Z .



4. Correspondences and Hemicontinuity (continued)

Thus a point (x , y) of Z belongs to Φ(u, v) if and only if
g(u,v)(x , y) ≥ g(u,v)(x

′, y ′) for all (x ′, y ′) ∈ Z . Then

Φ(u, v) =



{(1, 1)} if u > 0 and v > 0;
{(x , 1) : −1 ≤ x ≤ 1} if u = 0 and v > 0;
{(−1, 1)} if u < 0 and v > 0;
{(−1, y) : −1 ≤ y ≤ 1} if u < 0 and v = 0;
{(−1,−1)} if u < 0 and v < 0;
{(x ,−1) : −1 ≤ x ≤ 1} if u = 0 and v < 0;
{(1,−1)} if u > 0 and v < 0;
{(1, y) : −1 ≤ y ≤ 1} if u > 0 and v = 0.

It is a straightforward exercise to verify that the correspondence
Φ: S1 ⇒ R2 is upper hemicontinuous.



4. Correspondences and Hemicontinuity (continued)

Let X and Y be subsets of Rn and Rm respectively, and let
Φ: X ⇒ Y be a correspondence between X and Y . Given any
subset V of Y , we denote by Φ+(V ) the subset of X defined such
that

Φ+(V ) = {x ∈ X : Φ(x) ⊂ V }.

Lemma 4.1

Let X and Y be subsets of Rn and Rm respectively. A
correspondence Φ: X ⇒ Y is upper hemicontinuous on X if and
only if, given any set V in Y that is open in Y , the set Φ+(V ) is
open in X .



4. Correspondences and Hemicontinuity (continued)

Proof
First suppose that Φ: X ⇒ Y is upper hemicontinuous at each
point of X . Let V be an open set in Y and let p ∈ Φ+(V ). Then
Φ(p) ⊂ V . It then follows from the definition of upper
hemicontinuity that there exists some positive real number δ such
that Φ(x) ⊂ V for all x ∈ X satisfying |x− p| < δ. But then
x ∈ Φ+(V ) for all x ∈ X satisfying |x− p| < δ. It follows that
Φ+(V ) is open in X .



4. Correspondences and Hemicontinuity (continued)

Conversely suppose that Φ: X ⇒ Y is a correspondence with the
property that, for all subsets V of Y that are open in Y , Φ+(V ) is
open in X . Let p ∈ X , and let V be an open set in Y satisfying
Φ(p) ⊂ V . Then Φ+(V ) is open in X and p ∈ Φ+(V ), and
therefore there exists some positive number δ such that

{x ∈ X : |x− p| < δ} ⊂ Φ+(V ).

Then Φ(x) ⊂ V for all x ∈ X satisfying |x− p| < δ. Thus
Φ: X ⇒ Y is upper hemicontinuous at p. The result follows.



4. Correspondences and Hemicontinuity (continued)

Definition

Let X and Y be subsets of Rn and Rm respectively. A
correspondence Φ: X ⇒ Y is said to be lower hemicontinuous at a
point p of X if, given any set V in Y that is open in Y and
satisfies Φ(p) ∩ V 6= ∅, there exists some positive real number δ
such that Φ(x) ∩ V 6= ∅ for all x ∈ X satisfying |x− p| < δ. The
correspondence Φ is lower hemicontinuous on X if it is lower
hemicontinuous at each point of X .



4. Correspondences and Hemicontinuity (continued)

Example
Let F : R ⇒ R and G : R ⇒ R be the correspondences from R to
R defined such that

F (x) =

{
[1, 2] if x < 0,
[0, 3] if x ≥ 0,

and

G (x) =

{
[1, 2] if x ≤ 0,
[0, 3] if x > 0,

The correspondences F and G are lower hemicontinuous at x for
all non-zero real numbers x . The correspondence G is also lower
hemicontinuous at 0, for if V is an open set in R and if
G (0) ∩ V 6= ∅ then [0, 1] ∩ V 6= ∅ and therefore G (x) ∩ V 6= ∅ for
all real numbers x .



4. Correspondences and Hemicontinuity (continued)

However the correspondence F is not lower hemicontinuous at 0.
Indeed let

V = {y ∈ R : 0 < y < 1
2}.

Then F (0) ∩ V 6= ∅, but F (x) ∩ V = ∅ for all negative real
numbers x . Therefore there cannot exist any positive real
number δ such that F (x) ∩ V = ∅ whenever |x | < δ.



4. Correspondences and Hemicontinuity (continued)

Let X and Y be subsets of Rn and Rm respectively, and let
Φ: X ⇒ Y be a correspondence between X and Y . Given any
subset V of Y , we denote by Φ−(V ) the subset of X defined such
that

Φ−(V ) = {x ∈ X : Φ(x) ∩ V 6= ∅}.

Lemma 4.2

Let X and Y be subsets of Rn and Rm respectively. A
correspondence Φ: X ⇒ Y is lower hemicontinuous on X if and
only if, given any set V in Y that is open in Y , the set Φ−(V ) is
open in X .



4. Correspondences and Hemicontinuity (continued)

Proof
First suppose that Φ: X ⇒ Y is lower hemicontinuous at each
point of X . Let V be an open set in Y and let p ∈ Φ−(V ). Then
Φ(p) ∩ V is non-empty. It then follows from the definition of lower
hemicontinuity that there exists some positive real number δ such
that Φ(x) ∩ V is non-empty for all x ∈ X satisfying |x− p| < δ.
But then x ∈ Φ−(V ) for all x ∈ X satisfying |x− p| < δ. It follows
that Φ−(V ) is open in X .



4. Correspondences and Hemicontinuity (continued)

Conversely suppose that Φ: X ⇒ Y is a correspondence with the
property that, for all subsets V of Y that are open in Y , Φ−(V ) is
open in X . Let p ∈ X , and let V be an open set in Y satisfying
Φ(p) ∩ V 6= ∅. Then Φ−(V ) is open in X and p ∈ Φ−(V ), and
therefore there exists some positive number δ such that

{x ∈ X : |x− p| < δ} ⊂ Φ−(V ).

Then Φ(x) ∩ V 6= ∅ for all x ∈ X satisfying |x− p| < δ. Thus
Φ: X ⇒ Y is lower hemicontinuous at p. The result follows.



4. Correspondences and Hemicontinuity (continued)

Definition

Let X and Y be subsets of Rn and Rm respectively. A
correspondence Φ: X ⇒ Y is said to be continuous at a point p of
X if it is both upper hemicontinuous and lower hemicontinuous at
p. The correspondence Φ is continuous on X if it is continuous at
each point of X .



4. Correspondences and Hemicontinuity (continued)

Lemma 4.3

Let X and Y be subsets of Rn and Rm respectively, let ϕ : X → Y
be a function from X to Y , and let Φ: X ⇒ Y be the
correspondence defined such that Φ(x) = {ϕ(x)} for all x ∈ X.
Then Φ: X ⇒ Y is upper hemicontinuous if and only if ϕ : X → Y
is continuous. Similarly Φ: X ⇒ Y is lower hemicontinuous if and
only if ϕ : X → Y is continuous.

Proof
The function ϕ : X → Y is continuous if and only if

{x ∈ X : ϕ(x) ∈ V }
is open in X for all subsets V of Y that are open in Y (see
Proposition 2.17). Let V be a subset of Y that is open in Y .
Then Φ(x) ⊂ V if and only if ϕ(x) ∈ V . Also Φ(x) ∩ V 6= ∅ if and
only if ϕ(x) ∈ V . The result therefore follows from the definitions
of upper and lower hemicontinuity.
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