MA3486 Fixed Point Theorems and Economic Equilibria School of Mathematics, Trinity College Hilary Term 2016 Lecture 10 (February 8, 2016)

David R. Wilkins

4.1. Correspondences

Let X and Y be subsets of \mathbb{R}^n and \mathbb{R}^m respectively. A *correspondence* $\Phi: X \rightrightarrows Y$ assigns to each point **x** of X a subset $\Phi(\mathbf{x})$ of Y.

The power set $\mathcal{P}(Y)$ of Y is the set whose elements are the subsets of Y. A correspondence $\Phi: X \rightrightarrows Y$ may be regarded as a function from X to $\mathcal{P}(Y)$.

Let X and Y be subsets of \mathbb{R}^n and \mathbb{R}^m respectively, and let $\Phi: X \rightrightarrows Y$ be a correspondence from X to Y. Then the following definitions apply:—

- the correspondence Φ: X → Y is said to be non-empty-valued if Φ(x) is a non-empty subset of Y for all x ∈ X;
- the correspondence $\Phi: X \to Y$ is said to be *closed-valued* if $\Phi(\mathbf{x})$ is a closed subset of Y for all $\mathbf{x} \in X$;
- the correspondence $\Phi: X \to Y$ is said to be *compact-valued* if $\Phi(\mathbf{x})$ is a compact subset of Y for all $\mathbf{x} \in X$.

It follows from the multidimensional Heine-Borel Theorem (Theorem 3.3) that the correspondence $\Phi: X \to Y$ is compact-valued if and only if $\Phi(\mathbf{x})$ is a closed bounded subset of Y for all $\mathbf{x} \in X$.

Definition

Let X and Y be subsets of \mathbb{R}^n and \mathbb{R}^m respectively. A correspondence $\Phi: X \rightrightarrows Y$ is said to be *upper hemicontinuous* at a point **p** of X if, given any set V in Y that is open in Y and satisfies $\Phi(\mathbf{p}) \subset V$, there exists some positive real number δ such that $\Phi(\mathbf{x}) \subset V$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. The correspondence Φ is upper hemicontinuous on X if it is upper hemicontinuous at each point of X.

Example

Let $F: \mathbb{R} \rightrightarrows \mathbb{R}$ and $G: \mathbb{R} \rightrightarrows \mathbb{R}$ be the correspondences from \mathbb{R} to \mathbb{R} defined such that

$$F(x) = \begin{cases} [1,2] & \text{if } x < 0, \\ [0,3] & \text{if } x \ge 0, \end{cases}$$

and

$$G(x) = \left\{ egin{array}{cc} [1,2] & ext{if } x \leq 0, \ [0,3] & ext{if } x > 0, \end{array}
ight.$$

The correspondences F and G are upper hemicontinuous at x for all non-zero real numbers x. The correspondence F is also upper hemicontinuous at 0, for if V is an open set in \mathbb{R} and if $F(0) \subset V$ then $[0,3] \subset V$ and therefore $F(x) \in V$ for all real numbers x.

However the correspondence G is not upper hemicontinuous at 0. Indeed let

$$V = \{ y \in \mathbb{R} : \frac{1}{2} < y < \frac{5}{2} \}.$$

Then $G(0) \subset V$, but G(x) is not contained in V for any positive real number x. Therefore there cannot exist any positive real number δ such that $G(x) \subset V$ whenever $|x| < \delta$.

Let

$$\operatorname{Graph}(F) = \{(x, y) \in \mathbb{R}^2 : y \in F(x)\}$$

and

$$\operatorname{Graph}(G) = \{(x, y) \in \mathbb{R}^2 : y \in G(x)\}.$$

Then $\operatorname{Graph}(F)$ is a closed subset of \mathbb{R}^2 but $\operatorname{Graph}(G)$ is not a closed subset of \mathbb{R}^2 .

Example

Let S^1 be the unit circle in \mathbb{R}^2 , defined such that

$$S^1 = \{(u, v) \in \mathbb{R}^2 : u^2 + v^2 = 1\},\$$

let Z be the closed square with corners at (1,1), (-1,1), (-1,-1) and (1,-1), so that

$$Z = \{(x,y) \in \mathbb{R}^2 : -1 \leq x \leq 1 \text{ and } -1 \leq y \leq 1\}.$$

Let $g_{(u,v)}\colon \mathbb{R}^2 o \mathbb{R}$ be defined for all $(u,v)\in S^1$ such that

$$g_{(u,v)}(x,y) = ux + vy,$$

and let $\Phi: S^1 \rightrightarrows \mathbb{R}^2$ be defined such that, for all $(u, v) \in S^1$, $\Phi(u, v)$ is the subset of \mathbb{R}^2 consisting of the point of points of Z at which the linear functional $g_{(u,v)}$ attains its maximum value on Z. Thus a point (x, y) of Z belongs to $\Phi(u, v)$ if and only if $g_{(u,v)}(x, y) \ge g_{(u,v)}(x', y')$ for all $(x', y') \in Z$. Then

$$\Phi(u, v) = \begin{cases} \{(1,1)\} & \text{if } u > 0 \text{ and } v > 0; \\ \{(x,1): -1 \le x \le 1\} & \text{if } u = 0 \text{ and } v > 0; \\ \{(-1,1)\} & \text{if } u < 0 \text{ and } v > 0; \\ \{(-1,y): -1 \le y \le 1\} & \text{if } u < 0 \text{ and } v > 0; \\ \{(-1,-1)\} & \text{if } u < 0 \text{ and } v = 0; \\ \{(-1,-1)\} & \text{if } u < 0 \text{ and } v < 0; \\ \{(x,-1): -1 \le x \le 1\} & \text{if } u = 0 \text{ and } v < 0; \\ \{(1,-1)\} & \text{if } u > 0 \text{ and } v < 0; \\ \{(1,y): -1 \le y \le 1\} & \text{if } u > 0 \text{ and } v = 0. \end{cases}$$

It is a straightforward exercise to verify that the correspondence $\Phi: S^1 \rightrightarrows \mathbb{R}^2$ is upper hemicontinuous.

Let X and Y be subsets of \mathbb{R}^n and \mathbb{R}^m respectively, and let $\Phi: X \rightrightarrows Y$ be a correspondence between X and Y. Given any subset V of Y, we denote by $\Phi^+(V)$ the subset of X defined such that

$$\Phi^+(V) = \{ \mathbf{x} \in X : \Phi(\mathbf{x}) \subset V \}.$$

Lemma 4.1

Let X and Y be subsets of \mathbb{R}^n and \mathbb{R}^m respectively. A correspondence $\Phi: X \rightrightarrows Y$ is upper hemicontinuous on X if and only if, given any set V in Y that is open in Y, the set $\Phi^+(V)$ is open in X.

Proof

First suppose that $\Phi: X \rightrightarrows Y$ is upper hemicontinuous at each point of X. Let V be an open set in Y and let $\mathbf{p} \in \Phi^+(V)$. Then $\Phi(\mathbf{p}) \subset V$. It then follows from the definition of upper hemicontinuity that there exists some positive real number δ such that $\Phi(\mathbf{x}) \subset V$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. But then $\mathbf{x} \in \Phi^+(V)$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. It follows that $\Phi^+(V)$ is open in X. Conversely suppose that $\Phi: X \rightrightarrows Y$ is a correspondence with the property that, for all subsets V of Y that are open in Y, $\Phi^+(V)$ is open in X. Let $\mathbf{p} \in X$, and let V be an open set in Y satisfying $\Phi(\mathbf{p}) \subset V$. Then $\Phi^+(V)$ is open in X and $\mathbf{p} \in \Phi^+(V)$, and therefore there exists some positive number δ such that

$$\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| < \delta\} \subset \Phi^+(V).$$

Then $\Phi(\mathbf{x}) \subset V$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. Thus $\Phi: X \rightrightarrows Y$ is upper hemicontinuous at \mathbf{p} . The result follows.

Definition

Let X and Y be subsets of \mathbb{R}^n and \mathbb{R}^m respectively. A correspondence $\Phi: X \rightrightarrows Y$ is said to be *lower hemicontinuous* at a point **p** of X if, given any set V in Y that is open in Y and satisfies $\Phi(\mathbf{p}) \cap V \neq \emptyset$, there exists some positive real number δ such that $\Phi(\mathbf{x}) \cap V \neq \emptyset$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. The correspondence Φ is lower hemicontinuous on X if it is lower hemicontinuous at each point of X.

Example

Let $F : \mathbb{R} \rightrightarrows \mathbb{R}$ and $G : \mathbb{R} \rightrightarrows \mathbb{R}$ be the correspondences from \mathbb{R} to \mathbb{R} defined such that

$$F(x) = \left\{ egin{array}{cc} [1,2] & ext{if } x < 0, \ [0,3] & ext{if } x \ge 0, \end{array}
ight.$$

and

$$G(x) = \left\{ egin{array}{cc} [1,2] & ext{if } x \leq 0, \ [0,3] & ext{if } x > 0, \end{array}
ight.$$

The correspondences F and G are lower hemicontinuous at x for all non-zero real numbers x. The correspondence G is also lower hemicontinuous at 0, for if V is an open set in \mathbb{R} and if $G(0) \cap V \neq \emptyset$ then $[0,1] \cap V \neq \emptyset$ and therefore $G(x) \cap V \neq \emptyset$ for all real numbers x.

However the correspondence F is not lower hemicontinuous at 0. Indeed let

$$V = \{ y \in \mathbb{R} : 0 < y < \frac{1}{2} \}.$$

Then $F(0) \cap V \neq \emptyset$, but $F(x) \cap V = \emptyset$ for all negative real numbers x. Therefore there cannot exist any positive real number δ such that $F(x) \cap V = \emptyset$ whenever $|x| < \delta$.

Let X and Y be subsets of \mathbb{R}^n and \mathbb{R}^m respectively, and let $\Phi: X \rightrightarrows Y$ be a correspondence between X and Y. Given any subset V of Y, we denote by $\Phi^-(V)$ the subset of X defined such that

$$\Phi^{-}(V) = \{ \mathbf{x} \in X : \Phi(\mathbf{x}) \cap V \neq \emptyset \}.$$

Lemma 4.2

Let X and Y be subsets of \mathbb{R}^n and \mathbb{R}^m respectively. A correspondence $\Phi: X \rightrightarrows Y$ is lower hemicontinuous on X if and only if, given any set V in Y that is open in Y, the set $\Phi^-(V)$ is open in X.

Proof

First suppose that $\Phi: X \rightrightarrows Y$ is lower hemicontinuous at each point of X. Let V be an open set in Y and let $\mathbf{p} \in \Phi^-(V)$. Then $\Phi(\mathbf{p}) \cap V$ is non-empty. It then follows from the definition of lower hemicontinuity that there exists some positive real number δ such that $\Phi(\mathbf{x}) \cap V$ is non-empty for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. But then $\mathbf{x} \in \Phi^-(V)$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. It follows that $\Phi^-(V)$ is open in X. Conversely suppose that $\Phi: X \Longrightarrow Y$ is a correspondence with the property that, for all subsets V of Y that are open in Y, $\Phi^-(V)$ is open in X. Let $\mathbf{p} \in X$, and let V be an open set in Y satisfying $\Phi(\mathbf{p}) \cap V \neq \emptyset$. Then $\Phi^-(V)$ is open in X and $\mathbf{p} \in \Phi^-(V)$, and therefore there exists some positive number δ such that

$$\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| < \delta\} \subset \Phi^{-}(V).$$

Then $\Phi(\mathbf{x}) \cap V \neq \emptyset$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. Thus $\Phi: X \Rightarrow Y$ is lower hemicontinuous at \mathbf{p} . The result follows.

Definition

Let X and Y be subsets of \mathbb{R}^n and \mathbb{R}^m respectively. A correspondence $\Phi: X \rightrightarrows Y$ is said to be *continuous* at a point **p** of X if it is both upper hemicontinuous and lower hemicontinuous at **p**. The correspondence Φ is continuous on X if it is continuous at each point of X.

Lemma 4.3

Let X and Y be subsets of \mathbb{R}^n and \mathbb{R}^m respectively, let $\varphi \colon X \to Y$ be a function from X to Y, and let $\Phi \colon X \rightrightarrows Y$ be the correspondence defined such that $\Phi(\mathbf{x}) = \{\varphi(\mathbf{x})\}$ for all $\mathbf{x} \in X$. Then $\Phi \colon X \rightrightarrows Y$ is upper hemicontinuous if and only if $\varphi \colon X \to Y$ is continuous. Similarly $\Phi \colon X \rightrightarrows Y$ is lower hemicontinuous if and only if $\varphi \colon X \to Y$ is continuous.

Proof

The function $\varphi \colon X \to Y$ is continuous if and only if

$$\{\mathbf{x} \in X : \varphi(\mathbf{x}) \in V\}$$

is open in X for all subsets V of Y that are open in Y (see Proposition 2.17). Let V be a subset of Y that is open in Y. Then $\Phi(\mathbf{x}) \subset V$ if and only if $\varphi(\mathbf{x}) \in V$. Also $\Phi(\mathbf{x}) \cap V \neq \emptyset$ if and only if $\varphi(\mathbf{x}) \in V$. The result therefore follows from the definitions of upper and lower hemicontinuity.