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2. Real Analysis in Euclidean Spaces (continued)

2.10. Homeomorphisms between Subsets of Euclidean Spaces

Lemma 2.23

Let X be a closed subset of n-dimensional Euclidean space Rn.
Then a subset of X is closed in X if and only if it is closed in Rn.

Proof
Let F be a subset of X . Then F is closed in X if and only if, given
any point p of X for which p 6∈ F , there exists some strictly
positive real number δ such that there is no point of F whose
distance from the point p is less than δ. It follows easily from this
that is F is closed in Rn then F is closed in X .

Conversely suppose that F is closed in X , where X itself is closed
in Rn. Let p be a point of Rn that satisfies p 6∈ F . Then either
p ∈ X or p 6∈ X .



2. Real Analysis in Euclidean Spaces (continued)

Suppose that p ∈ X . Then there exists some strictly positive real
number δ such that there is no point of F whose distance from the
point p is less than δ.

Otherwise p 6∈ X . Then there exists some strictly positive real
number δ such that there is no point of X whose distance from the
point p is less than δ, because X is closed in Rn. But F ⊂ X . It
follows that there is no point of F whose distance from the point p
is less than δ. We conclude that the set F is closed in Rn, as
required.



2. Real Analysis in Euclidean Spaces (continued)

Let X and Y be subsets of Euclidean spaces Rn and Rm

respectively, and let ϕ : X → Y be a function from X to Y . A
function ψ : Y → X is the inverse of ϕ : X → Y if and only if
ψ(ϕ(x)) = x for all x ∈ X and ϕ(ψ(y)) = y for all y ∈ Y . The
function X is bijective if and only if it has a well-defined inverse
ψ : Y → X .

Definition

Let X and Y be subsets of Euclidean spaces Rn and Rm

respectively. A function ϕ : X → Y is said to be a homeomorphism
if and only if it is bijective and both ϕ : X → Y itself and its
inverse are continuous functions.



2. Real Analysis in Euclidean Spaces (continued)

Proposition 2.24

Let X and Y be subsets of Euclidean spaces Rn and Rm

respectively, and let ϕ : X → Y be a continuous bijective function
from X to Y . Suppose that X is closed and bounded. Then
ϕ : X → Y is a homeomorphism.

Proof
Let ϕ : X → Y be a continuous bijective function from X to Y ,
and let ψ : Y → X be the inverse of ϕ. Then ϕ : X → Y
establishes a one-to-one correspondence between points of X and
points of Y : given any point x of X , the point ϕ(x) is the unique
point of Y that corresponds to x; given any point y of Y , the
point ψ(y) is the unique point of X that corresponds to y.



2. Real Analysis in Euclidean Spaces (continued)

In order to prove that the continuous bijective function ϕ : X → Y
is a homeomorphism, we need to prove that its inverse ψ : Y → X
is continuous. Let W be an open set in X . We must prove that its
preimage ψ−1(W ) is open in W . Let F = X \W . Then F is closed
in X , and X itself is closed in Rn. It follows that F is closed in Rn

(see Lemma 2.23). Also F is bounded, because X is bounded.

Now continuous functions between subsets of Euclidean spaces
map closed bounded sets to closed bounded sets (see
Proposition 2.21). It follows that ϕ(F ) is a closed subset of Rm

and is thus closed in Y , and therefore its complement Y \ ϕ(F ) is
open in Y .



2. Real Analysis in Euclidean Spaces (continued)

But Y \ ϕ(F ) = ψ−1(V ). Indeed let y ∈ Y . Then

y ∈ Y \ ϕ(F )

⇐⇒ y 6∈ ϕ(F )

⇐⇒ ψ(y) 6∈ F

⇐⇒ ψ(y) ∈ V

⇐⇒ y ∈ ψ−1(V ).

It follows that ψ−1(V ) is open in Y . We have shown that the
preimage under ψ of every subset of X open in X is open in Y . It
follows that ψ : Y → X is continuous (see Proposition 2.17). We
conclude that ϕ : X → Y is a homeomorphism, as required.



2. Real Analysis in Euclidean Spaces (continued)

Example
A regular dodecahedron is a regular convex polyhedron in
3-dimensional Euclidean space with twelve faces that are regular
pentagons. Let the closed bounded subset X of R3 be the surface
of a regular dodecahedron centred on the origin. Then every
straight ray with an endpoint at the origin will cut X in exactly
one point. Let S2 be the unit sphere in R3, so that

S2 = {(x , y , z) ∈ R3 : x2 + y2 + z2 = 1},

and let ϕ : X → S2 be defined so that

ϕ(x) =
x

|x|

for all x ∈ X . Then ϕ : X → S2 is a continuous bijective function
from X to S2. Let ψS2 → X be the inverse of ϕ. It follows from
Proposition 2.24 That ϕ : X → S2 is a homeomorphism, and
therefore the map ψ : S2 → X is continuous.



2. Real Analysis in Euclidean Spaces (continued)

It might be instructive to ponder how one might set about
constructing a proof that ψ : S2 → X is continuous, using directly
the “ε–δ” definition of continuity. Presumably one would first have
to come up with algebraic expressions that specify what the map
is, and presumably there would need to be twelve such algebraic
expressions, each specifying map ψ over some portion of the unit
sphere that gets mapped onto a pentagonal face of the
dodecahedron. And moreover the regions over which these
algebraic expressions apply would probably need to be specified
using appropriate inequalities satisfied by appropriate angles that
arise from some curvilinear coordinate system on the sphere.
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3. Open Covers, Lebesgue Numbers and Compactness

3.1. Lebesgue Numbers

Definition

Let X be a subset of n-dimensional Euclidean space Rn. A
collection of subsets of Rn is said to cover X if and only if every
point of X belongs to at least one of these subsets.

Definition

Let X be a subset of n-dimensional Euclidean space Rn. An open
cover of X is a collection of subsets of X that are open in X and
cover the set X .



3. Open Covers, Lebesgue Numbers and Compactness (continued)

Proposition 3.1

Let X be a closed bounded set in n-dimensional Euclidean space,
and let V be an open cover of X . Then there exists a positive real
number δL with the property that, given any point u of X , there
exists a member V of the open cover V for which

{x ∈ X : |x− u| < δL} ⊂ V .

Proof
Let

BX (u, δ) = {x ∈ X : |x− u| < δ}

for all u ∈ X and for all positive real numbers δ. Suppose that
there did not exist any positive real number δL with the stated
property.



3. Open Covers, Lebesgue Numbers and Compactness (continued)

Then, given any positive number δ, there would exist a point u of
X for which the ball BX (u, δ) would not be wholly contained
within any open set V belonging to the open cover V. Then

BX (u, δ) ∩ (X \ V ) 6= ∅

for all members V of the open cover V. There would therefore
exist an infinite sequence

u1,u2,u3, . . .

of points of X with the property that, for all positive integers j , the
open ball

BX (uj , 1/j) ∩ (X \ V ) 6= ∅

for all members V of the open cover V.



3. Open Covers, Lebesgue Numbers and Compactness (continued)

The sequence
u1,u2,u3, . . .

would be bounded, because the set X is bounded. It would then
follow from the multidimensional Bolzano-Weierstrass Theorem
(Theorem 2.5) that there would exist a convergent subsequence

uj1 ,uj2 ,uj3 , . . .

of
u1,u2,u3, . . . .



3. Open Covers, Lebesgue Numbers and Compactness (continued)

Let p be the limit of this convergent subsequence. Then the
point p would then belong to X , because X is closed (see
Lemma 2.16). But then the point p would belong to an open
set V belonging to the open cover V. It would then follow from
the definition of open sets that there would exist a positive real
number δ for which BX (p, 2δ) ⊂ V . Let j = jk for a positive
integer k large enough to ensure that both 1/j < δ and
uj ∈ BX (p, δ). The Triangle Inequality would then ensure that
every point of X within a distance 1/j of the point uj would lie
within a distance 2δ of the point p, and therefore

BX (uj , 1/j) ⊂ BX (p, 2δ) ⊂ V .



3. Open Covers, Lebesgue Numbers and Compactness (continued)

But B(uj , 1/j) ∩ (X \ V ) 6= ∅ for all members V of the open cover
V, and therefore it would not be possible for this open set to be
contained in the open set V . Thus the assumption that there is no
positive number δL with the required property has led to a
contradiction. Therefore there must exist some positive number δL
with the property that, for all u ∈ X the open ball BX (u, δL) in X
is contained wholly within at least one open set belonging to the
open cover V, as required.



3. Open Covers, Lebesgue Numbers and Compactness (continued)

Definition

Let X be a subset of n-dimensional Euclidean space, and let V be
an open cover of X . A positive real number δL is said to be a
Lebesgue number for the open cover V if, given any point p of X ,
there exists some member V of the open cover V for which

{x ∈ X : |x− p| < δL} ⊂ V .

Proposition 3.1 ensures that, given any open cover of a closed
bounded subset of n-dimensional Euclidean space, there exists a
positive real number that is a Lebesgue number for that open
cover.

Definition

The diameter diam(A) of a bounded subset A of n-dimensional
Euclidean space is defined so that

diam(A) = sup{|x− y| : x, y ∈ A}.



3. Open Covers, Lebesgue Numbers and Compactness (continued)

It follows from this definition that diam(A) is the smallest real
number K with the property that |x− y| ≤ K for all x, y ∈ A.

A hypercube in n-dimensional Euclidean space Rn is a subset of Rn

of the form

{(x1, x2, . . . , xn) ∈ Rn : ui ≤ xi ≤ ui + l},

where l is a positive constant that is the length of the edges of the
hypercube and (u1, u2, . . . , un) is the point in Rn at which the
Cartesian coordinates of points in the hypercube attain their
minimum values. The diameter of a hypercube with edges of
length l is l

√
n.



3. Open Covers, Lebesgue Numbers and Compactness (continued)

Lemma 3.2

Let X be a bounded subset of n-dimensional Euclidean space, and
let δ be a positive real number. Then there exists a finite collection
A1,A2, . . . ,As of subsets of X such that the diam(Ai ) < δ for
i = 1, 2, . . . , s and

X = A1 ∪ A2 ∪ · · · ∪ Ak .

Proof
The set X is bounded, and therefore there exists some positive real
number M such that that if (x1, x2, . . . , xn) ∈ X then
−M ≤ xj ≤ M for j = 1, 2, . . . , n. Choose k large enough to
ensure that 2M/k < δL/

√
n. Then the large hypercube

{(x1, x2, . . . , xn) ∈ Rn : −M ≤ xj ≤ M for j = 1, 2, . . . , n}

can be subdivided into kn hypercubes with edges of length l ,
where l = 2M/k .



3. Open Covers, Lebesgue Numbers and Compactness (continued)

Each of the smaller hypercubes is a set of the form

{(x1, x2, . . . , xn) ∈ Rn : uj ≤ xj ≤ uj + l for j = 1, 2, . . . , n},

where (u1, u2, . . . , un) is the corner of the hypercube at which the
Cartesian coordinates have their minimum values. If p is a point
belonging to such a small hypercube, then all points of the
hypercube lie within a distance l

√
n of the point p. It follows that

the small hypercube is wholly contained within the open ball
BRn(p, δL) of radius δ about the point p.

Now the number of small hypercubes resulting from the
subdivision is finite. Let H1,H2, . . . ,Hs be a listing of the small
hypercubes that intersect the set X , and let Ai = Hi ∩ X . Then
diam(Hi ) ≤

√
nl < δL and

X = A1 ∪ A2 ∪ · · · ∪ Ak ,

as required.



3. Open Covers, Lebesgue Numbers and Compactness (continued)

Definition

Let V and W be open covers of some subset X of a Euclidean
space. Then W is said to be a subcover of V if and only if every
open set belonging to W also belongs to V.

Definition

A subset X of a Euclidean space is said to be compact if and only
if every open cover of X possesses a finite subcover.



3. Open Covers, Lebesgue Numbers and Compactness (continued)

Theorem 3.3

(The Multidimensional Heine-Borel Theorem) A subset of
n-dimensional Euclidean space Rn is compact if and only if it is
both closed and bounded.

Proof
Let X be a compact subset of Rn and let

Vj = {x ∈ X : |x| < j}

for all positive integers j . Then the sets V1,V2,V3, . . . constitute
an open cover of X . This open cover has a finite subcover, and
therefore there exist positive integers j1, j2, . . . , jk such that

X ⊂ Vj1 ∪ Vj2 ∪ · · · ∪ Vjk .

Let M be the largest of the positive integers j1, j2, . . . , jk . Then
|x| ≤ M for all x ∈ X . Thus the set X is bounded.



3. Open Covers, Lebesgue Numbers and Compactness (continued)

Let q be a point of Rn that does not belong to X , and let

Wj =

{
x ∈ X : |x− q| > 1

j

}
for all positive integers j . Then the sets W1,W2,W3, . . . constitute
an open cover of X . This open cover has a finite subcover, and
therefore there exist positive integers j1, j2, . . . , jk such that

X ⊂Wj1 ∪Wj2 ∪ · · · ∪Wjk .

Let δ = 1/M, where M is the largest of the positive integers
j1, j2, . . . , jk . Then |x− q| ≥ δ for all x ∈ X and thus the open ball
of radius δ about the point q does not intersect the set X . We
conclude that the set X is closed. We have now shown that every
compact subset of Rn is both closed and bounded.



3. Open Covers, Lebesgue Numbers and Compactness (continued)

We now prove the converse. Let X be a closed bounded subset of
Rn, and let V be an open cover of X . It follows from
Proposition 3.1 that there exists a Lebesgue number δL for the
open cover V. It then follows from Lemma 3.2 that there exist
subsets A1,A2, . . . ,As of X such that diam(Ai ) < δL for
i = 1, 2, . . . , s and

X = A1 ∪ A2 ∪ · · · ∪ As .
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We may suppose that Ai is non-empty for i = 1, 2, . . . , s (because
if Ai = ∅ then Ai could be deleted from the list). Choose pi ∈ Ai

for i = 1, 2, . . . , s. Then Ai ⊂ BX (pi , δL) for i = 1, 2, . . . , s. The
definition of the Lebesgue number δL then ensures that there exist
members V1,V2, . . . ,Vs of the open cover V such that
BX (pi , δL) ⊂ Vi for i = 1, 2, . . . , s. Then Ai ⊂ Vi for
i = 1, 2, . . . , s, and therefore

X ⊂ V1 ∪ V2 ∪ · · · ∪ Vs .

Thus V1,V2, . . . ,Vs constitute a finite subcover of the open
cover U . We have therefore proved that every closed bounded
subset of n-dimensional Euclidean space is compact, as
required.
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