MA3486 Fixed Point Theorems and Economic Equilibria School of Mathematics, Trinity College Hilary Term 2016 Lecture 4 (January 25, 2016)

David R. Wilkins

1. Ordered Fields and the Real Number System (continued)

1.6. Cauchy's Criterion for Convergence

Definition

A sequence $x_1, x_2, x_3, ...$ of real numbers is said to be a *Cauchy* sequence if the following condition is satisfied:

given any strictly positive real number ε , there exists some positive integer N such that $|x_j - x_k| < \varepsilon$ for all positive integers j and k satisfying $j \ge N$ and $k \ge N$.

Lemma 1.6

Every Cauchy sequence of real numbers is bounded.

Proof

Let x_1, x_2, x_3, \ldots be a Cauchy sequence. Then there exists some positive integer N such that $|x_j - x_k| < 1$ whenever $j \ge N$ and $k \ge N$. In particular, $|x_j| \le |x_N| + 1$ whenever $j \ge N$. Therefore $|x_j| \le R$ for all positive integers j, where R is the maximum of the real numbers $|x_1|, |x_2|, \ldots, |x_{N-1}|$ and $|x_N| + 1$. Thus the sequence is bounded, as required.

The following important result is known as *Cauchy's Criterion for convergence*, or as the *General Principle of Convergence*.

Theorem 1.7 (Cauchy's Criterion for Convergence)

An infinite sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Proof

First we show that convergent sequences are Cauchy sequences. Let x_1, x_2, x_3, \ldots be a convergent sequence of real numbers, and let $I = \lim_{j \to +\infty} x_j$. Let some strictly positive real number ε be given. Then there exists some positive integer N such that $|x_j - I| < \frac{1}{2}\varepsilon$ for all $j \ge N$. Thus if $j \ge N$ and $k \ge N$ then $|x_j - I| < \frac{1}{2}\varepsilon$ and $|x_k - I| < \frac{1}{2}\varepsilon$, and hence

$$|x_j - x_k| = |(x_j - l) - (x_k - l)| \le |x_j - l| + |x_k - l| < \varepsilon.$$

Thus the sequence x_1, x_2, x_3, \ldots is a Cauchy sequence.

Conversely we must show that any Cauchy sequence x_1, x_2, x_3, \ldots is convergent. Now Cauchy sequences are bounded, by Lemma 1.6. The sequence x_1, x_2, x_3, \ldots therefore has a convergent subsequence $x_{k_1}, x_{k_2}, x_{k_3}, \ldots$, by the Bolzano-Weierstrass Theorem (Theorem 1.5). Let $l = \lim_{j \to +\infty} x_{k_j}$. We claim that the sequence x_1, x_2, x_3, \ldots itself converges to l.

Let some strictly positive real number ε be given. Then there exists some positive integer N such that $|x_j - x_k| < \frac{1}{2}\varepsilon$ whenever $j \ge N$ and $k \ge N$ (since the sequence is a Cauchy sequence). Let m be chosen large enough to ensure that $k_m \ge N$ and $|x_{k_m} - I| < \frac{1}{2}\varepsilon$. Then

$$|x_j - I| \le |x_j - x_{k_m}| + |x_{k_m} - I| < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$$

whenever $j \ge N$. It follows that $x_j \to I$ as $j \to +\infty$, as required.

2. Real Analysis in Euclidean Spaces

2.1. Basic Properties of Vectors and Norms

We denote by \mathbb{R}^n the set consisting of all *n*-tuples (x_1, x_2, \ldots, x_n) of real numbers. The set \mathbb{R}^n represents *n*-dimensional *Euclidean* space (with respect to the standard Cartesian coordinate system). Let **x** and **y** be elements of \mathbb{R}^n , where

$$\mathbf{x} = (x_1, x_2, \dots, x_n), \quad \mathbf{y} = (y_1, y_2, \dots, y_n),$$

and let λ be a real number. We define

$$\begin{aligned} \mathbf{x} + \mathbf{y} &= (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n), \\ \mathbf{x} - \mathbf{y} &= (x_1 - y_1, x_2 - y_2, \dots, x_n - y_n), \\ \lambda \mathbf{x} &= (\lambda x_1, \lambda x_2, \dots, \lambda x_n), \\ \mathbf{x} \cdot \mathbf{y} &= x_1 y_1 + x_2 y_2 + \dots + x_n y_n, \\ |\mathbf{x}| &= \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}. \end{aligned}$$

The quantity $\mathbf{x} \cdot \mathbf{y}$ is the scalar product (or inner product) of \mathbf{x} and \mathbf{y} , and the quantity $|\mathbf{x}|$ is the Euclidean norm of \mathbf{x} . Note that $|\mathbf{x}|^2 = \mathbf{x} \cdot \mathbf{x}$. The Euclidean distance between two points \mathbf{x} and \mathbf{y} of \mathbb{R}^n is defined to be the Euclidean norm $|\mathbf{y} - \mathbf{x}|$ of the vector $\mathbf{y} - \mathbf{x}$.

Proposition 2.1 (Schwarz's Inequality)

The inequality $|\mathbf{x} \cdot \mathbf{y}| \leq |\mathbf{x}| |\mathbf{y}|$ is satisfied by all elements \mathbf{x} and \mathbf{y} of \mathbb{R}^{n} .

Proof

We note that $|\lambda \mathbf{x} + \mu \mathbf{y}|^2 \ge 0$ for all real numbers λ and μ . But

$$|\lambda \mathbf{x} + \mu \mathbf{y}|^2 = (\lambda \mathbf{x} + \mu \mathbf{y}) \cdot (\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda^2 |\mathbf{x}|^2 + 2\lambda \mu \mathbf{x} \cdot \mathbf{y} + \mu^2 |\mathbf{y}|^2.$$

Therefore $\lambda^2 |\mathbf{x}|^2 + 2\lambda \mu \mathbf{x} \cdot \mathbf{y} + \mu^2 |\mathbf{y}|^2 \ge 0$ for all real numbers λ and μ . In particular, suppose that $\lambda = |\mathbf{y}|^2$ and $\mu = -\mathbf{x} \cdot \mathbf{y}$. We conclude that

$$|\boldsymbol{y}|^4|\boldsymbol{x}|^2-2|\boldsymbol{y}|^2(\boldsymbol{x}\cdot\boldsymbol{y})^2+(\boldsymbol{x}\cdot\boldsymbol{y})^2|\boldsymbol{y}|^2\geq 0,$$

so that $\left(|{\bf x}|^2|{\bf y}|^2-({\bf x}\cdot{\bf y})^2\right)|{\bf y}|^2\geq 0.$ Thus if ${\bf y}\neq {\bf 0}$ then $|{\bf y}|>0,$ and hence

$$|\mathbf{x}|^2 |\mathbf{y}|^2 - (\mathbf{x} \cdot \mathbf{y})^2 \ge 0.$$

But this inequality is trivially satisfied when $\mathbf{y} = \mathbf{0}$. Thus $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$, as required.

Corollary 2.2 (Triangle Inequality)

The inequality $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|$ is satisfied for all elements \mathbf{x} and \mathbf{y} of \mathbb{R}^n .

Proof

Using Schwarz's Inequality, we see that

$$\begin{aligned} |\mathbf{x} + \mathbf{y}|^2 &= (\mathbf{x} + \mathbf{y}).(\mathbf{x} + \mathbf{y}) = |\mathbf{x}|^2 + |\mathbf{y}|^2 + 2\mathbf{x} \cdot \mathbf{y} \\ &\leq |\mathbf{x}|^2 + |\mathbf{y}|^2 + 2|\mathbf{x}||\mathbf{y}| = (|\mathbf{x}| + |\mathbf{y}|)^2. \end{aligned}$$

The result follows directly.

It follows immediately from the Triangle Inequality (Corollary 2.2) that

$$|\mathbf{z}-\mathbf{x}| \leq |\mathbf{z}-\mathbf{y}| + |\mathbf{y}-\mathbf{x}|$$

for all points \mathbf{x} , \mathbf{y} and $|\mathbf{z}|$ of \mathbb{R}^n . This important inequality expresses the geometric fact the the length of any triangle in a Euclidean space is less than or equal to the sum of the lengths of the other two sides.

2. Real Analysis in Euclidean Spaces (continued)

2.2. Convergence of Sequences in Euclidean Spaces

Definition

A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n is said to *converge* to a point \mathbf{p} if and only if the following criterion is satisfied:—

given any real number ε satisfying $\varepsilon > 0$ there exists some positive integer N such that $|\mathbf{p} - \mathbf{x}_j| < \varepsilon$ whenever $j \ge N$.

We refer to \mathbf{p} as the *limit* $\lim_{j \to +\infty} \mathbf{x}_j$ of the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$

Lemma 2.3

Let **p** be a point of \mathbb{R}^n , where $\mathbf{p} = (p_1, p_2, ..., p_n)$. Then a sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, ...$ of points in \mathbb{R}^n converges to **p** if and only if the *i*th components of the elements of this sequence converge to p_i for i = 1, 2, ..., n.

Proof

Let x_{ji} and p_i denote the *i*th components of \mathbf{x}_j and \mathbf{p} , where $\mathbf{p} = \lim_{j \to +\infty} \mathbf{x}_j$. Then $|x_{ji} - p_i| \le |\mathbf{x}_j - \mathbf{p}|$ for all *j*. It follows directly from the definition of convergence that if $\mathbf{x}_j \to \mathbf{p}$ as $j \to +\infty$ then $x_{ji} \to p_i$ as $j \to +\infty$. Conversely suppose that, for each i, $x_{ji} \rightarrow p_i$ as $j \rightarrow +\infty$. Let $\varepsilon > 0$ be given. Then there exist positive integers N_1, N_2, \ldots, N_n such that $|x_{ji} - p_i| < \varepsilon / \sqrt{n}$ whenever $j \ge N_i$. Let N be the maximum of N_1, N_2, \ldots, N_n . If $j \ge N$ then

$$|\mathbf{x}_j - \mathbf{p}|^2 = \sum_{i=1}^n (x_{ji} - p_i)^2 < n(\varepsilon/\sqrt{n})^2 = \varepsilon^2,$$

so that $\mathbf{x}_j \to \mathbf{p}$ as $j \to +\infty$.

Definition

A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n is said to be a *Cauchy* sequence if and only if the following criterion is satisfied:—

given any real number ε satisfying $\varepsilon > 0$ there exists some positive integer N such that $|\mathbf{x}_j - \mathbf{x}_k| < \varepsilon$ whenever $j \ge N$ and $k \ge N$.

Lemma 2.4

A sequence of points in \mathbb{R}^n is convergent if and only if it is a Cauchy sequence.

Proof

Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a sequence of points of \mathbb{R}^n converging to some point \mathbf{p} . Let $\varepsilon > 0$ be given. Then there exists some positive integer N such that $|\mathbf{x}_j - \mathbf{p}| < \frac{1}{2}\varepsilon$ whenever $j \ge N$. If $j \ge N$ and $k \ge N$ then

$$|\mathbf{x}_j - \mathbf{x}_k| \le |\mathbf{x}_j - \mathbf{p}| + |\mathbf{p} - \mathbf{x}_k| < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon,$$

by the Triangle Inequality. Thus every convergent sequence in \mathbb{R}^n is a Cauchy sequence.

Now let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a Cauchy sequence in \mathbb{R}^n . Then the *i*th components of the elements of this sequence constitute a Cauchy sequence of real numbers. This Cauchy sequence must converge to some real number p_i , by Cauchy's Criterion for Convergence (Theorem 1.7). It follows from Lemma 2.3 that the Cauchy sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ converges to the point \mathbf{p} , where $\mathbf{p} = (p_1, p_2, \ldots, p_n)$.

2.3. The Multidimensional Bolzano-Weierstrass Theorem

A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n is said to be *bounded* if there exists some constant K such that $|\mathbf{x}_i| \leq K$ for all j.

Example

Let

$$(x_j, y_j, z_j) = \left(\sin(\pi\sqrt{j}), (-1)^j, \cos\left(\frac{2\pi\log j}{\log 2}\right)\right)$$

for j = 1, 2, 3, ... This sequence of points in \mathbb{R}^3 is bounded, because the components of its members all take values between -1 and 1. Moreover $x_j = 0$ whenever j is the square of a positive integer, $y_j = 1$ whenever j is even and $z_j = 1$ whenever j is a power of two. The infinite sequence x_1, x_2, x_3, \ldots has a convergent subsequence

 $x_1, x_4, x_9, x_{16}, x_{25}, \ldots$

which includes those x_j for which j is the square of a positive integer. The corresponding subsequence y_1, y_4, y_9, \ldots of y_1, y_2, y_3, \ldots is not convergent, because its values alternate between 1 and -1. However this subsequence is bounded, and we can extract from this sequence a convergent subsequence

 $y_4, y_{16}, y_{36}, y_{64}, y_{100}, \dots$

which includes those x_j for which j is the square of an even positive integer.

The subsequence

 $x_4, x_{16}, x_{36}, y_{64}, y_{100}, \ldots$

is also convergent, because it is a subsequence of a convergent subsequence. However the corresponding subsequence

 $z_4, z_{16}, z_{36}, z_{64}, z_{100}, \dots$

does not converge. (Indeed $z_j = 1$ when j is an even power of 2, but $z_j = \cos(2\pi \log(9)/\log(2))$ when $j = 9 \times 2^{2p}$ for some positive integer p.) However this subsequence is bounded, and we can extract from it a convergent subsequence

 $z_4, z_{16}, z_{64}, z_{256}, z_{1024}, \dots$

which includes those x_j for which j is equal to two raised to the power of an even positive integer.

Then the first, second and third components of the following subsequence

$$(x_4, y_4, z_4), (x_{16}, y_{16}, z_{16}), (x_{64}, y_{64}, z_{64}), (x_{256}, y_{256}, z_{256}), \dots$$

of the original sequence of points in \mathbb{R}^3 converge, and it therefore follows from Lemma 2.3 that this sequence is a convergent subsequence of the given sequence of points in \mathbb{R}^3 .

Example

Let

$$x_{j} = \begin{cases} 1 & \text{if } j = 4k \text{ for some integer } k \\ 0 & \text{if } j = 4k + 1 \text{ for some integer } k \\ -1 & \text{if } j = 4k + 2 \text{ for some integer } k \\ 0 & \text{if } j = 4k + 3 \text{ for some integer } k \end{cases}$$

and

$$y_j = \begin{cases} 0 & \text{if } j = 4k \text{ for some integer } k, \\ 1 & \text{if } j = 4k + 1 \text{ for some integer } k, \\ 0 & \text{if } j = 4k + 2 \text{ for some integer } k, \\ -1 & \text{if } j = 4k + 3 \text{ for some integer } k, \end{cases}$$

,

and let $\mathbf{u}_j = (x_j, y_j)$ for $j = 1, 2, 3, 4, \dots$

Then the first components x_j for which the index j is odd constitute a convergent sequence $x_1, x_3, x_5, x_7, \ldots$ of real numbers, and the second components y_j for which the index j is even also constitute a convergent sequence $y_2, y_4, y_6, y_8, \ldots$ of real numbers.

However one would not obtain a convergent subsequence of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots$ simply by selecting those indices j for which x_i is in the convergent subsequence x_1, x_3, x_5, \ldots and y_i is in the convergent subsequence y_2, y_4, y_6, \ldots , because there no values of the index j for which x_i and y_i both belong to the respective subsequences. However the one-dimensional Bolzano-Weierstrass Theorem (Theorem 1.5) guarantees that there is a convergent subsequence of $y_1, y_3, y_5, y_7, ...,$ and indeed $y_1, y_5, y_9, y_{13}, ...$ is such a convergent subsequence. This yields a convergent subsequence $\mathbf{u}_1, \mathbf{u}_5, \mathbf{u}_9, \mathbf{u}_{13}, \dots$ of the given bounded sequence of points in \mathbb{R}^2 .

Theorem 2.5 (The Multidimensional Bolzano-Weierstrass Theorem)

Every bounded sequence of points in \mathbb{R}^n has a convergent subsequence.

Proof

We prove the result by induction on the dimension n of the Euclidean space \mathbb{R}^n that contains the infinite sequence in question. It follows from the one-dimensional Bolzano-Weierstrass Theorem (Theorem 1.5) that the theorem is true when n = 1. Suppose that n > 1, and that every bounded sequence in \mathbb{R}^{n-1} has a convergent subsequence. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a bounded infinite sequence of elements of \mathbb{R}^n , and let $x_{j,i}$ denote the *i*th component of \mathbf{x}_j for $i = 1, 2, \ldots, n$ and for all positive integers *j*.

The induction hypothesis requires that all bounded sequences in \mathbb{R}^{n-1} contain convergent subsequences. It follows that there exist real numbers $p_1, p_2, \ldots, p_{n-1}$ and an increasing sequence m_1, m_2, m_3, \ldots of positive integers such that $\lim_{k \to +\infty} x_{m_k,i} = p_i$ for i = 1, 2, ..., n - 1. The *n*th components $x_{m_1,n}, x_{m_2,n}, x_{m_3,n}, ...$ of the members of the subsequence $\mathbf{x}_{m_1}, \mathbf{x}_{m_2}, \mathbf{x}_{m_3}, \ldots$ then constitute a bounded sequence of real numbers. It follows from the one-dimensional Bolzano-Weierstrass Theorem (Theorem 1.5) that there exists an increasing sequence k_1, k_2, k_3, \ldots of positive integers for which the sequence $x_{m_{k_1},n}, x_{m_{k_2},n}, x_{m_{k_3},n}, \dots$ converges. Let $s_j = m_{k_i}$ for all positive integers j, and let

$$p_n = \lim_{j \to +\infty} x_{m_{k_j},n} = \lim_{j \to +\infty} x_{s_j,n}.$$

Then the sequence $x_{s_1,i}, x_{s_2,i}, x_{s_3,i}, \ldots$ converges for values of *i* between 1 and n-1, because it is a subquence of the convergent sequence

$$X_{m_1,i}, X_{m_2,i}, X_{m_3,i}, \ldots$$

Moreover

$$x_{s_1,n}, x_{s_2,n}, x_{s_3,n}, \ldots$$

also converges. Thus the *i*th components of the infinite sequence $\mathbf{x}_{m_1}, \mathbf{x}_{m_2}, \mathbf{x}_{m_3}, \ldots$ converge for $i = 1, 2, \ldots, n$. It then follows from Lemma 2.3 that $\lim_{j \to +\infty} \mathbf{x}_{s_k} = \mathbf{p}$, where $\mathbf{p} = (p_1, p_2, \ldots, p_n)$. The result follows.