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1. Ordered Fields and the Real Number System (continued)

1.4.

Definition

Let x1, x2, x3, . . . be an infinite sequence of real numbers. A
subsequence of this infinite sequence is a sequence of the form
xj1 , xj2 , xj3 , . . . where j1, j2, j3, . . . is an infinite sequence of positive
integers with

j1 < j2 < j3 < · · · .

Let x1, x2, x3, . . . be an infinite sequence of real numbers. The
following sequences are examples of subsequences of the above
sequence:—

x1, x3, x5, x7, . . .

x1, x4, x9, x16, . . .



1. Ordered Fields and the Real Number System (continued)

1.5. The Bolzano-Weierstrass Theorem

Proposition 1.4

Let x1, x2, x3, . . . be a bounded infinite sequence of real numbers.
Then there exists a real number c with the property that, given
any strictly positive real number ε, there are infinitely many
positive integers j for which c − ε < xj < c + ε.

Proof
The infinite sequence (xj : j ∈ N) is bounded, and therefore there
exist real numbers A and B such that A ≤ xj ≤ B for all positive
integers j .
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Let S denote the set of all real numbers s with the property that

{j ∈ N : xj > s}

is an infinite set. Let c = supS (so that c is the least upper bound
of the set S).
Let u and v be real numbers satisfying u < c < v . Choose v ′

satisfying c < v ′ < v . Then v ′ 6∈ S , and therefore

{j ∈ N : xj > v ′}

is a finite set. It follows that

{j ∈ N : xj ≥ v}

is also a finite set.
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Also u is not an upper bound for the set S (because c is the least
upper bound, and therefore there exists u′ ∈ S satisfying u′ > u. It
then follows that

{j ∈ N : xj > u′}

is an infinite set, and therefore

{j ∈ N : xj > u}

is an infinite set. But then

{j ∈ N : u < xj < v}

must be an infinite set, since it is obtained by removing from
{j ∈ N : xj > u} a finite number of values of j for which xj ≥ v .
The result therefore follows on taking u = c − ε and v = c + ε.
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Theorem 1.5 (Bolzano-Weierstrass)

Every bounded sequence of real numbers has a convergent
subsequence.

First Proof
Let x1, x2, x3, . . . be an bounded infinite sequence of real numbers.
It follows from Proposition 1.4 that there exists a real number c
with the property that, given any strictly positive real number ε,
there are infinitely many positive integers j for which
c − ε < xj < c + ε. There then exists some positive integer k1
such that c − 1 < xk1 < c + 1.
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Now suppose that positive integers k1, k2, . . . , km have been
determined such that k1 < k2 < · · · < km and

c − 1

j
< xkj < c +

1

j

for j = 1, 2, . . . ,m. The interval{
x ∈ R : c − 1

m + 1
< x < c +

1

m + 1

}
must then contain infinitely many members of the original
sequence, and therefore there exists some positive integer km+1 for
which km < km+1 and

c − 1

m + 1
< xkm+1 < c +

1

m + 1
.
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Thus we can construct in this fashion a subsequence
xk1 , xk2 , xk3 , . . . of the original sequence with the property that

c − 1

j
< xkj < c +

1

j

for all positive integers j . This subsequence then converges to c .
The given sequence therefore has a convergent subsequence, as
required.
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Second Proof
Let a1, a2, a3, . . . be a bounded sequence of real numbers, and let

S = {j ∈ N : aj ≥ ak for all k ≥ j}

(i.e., S is the set of all positive integers j with the property that aj
is greater than or equal to all the succeeding members of the
sequence).
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First let us suppose that the set S is infinite. Arrange the elements
of S in increasing order so that S = {j1, j2, j3, j4, . . .}, where
j1 < j2 < j3 < j4 < · · · . It follows from the manner in which the
set S was defined that aj1 ≥ aj2 ≥ aj3 ≥ aj4 ≥ · · · . Thus
aj1 , aj2 , aj3 , . . . is a non-increasing subsequence of the original
sequence a1, a2, a3, . . .. This subsequence is bounded below (since
the original sequence is bounded). It follows from Theorem 1.3
that aj1 , aj2 , aj3 , . . . is a convergent subsequence of the original
sequence.
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Now suppose that the set S is finite. Choose a positive integer j1
which is greater than every positive integer belonging to S . Then
j1 does not belong to S . Therefore there must exist some positive
integer j2 satisfying j2 > j1 such that aj2 > aj1 . Moreover j2 does
not belong to S (since j2 is greater than j1 and j1 is greater than
every positive integer belonging to S). Therefore there must exist
some positive integer j3 satisfying j3 > j2 such that aj3 > aj2 . We
can continue in this way to construct (by induction on j) a strictly
increasing subsequence aj1 , aj2 , aj3 , . . . of our original sequence.
This increasing subsequence is bounded above (since the original
sequence is bounded) and thus is convergent, by Theorem 1.3.
This completes the proof of the Bolzano-Weierstrass Theorem.
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