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1. Ordered Fields and the Real Number System

1.1. Ordered Fields

The real numbers can be characterized as an ordered field with the
Least Upper Bound Property. We give below the definition of
ordered fields, and then described the Least Upper Bound
Property, which requires that every non-empty subset of the set of
real numbers that is bounded above has a least upper bound.
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An ordered field F consists of a set F on which are defined binary
operations + of addition and × of multiplication, together with an
ordering relation <, where these binary operations and ordering
relation satisfy the following axioms:—

1 if u and v are elements of F then their sum u + v is also a
element of F;

2 (the Commutative Law for addition) u + v = v + u for all
elements u and v of F;

3 (the Associative Law for addition) (u + v) + w = u + (v + w)
for all elements u, v and w of F;

4 there exists an element of F, denoted by 0, with the property
that u + 0 = x = 0 + u for all elements u of F;

5 for each element u of F there exists some element −u of F
with the property that u + (−u) = 0 = (−u) + u;
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6 if u and v are elements of F then their product u × v is also a
element of F;

7 (the Commutative Law for multiplication) u × v = v × u for
all elements u and v of F;

8 (the Associative Law for multiplication)
(u × v)× w = u × (v × w) for all elements u, v and w of F,

9 there exists an element of F, denoted by 1, with the property
that u × 1 = u = 1× u for all elements u of F, and moreover
1 6= 0,

10 for each element u of F satisfying u 6= 0 there exists some
element u−1 of F with the property that
u × u−1 = 1 = u−1 × u,
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11 (the Distributive Law) u× (v + w) = (u× v) + (u×w) for all
elements u, v and w of F,

12 (the Trichotomy Law) if u and v are elements of F then one
and only one of the three statements u < v , u = v and u < v
is true,

13 (transitivity of the ordering) if u, v and w are elements of F
and if u < v and v < w then u < w ,

14 if u, v and w are elements of F and if u < v then
u + w < v + w ,

15 if u and v are elements of F which satisfy 0 < u and 0 < v
then 0 < u × v ,

The operations of subtraction and division are defined on an
ordered field F in terms of the operations of addition and
multiplication on that field in the obvious fashion:
u − v = u + (−v) for all elements u and v of F, and moreover
u/v = uv−1 provided that v 6= 0.



1. Ordered Fields and the Real Number System (continued)

Example
The rational numbers, with the standard ordering, and the
standard operations of addition, subtraction, multiplication, and
division constitute an ordered field.

The absolute value |x | of an element number x of an ordered
field F is defined by

|x | =

{
x if x ≥ 0;
−x if x < 0.

Note that |x | ≥ 0 for all x and that |x | = 0 if and only if x = 0.
Also |x + y | ≤ |x |+ |y | and |xy | = |x ||y | for all elements x and y
of the ordered field F.
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Let D be a subset of an ordered field F. An element u of F is said
to be an upper bound of the set D if x ≤ u for all x ∈ D. The set
D is said to be bounded above if such an upper bound exists.

Definition

Let F be an ordered field, and let D be some subset of F which is
bounded above. An element s of F is said to be the least upper
bound (or supremum) of D (denoted by supD) if s is an upper
bound of D and s ≤ u for all upper bounds u of D.
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Example
The rational number 2 is the least upper bound, in the ordered
field of rational numbers, of the sets {x ∈ Q : x ≤ 2} and
{x ∈ Q : x < 2}. Note that the first of these sets contains its least
upper bound, whereas the second set does not.
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The axioms (1)–(15) listed above that characterize ordered fields
are not in themselves sufficient to fully characterize the real
number system. (Indeed any property of real numbers that could
be derived solely from these axioms would be equally valid in any
ordered field whatsoever, and in particular would be valid were the
system of real numbers replaced by the system of rational
numbers.) We require as an additional axiom the following
property.

The Least Upper Bound Property

given any non-empty set D of real numbers that is bounded above,
there exists a real number supD that is the least upper bound for
the set D.
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A lower bound of a set D of real numbers is a real number l with
the property that l ≤ x for all x ∈ D. A set D of real numbers is
said to be bounded below if such a lower bound exists. If D is
bounded below, then there exists a greatest lower bound (or
infimum) inf D of the set D. Indeed
inf D = − sup{x ∈ R : −x ∈ D}.
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Remark
We have simply listed above a complete set of axioms for the real
number system. We have not however proved the existence of a
system of real numbers satisfying these axioms. There are in fact
several constructions of the real number system: one of the most
popular of these is the representation of real numbers as Dedekind
sections of the set of rational numbers. For an account of the this
construction, and for a proof that these axioms are sufficient to
characterize the real number system, see chapters 27–29 of
Calculus, by M. Spivak. The construction of the real number
system using Dedekind cuts is also described in detail in the
Appendix to Chapter 1 of Principles of Real Analysis by W. Rudin.
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From the time of the ancient Greeks to the present day,
mathematicians have recognized the necessity of establishing
rigorous foundations for the discipline. This led mathematicians
such as Bolzano, Cauchy and Weierstrass to establish in the
nineteenth century the definitions of continuity, limits and
convergence that are required in order to establish a secure
foundation upon which to build theories of real and complex
analysis that underpin the application of standard techiques of the
differential calculus in one or more variables.
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But mathematicians in the nineteenth century realised that, in
order to obtain satisfactory proofs of basic theorems underlying the
applications of calculus, they needed a deeper understanding of the
nature of the real number system. Accordingly Dedekind developed
a theory in which real numbers were represented by Dedekind
sections, in which each real number was characterized by means of
a partition of the set of rational numbers into two subsets, where
every rational number belonging to the first subset is less than
every rational number belonging to the second.
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Dedekind published his construction of the real number system in
1872, in the work Stetigkeit und irrationale Zahlen. In the same
year, Georg Cantor published a construction of the real number
system in which real numbers are represented by sequences of
rational numbers satisfying an appropriate convegence criterion.
It has since been shown that the system of real numbers is
completely characterized by the statement that the real numbers
constitute an ordered field which satisfies the Least Upper Bound
Axiom.
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1.3. Infinite Sequences of Real Numbers

An infinite sequence of real numbers is a sequence of the form
x1, x2, x3, . . ., where xj is a real number for each positive integer j .
(More formally, one can view an infinite sequence of real numbers
as a function from N to R which sends each positive integer j to
some real number xj .)
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Definition

An infinite sequence x1, x2, x3, . . . of real numbers is said to
converge to some real number l if and only if the following
criterion is satisfied:

given any strictly positive real number ε, there exists
some positive integer N such that |xj − l | < ε for all
positive integers j satisfying j ≥ N.

If the sequence x1, x2, x3, . . . converges to the limit l then we
denote this fact by writing ‘xj → l as j → +∞’, or by writing
‘ lim
j→+∞

xj = l ’.
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Let x and l be real numbers, and let ε be a strictly positive real
number. Then |x − l | < ε if and only if both x − l < ε and
l − x < ε. It follows that |x − l | < ε if and only if
l − ε < x < l + ε. The condition |x − l | < ε essentially requires
that the value of the real number x should agree with l to within
an error of at most ε. An infinite sequence x1, x2, x3, . . . of real
numbers converges to some real number l if and only if, given any
positive real number ε, there exists some positive integer N such
that l − ε < xj < l + ε for all positive integers j satisfying j ≥ N.
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Definition

We say that an infinite sequence x1, x2, x3, . . . of real numbers is
bounded above if there exists some real number B such that
xj ≤ B for all positive integers j . Similarly we say that this
sequence is bounded below if there exists some real number A such
that xj ≥ A for all positive integers j . A sequence is said to be
bounded if it is bounded above and bounded below. Thus a
sequence is bounded if and only if there exist real numbers A
and B such that A ≤ xj ≤ B for all positive integers j .
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Lemma 1.1

Every convergent sequence of real numbers is bounded.

Proof
Let x1, x2, x3, . . . be a sequence of real numbers converging to some
real number l . On applying the formal definition of convergence
(with ε = 1), we deduce the existence of some positive integer N
such that |xj − l | < 1 for all j ≥ N. But then A ≤ xj ≤ B for all
positive integers j , where A is the minimum of x1, x2, . . . , xN−1 and
l − 1, and B is the maximum of x1, x2, . . . , xN−1 and l + 1.
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Proposition 1.2

Let x1, x2, x3, . . . and y1, y2, y3, be convergent infinite sequences
of real numbers. Then the sum, difference and product of these
sequences are convergent, and

lim
j→+∞

(xj + yj) = lim
j→+∞

xj + lim
j→+∞

yj ,

lim
j→+∞

(xj − yj) = lim
j→+∞

xj − lim
j→+∞

yj ,

lim
j→+∞

(xjyj) =

(
lim

j→+∞
xj

)(
lim

j→+∞
yj

)
.
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If in addition yj 6= 0 for all positive integers j and lim
j→+∞

yj 6= 0,

then the quotient of the sequences (xj) and (yj) is convergent, and

lim
j→+∞

xj
yj

=

lim
j→+∞

xj

lim
j→+∞

yj
.

Proof
Throughout this proof let l = lim

j→+∞
xj and m = lim

j→+∞
yj .

First we prove that xj + yj → l + m as j → +∞. Let some strictly
positive real number ε be given. We must show that there exists
some positive integer N such that |xj + yj − (l + m)| < ε whenever
j ≥ N.
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Now xj → l as j → +∞, and therefore, given any strictly positive
real number ε1, there exists some positive integer N1 with the
property that |xj − l | < ε1 whenever j ≥ N1. In particular, there
exists a positive integer N1 with the property that |xj − l | < 1

2ε
whenever j ≥ N1. (To see this, let ε1 = 1

2ε.) Similarly there exists
some positive integer N2 such that |yj −m| < 1

2ε whenever j ≥ N2.
Let N be the maximum of N1 and N2. If j ≥ N then

|xj + yj − (l + m)| = |(xj − l) + (yj −m)| ≤ |xj − l |+ |yj −m|
< 1

2ε + 1
2ε = ε.

Thus xj + yj → l + m as j → +∞.
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Let c be some real number. We show that cyj → cm as j → +∞.
The case when c = 0 is trivial. Suppose that c 6= 0. Let some
strictly positive real number ε be given. Then there exists some
positive integer N such that |yj −m| < ε/|c | whenever j ≥ N. But
then |cyj − cm| = |c ||yj −m| < ε whenever j ≥ N. Thus cyj → cm
as j → +∞.
If we combine this result, for c = −1, with the previous result, we
see that −yj → −m as j → +∞, and therefore xj − yj → l −m as
j → +∞.
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Next we show that if u1, u2, u3, . . . and v1, v2, v3, . . . are infinite
sequences, and if uj → 0 and vj → 0 as j → +∞, then ujvj → 0 as
j → +∞. Let some strictly positive real number ε be given. Then
there exist positive integers N1 and N2 such that |uj | <

√
ε

whenever j ≥ N1 and |vj | <
√
ε whenever j ≥ N2. Let N be the

maximum of N1 and N2. If j ≥ N then |ujvj | < ε. We deduce that
ujvj → 0 as j → +∞.
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We can apply this result with uj = xj − l and vj = yj −m for all
positive integers j . Using the results we have already obtained, we
see that

0 = lim
j→+∞

(ujvj) = lim
j→+∞

(xjyj − xjm − lyj + lm)

= lim
j→+∞

(xjyj)−m lim
j→+∞

xj − l lim
j→+∞

yj + lm

= lim
j→+∞

(xjyj)− lm.

Thus xjyj → lm as j → +∞.
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Next we show that if w1,w2,w3, . . . is an infinite sequence of
non-zero real numbers, and if wj → 1 as j → +∞ then 1/wj → 1
as j → +∞. Let some strictly positive real number ε be given. Let
ε0 be the minimum of 1

2ε and 1
2 . Then there exists some positive

integer N such that |wj − 1| < ε0 whenever j ≥ N. Thus if j ≥ N
then |wj − 1| < 1

2ε and 1
2 < wj <

3
2 . But then∣∣∣∣ 1

wj
− 1

∣∣∣∣ =

∣∣∣∣1− wj

wj

∣∣∣∣ =
|wj − 1|
|wj |

< 2|wj − 1| < ε.

We deduce that 1/wj → 1 as j → +∞.
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Finally suppose that lim
j→+∞

xj = l and lim
j→+∞

yj = m, where m 6= 0.

Let wj = yj/m. Then wj → 1 as j → +∞, and hence 1/wj → 1 as
j → +∞. We see therefore that m/yj → 1, and thus 1/yj → 1/m,
as j → +∞. The result we have already obtained for products of
sequences then enables us to deduce that xj/yj → l/m as
j → +∞.
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1.4. Monotonic Sequences

An infinite sequence x1, x2, x3, . . . of real numbers is said to be
strictly increasing if xj+1 > xj for all positive integers j , strictly
decreasing if xj+1 < xj for all positive integers j , non-decreasing if
xj+1 ≥ xj for all positive integers j , non-increasing if xj+1 ≤ xj for
all positive integers j . A sequence satisfying any one of these
conditions is said to be monotonic; thus a monotonic sequence is
either non-decreasing or non-increasing.
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Theorem 1.3

Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real
numbers that is bounded below is convergent.

Proof
Let x1, x2, x3, . . . be a non-decreasing sequence of real numbers
that is bounded above. It follows from the Least Upper Bound
Axiom that there exists a least upper bound l for the set
{xj : j ∈ N}. We claim that the sequence converges to l .
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Let some strictly positive real number ε be given. We must show
that there exists some positive integer N such that |xj − l | < ε
whenever j ≥ N. Now l − ε is not an upper bound for the set
{xj : j ∈ N} (since l is the least upper bound), and therefore there
must exist some positive integer N such that xN > l − ε. But then
l − ε < xj ≤ l whenever j ≥ N, since the sequence is
non-decreasing and bounded above by l . Thus |xj − l | < ε
whenever j ≥ N. Therefore xj → l as j → +∞, as required.
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If the sequence x1, x2, x3, . . . is non-increasing and bounded below
then the sequence −x1,−x2,−x3, . . . is non-decreasing and
bounded above, and is therefore convergent. It follows that the
sequence x1, x2, x3, . . . is also convergent.
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