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3. The Transportation Problem

3. The Transportation Problem

3.1. The General Transportation Problem

The Transportation Problem can be expressed in the following
form. Some commodity is supplied by m suppliers and is
transported from those suppliers to n recipients. The ith supplier
can supply at most si units of the commodity, and the jth recipient
requires at least dj units of the commodity. The cost of
transporting a unit of the commodity from the ith supplier to the
jth recipient is ci ,j .

The total transport cost is then

m∑
i=1

n∑
j=1

ci ,jxi ,j .

where xi ,j denote the number of units of the commodity
transported from the ith supplier to the jth recipient.



3. The Transportation Problem (continued)

The Transportation Problem can then be presented as follows:

determine xi ,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n so as
minimize

∑
i ,j

ci ,jxi ,j subject to the constraints xi ,j ≥ 0 for

all i and j ,
n∑

j=1
xi ,j ≤ si and

m∑
i=1

xi ,j ≥ dj , where si ≥ 0 for

all i , dj ≥ 0 for all i , and
m∑
i=1

si ≥
n∑

j=1
dj .



3. The Transportation Problem (continued)

The quantities s1, s2, . . . , sm representing the quantities of the
transported commodity supplied by the suppliers are the
components of an m-dimensional vector (s1, s2, . . . , sm). We refer
to this vector as the supply vector for the transportation problem.

The quantities d1, d2, . . . , dn representing the quantities of the
transported commodity demanded by the recipients are the
components of an n-dimensional vector (d1, d2, . . . , dn). We refer
to this vector as the demand vector for the transportation problem.

The quantities ci ,j that represent the cost of transporting the
commodity from the ith supplier to the jth recipient are the
components of an m × n matrix. We refer to this matrix as the
cost matrix for the transportation problem.



3. The Transportation Problem (continued)

3.2. Transportation Problems where Supply equals Demand

Consider a transportation problem with m suppliers and n
recipients. The following proposition shows that a solution to the
transportation problem can only exist if total supply of the relevant
commodity exceeds total demand for that commodity.

Proposition 3.1

Let s1, s2, . . . , sm and d1, d2, . . . , dn be non-negative real numbers.
Suppose that there exist non-negative real numbers xi ,j for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n that satisfy the inequalities

n∑
j=1

xi ,j ≤ si and
m∑
i=1

xi ,j ≥ dj .
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Then
n∑

j=1

dj ≤
m∑
i=1

si .

Moreover if it is the case that

n∑
j=1

dj =
m∑
i=1

si .

then
n∑

j=1

xi ,j = si for i = 1, 2, . . . ,m

and
m∑
i=1

xi ,j = dj for j = 1, 2, . . . , n.
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Proof
The inequalities satisfied by the non-negative real numbers xi ,j
ensure that

n∑
j=1

dj ≤
m∑
i=1

n∑
j=1

xi ,j ≤
m∑
i=1

si .

Thus the total supply must equal or exceed the total demand.

Now si −
n∑

j=1
xi ,j ≥ 0 for i = 1, 2, . . . ,m. It follows that if

si >
∑n

j=1 xi ,j for at least one value of i then
m∑
i=1

si >
m∑
i=1

n∑
j=1

xi ,j .

Similarly
m∑
i=1

xi ,j − dj ≥ 0 for j = 1, 2, . . . , n. It follows that if it is

the case that
m∑
i=1

xi ,j > dj for at least one value of j then

m∑
i=1

n∑
j=1

xi ,j >
n∑

j=1
dj .
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It follows that if total supply equals total demand, so that

m∑
i=1

si =
n∑

j=1

dj ,

then
n∑

j=1

xi ,j = si for i = 1, 2, . . . ,m

and
m∑
i=1

xi ,j = dj for j = 1, 2, . . . , n,

as required.



3. The Transportation Problem (continued)

We analyse the Transportation Problem in the case where total
supply equals total demand. The optimization problem in this case
can then be stated as follows:—

determine xi ,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n so as
minimize

∑
i ,j

ci ,jxi ,j subject to the constraints xi ,j ≥ 0 for

all i and j ,
n∑

j=1
xi ,j = si and

m∑
i=1

xi ,j = dj , where si ≥ 0

and dj ≥ 0 for all i and j , and
m∑
i=1

si =
n∑

j=1
dj .



3. The Transportation Problem (continued)

Definition

A feasible solution to a transportation problem (with equality of
total supply and total demand) is represented by real numbers xi ,j ,
where

xi ,j ≥ 0 for i = 1, 2, . . . ,m and j = 1, 2, . . . , n;
n∑

j=1
xi ,j = si for = 1, 2, . . . ,m;

m∑
i=1

xi ,j = dj for j = 1, 2, . . . , n.

Definition

A feasible solution (xi ,j) of a transportation problem is said to be
optimal if it minimizes cost amongst all feasible solutions of that
transportation problem.



3. The Transportation Problem (continued)

3.3. Bases for the Transportation Problem

Definition

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, where m and n are
positive integers. Then a subset B of I × J is said to be a basis for
the transportation problem with m suppliers and n recipients if,

given any vectors y ∈ Rm and z ∈ Rn satisfying
m∑
i=1

(y)i =
n∑

j=1
(z)j ,

there exists a unique m × n matrix X with real coefficients
satisfying the following properties:—

(i)
n∑

j=1
(X )i ,j = (y)i for i = 1, 2, . . . ,m;

(ii)
m∑
i=1

(X )i ,j = (z)j for j = 1, 2, . . . , n;

(iii) (X )i ,j = 0 unless (i , j) ∈ B.
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Lemma 3.2

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, where m and n are
positive integers. and let

B = {(i , j) ∈ I × J : i = m or j = n}.

Then B is a basis for a transportation problem with m suppliers
and n recipients.

Proof
The result can readily be verified when m = 1 or n = 1. We
therefore restrict attention to cases where m > 1 and n > 1.

Let
B = {(i , j) ∈ I × J : i = m or j = n},

where m > 1 and n > 1.
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Then, given any vectors y ∈ Rm and z ∈ Rn that satisfy
m∑
i=1

yi =
n∑

j=1
zj , there exists a unique m × n matrix X with real

coefficients with all the following properties:

(i)
n∑

j=1
(X )i ,j = yi for i = 1, 2, . . . ,m;

(ii)
m∑
i=1

(X )i ,j = zj for j = 1, 2, . . . , n;

(iii) (X )i ,j = 0 unless (i , j) ∈ B.

This matrix X has coefficients as follows: Xi ,j = 0 if i < m and
j < n; Xi ,n = yi for i < m; Xm,j = zj for j < n; Xm,n = w , where

w = ym −
n−1∑
j=1

zj = zn −
m−1∑
i=1

yi .
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This matrix X is thus of the form

X =


0 0 . . . 0 y1
0 0 . . . 0 y2
...

...
. . .

...
...

0 0 . . . 0 ym−1
z1 z2 . . . zn−1 w

 ,

where

w = ym −
n−1∑
j=1

zj = zn −
m−1∑
i=1

yi .

It follows from the definition of bases for transportation problems
that the subset B of I × J is a basis for a transportation problem
with m suppliers and n recipients. This completes the proof.
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We now introduce some notation for use in discussion of the theory
of transportation problems.

For each integer i between 1 and m, let e(i) denote the
m-dimensional vector whose ith component is equal to 1 and whose
other components are zero. For each integer j between 1 and n, let
ê(j) denote the n-dimensional vector whose jth component is equal
to 1 and whose other components are zero. Thus

(e(i))k =

{
1 if i = k,
0 if i 6= k,

and (ê(j))` =

{
1 if j = `;
0 if j 6= `.

Moreover y =
m∑
i=1

(y)ie
(i) for all y ∈ Rm and z =

n∑
j=1

(z)j ê
(j) for all

z ∈ Rn.
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Also, for each ordered pair (i , j) of integers with 1 ≤ i ≤ m and
1 ≤ j ≤ n, let E (i ,j) denote the m × n matrix that has a single
non-zero coefficient equal to 1 located in the ith row and jth
column of the matrix. Thus

(E (i ,j))k,` =

{
1 if k = i and j = `;
0 if k 6= i or j 6= `.

Moreover

X =
m∑
i=1

n∑
j=1

(X )i ,jE
(i ,j)

for all m × n matrices X with real coefficients.
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We let ρ : Mm,n(R)→ Rm and σ : Mm,n(R)→ Rn be the linear

transformations defined such that (ρ(X ))i =
n∑

j=1
(X )i ,j for

i = 1, 2, . . . ,m and (σ(X ))j =
m∑
i=1

(X )i ,j for j = 1, 2, . . . , n. Then

ρ(E (i ,j)) = e(i) for i = 1, 2, . . . ,m and σ(E (i ,j)) = ê(j) for
j = 1, 2, . . . , n.

A feasible solution of the transportation problem with given supply
vector s, demand vector d and cost matrix C is represented by an
m × n matrix X satisfying the following three conditions:—

The coefficients of X are all non-negative;

ρ(X ) = s;

σ(X ) = d.
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The cost functional f : Mm,n(R)→ R is defined so that

f (X ) =
m∑
i=0

n∑
j=0

ci ,j(X )i ,j = trace(CTX )

for all X ∈ Mm,n(R), where C is the cost matrix and ci ,j = (C )i ,j
for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

A feasible solution X̂ of the Transportation problem is optimal if
and only if f (X̂ ) ≤ f (X ) for all feasible solutions X of that
problem.
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Lemma 3.3

Let X be an m × n matrix, let ρ(X ) ∈ Rm and σ(X ) ∈ Rn be

defined so that (ρ(X ))i =
n∑

j=1
(X )i ,j for i = 1, 2, . . . ,m and

(σ(X ))j =
m∑
i=1

(X )i ,j for j = 1, 2, . . . , n, and let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑

j=1
(z)j

}
.

Then (ρ(X ), σ(X )) ∈W .
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Proof
Summing the components of the vectors ρ(X ) and σ(X ), we find
that

m∑
i=1

(ρ(X ))i =
m∑
i=1

n∑
j=1

(X )i ,j =
n∑

j=1

(σ(X ))j .

Thus (ρ(X ), σ(X )) ∈W , as required.

Given a subset K of I × J, where I = {1, 2, . . . ,m} and
J = {1, 2, . . . , n}, we denote by MK the vector subspace of the
space Mm,n(R) of m × n matrices with real coefficients defined
such that

MK = {X ∈ Mm,n(R) : (X )i ,j = 0 unless (i , j) ∈ K}.



3. The Transportation Problem (continued)

The definition of bases for transportation problems then ensures
that a subset B of I × J is a basis for a transportation problem with
m suppliers and n recipients if and only if the linear transformation
θB : MB →W is an isomorphism of vector spaces, where

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑

j=1
(z)j

}
,

and θB(X ) = (ρ(X ), σ(X )) for all X ∈ MB , where

(ρ(X ))i =
n∑

j=1
(X )i ,j for i = 1, 2, . . . ,m and (σ(X ))j =

m∑
i=1

(X )i ,j for

j = 1, 2, . . . , n.



3. The Transportation Problem (continued)

Proposition 3.4

A basis for a transportation problem with m suppliers and n
recipients has m + n − 1 elements.

Proof
Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n} and, for all
(i , j) ∈ I × J, let E (i ,j) denote the m × n matrix defined so that

(E (i ,j))k,` =

{
1 if k = i and j = `;
0 if k 6= i or j 6= `.

Let B be a basis for the transportation problem with m suppliers
and n recipients. Then the m × n matrices E (i ,j) for which
(i , j) ∈ B constitute a basis of the vector space MB where

MB = {X ∈ Mm,n(R) : (X )i ,j = 0 unless (i , j) ∈ B}.

It follows that the dimension of the vector space MB is equal to
the number of elements in the basis B.
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Let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑

j=1
(z)j

}
,

and let θB : MB →W be defined so that θB(X ) = (ρ(X ), σ(X ))

for all X ∈ MB , where ρ(X )i =
n∑

j=1
(X )i ,j for i = 1, 2, . . . ,m, and

σ(X )j =
m∑
i=1

(X )i ,j for j = 1, 2, . . . , n. Now the definition of bases

for transportation problems ensures that θ : MB →W is an
isomorphism of vector spaces. Therefore dimMB = dimW . It
follows that any two bases for a transportation problem with m
suppliers and n recipients have the same number of elements.
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Lemma 3.2 showed that

{(i , j) ∈ I × J : i = m or j = n}

is a basis for a transportation problem with m suppliers and n
recipients. This basis has m + n − 1 elements. It follows that
dimW = m + n − 1, and therefore every basis for a transportation
problem with m suppliers and n recipients has m + n − 1 elements,
as required.
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Proposition 3.5

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, where m and n are
positive integers, and let K be a subset of I × J. Suppose that,

given any vectors y ∈ Rm and z ∈ Rn satisfying
m∑
i=1

(y)i =
n∑

j=1
(z)j ,

there exists an m × n matrix X with real coefficients belonging to
MK with the following properties:

(i)
n∑

j=1
(X )i ,j = yi for i = 1, 2, . . . ,m;

(ii)
m∑
i=1

(X )i ,j = zj for j = 1, 2, . . . , n;

(iii) (X )i ,j = 0 unless (i , j) ∈ K .

Then there exists a basis B for the transportation problem
satisfying B ⊂ K .
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Proof
First we define bases for the vector spaces involved in the proof.
For each integer i between 1 and m, let e(i) ∈ Rm be defined such
that

(e(i))k =

{
1 if i = k;
0 if i 6= k.

For each integer j between 1 and n, let ê(j) ∈ Rn be defined such
that

(ê(j))` =

{
1 if j = `;
0 if j 6= `.

For each ordered pair (i , j) of integers with 1 ≤ i ≤ m and
1 ≤ j ≤ n, let E (i ,j) ∈ Mn(R) be defined such that

(E (i ,j))k,` =

{
1 if k = i and j = `;
0 if k 6= i or j 6= `.
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Let MK denote the vector subspace of the space Mm,n(R) of m× n
matrices with real coefficients defined such that

MK = {X ∈ Mm.n(R) : (X )i ,j = 0 unless (i , j) ∈ K},

let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑

j=1
(z)j

}
,

and let θK : MK →W be the linear transformation defined so that
θK (X ) = (ρ(X ), σ(X )) for all X ∈ Mm,n(R), where

ρ(X )i =
n∑

j=1
(X )i ,j for i = 1, 2, . . . ,m and σ(X )j =

m∑
i=1

(X )i ,j for

j = 1, 2, . . . , n.
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Then
X =

∑
(i ,j)∈K

(X )i ,jE
(i ,j)

for all X ∈ MK , and therefore

θK (X ) =
∑

(i ,j)∈K

(X )i ,jθ(E (i ,j)) =
∑

(i ,j)∈K

(X )i ,j(e(i), ê(j))

for all X ∈ MK . The conditions of the proposition ensure that that
the ordered pairs (e(i), ê(j)) of basis vectors for which (i , j) belongs
to K span the vector space W . It then follows from standard linear
algebra that there exists a subset B of K such that those ordered
pairs (e(i), ê(j)) for which (i , j) belongs to B constitute a basis for
the vector space W (see Corollary 2.3).
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Thus, given any ordered pair (y, z) of vectors belonging to W ,
there exist uniquely determined real numbers xi ,j for all (i , j) ∈ B
such that

(y, z) =
∑

(i ,j)∈B

xi ,j(e(i), ê(j)).

Let X ∈ MB be the m × n matrix defined such that (X )i ,j = xi ,j
for all (i , j) ∈ B and (X )i ,j = 0 for all (i , j) ∈ (I × J) \ B. Then X
is the unique m × n matrix with the properties that ρ(X ) = y,
σ(X ) = z and X(i ,j) = 0 unless (i , j) ∈ B. It follows that the
subset B of K is the required basis for the transportation
problem.
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Proposition 3.6

Let m and n be positive integers, let I = {1, 2, . . . ,m} and
J = {1, 2, . . . , n}, and let K be a subset of I × J. Suppose that
there is no basis B of the transportation problem for which K ⊂ B.
Then there exists a non-zero m × n matrix Y with real coefficients
which satisfies the following conditions:

n∑
j=1

(Y )i ,j = 0 for i = 1, 2, . . . ,m;

m∑
i=1

(Y )i ,j = 0 for j = 1, 2, . . . , n;

(Y )i ,j = 0 when (i , j) 6∈ K .
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Proof
For each integer i between 1 and m, let e(i) ∈ Rm be defined such
that

(e(i))k =

{
1 if i = k;
0 if i 6= k.

For each integer j between 1 and n, let ê(j) ∈ Rn be defined such
that

(ê(j))` =

{
1 if j = `;
0 if j 6= `.

,

and let

W =

(y, z) ∈ Rm × Rn :
m∑
i=1

(y)i =
n∑

j=1

(z)j

 .
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Now follows from Proposition 2.2 that if the elements (e(i), ê(j))
for which (i , j) ∈ K were linearly independent then there would
exist a subset B of I × J satisfying K ⊂ B such that the elements
(e(i), ê(j)) for which (i , j) ∈ B would constitute a basis of W . It
would then follow that, given any ordered pair (y, z) of vectors
belonging to W , there would exist a unique m × n matrix X with
real coefficients with the properties that

∑m
j=1(X )i ,j = (y)i for

i = 1, 2, . . . ,m,
∑n

i=1(X )i ,j = (z)i for j = 1, 2, . . . , n, and
(X )i ,j = 0 unless (i , j) ∈ B. The subset B of I × J would thus be a
basis for the transportation problem. But the subset K is not
contained in any basis for the Transportation Problem. It follows
that the elements (e(i), ê(j)) for which (i , j) ∈ K must be linearly
dependent. Therefore there exists a non-zero m × n matrix Y with
real coefficients such that (Y )i ,j = 0 when (i , j) 6∈ K and

m∑
i=1

n∑
j=1

(Y )i ,j(e(i), ê(j)) = (0, 0).
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But then

m∑
i=1

n∑
j=1

(Y )i ,je
(i) = 0 and

m∑
i=1

n∑
j=1

(Y )i ,j ê
(j) = 0,

and therefore

n∑
j=1

(Y )i ,j = 0 for i = 1, 2, . . . ,m

and
m∑
i=1

(Y )i ,j = 0 for j = 1, 2, . . . , n.

Also (Y )i ,j = 0 unless (i , j) ∈ K . The result follows.
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3.4. Basic Feasible Solutions of Transportation Problems

Consider the transportation problem with m suppliers and n
recipients, where the ith supplier can provide at most si units of
some given commodity, where si ≥ 0, and the jth recipient requires
at least dj units of that commodity, where dj ≥ 0. We suppose
also that total supply equals total demand, so that

m∑
i=1

si =
n∑

j=1

dj ,

The cost of transporting the commodity from the ith supplier to
the jth recipient is ci ,j .

Definition

A feasible solution (xi ,j) of a transportation problem is said to be
basic if there exists a basis B for that transportation problem such
that xi ,j = 0 whenever (i , j) 6∈ B.
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Example
Consider a transportation problem where m = n = 2, s1 = 8,
s2 = 3, d1 = 2, d2 = 9, c1,1 = 2, c1,2 = 3, c2,1 = 4 and c2,2 = 1.
A feasible solution takes the form of a 2× 2 matrix(

x1,1 x1,2
x2,1 x2,2

)
with non-negative components which satisfies the two matrix
equations (

x1,1 x1,2
x2,1 x2,2

)(
1
1

)
=

(
8
3

)
and (

1 1
)( x1,1 x1,2

x2,1 x2,2

)
=
(

2 9
)
.
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A basic feasible solution will have at least one component equal to
zero. There are four matrices with at least one zero component
which satisfy the required equations. They are the following:—(

0 8
2 1

)
,

(
8 0
−6 9

)
,

(
2 6
0 3

)
,

(
−1 9
3 0

)
.

The first and third of these matrices have non-negative
components. These two matrices represent basic feasible solutions
to the problem, and moreover they are the only basic feasible
solutions.
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The costs associated with the components of the matrices are
c1,1 = 2, c1,2 = 3, c2,1 = 4 and c2,2 = 1.

The cost of the basic feasible solution

(
0 8
2 1

)
is

8c1,2 + 2c2,1 + c2,2 = 24 + 8 + 1 = 33.

The cost of the basic feasible solution

(
2 6
0 3

)
is

2c1,1 + 6c1,2 + 3c2,2 = 4 + 18 + 3 = 25.
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Now any 2× 2 matrix

(
x1,1 x1,2
x2,1 x2,2

)
satisfying the two matrix

equations (
x1,1 x1,2
x2,1 x2,2

)(
1
1

)
=

(
8
3

)
,

(
1 1

)( x1,1 x1,2
x2,1 x2,2

)
=
(

2 9
)

must be of the form(
x1,1 x1,2
x2,1 x2,2

)
=

(
λ 8− λ

2− λ 1 + λ

)
for some real number λ.
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But the matrix

(
λ 8− λ

2− λ 1 + λ

)
has non-negative components if

and only if 0 ≤ λ ≤ 2. It follows that the set of feasible solutions
of this instance of the transportation problem is{(

λ 8− λ
2− λ 1 + λ

)
: λ ∈ R and 0 ≤ λ ≤ 2

}
.
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The costs associated with the components of the matrices are
c1,1 = 2, c1,2 = 3, c2,1 = 4 and c2,2 = 1. Therefore, for each real
number λ satisfying 0 ≤ λ ≤ 2, the cost f (λ) of the feasible

solution

(
λ 8− λ

2− λ 1 + λ

)
is given by

f (λ) = 2λ+ 3(8− λ) + 4(2− λ) + (1 + λ) = 33− 4λ.

Cost is minimized when λ = 2, and thus

(
2 6
0 3

)
is the optimal

solution of this transportation problem. The cost of this optimal
solution is 25.
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Proposition 3.7

Given any feasible solution of a transportation problem, there
exists a basic feasible solution with whose cost does not exceed
that of the given solution.

Proof
Let m and n be positive integers, and let let the m × n matrix X
represent a feasible solution of a transportation problem with
supply vector s, demand vector d and cost matrix C , where C is an
m× n matrix with real coefficients. Then si ≥ 0 for i = 1, 2, . . . ,m
and dj ≥ 0 for j = 1, 2, . . . , n, where

s = (s1, s2, . . . , sm), d = (d1, d2, . . . , dn).



3. The Transportation Problem (continued)

Also xi ,j ≥ 0 for all i and j ,
n∑

j=1
xi ,j = si for i = 1, 2, . . . ,m and

m∑
i=1

xi ,j = dj for j = 1, 2, . . . , n. The cost of the feasible solution X

is then
m∑
i=1

n∑
j=1

ci ,jxi ,j , where ci ,j is the coefficient in the ith row and

jth column of the cost matrix C .

If the feasible solution X is itself basic then there is nothing to
prove. Suppose therefore that X is not a basic solution. We show
that there then exists a feasible solution X with fewer non-zero
components than the given feasible solution.



3. The Transportation Problem (continued)

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, and let

K = {(i , j) ∈ I × J : xi ,j > 0}.

Because X is not a basic solution to the Transportation Problem,
there does not exist any basis B for the transportation problem
satisfying K ⊂ B. It therefore follows from Proposition 3.6 that
there exists a non-zero m × n matrix Y whose coefficients yi ,j
satisfy the following conditions:—

n∑
j=1

yi ,j = 0 for i = 1, 2, . . . ,m;

m∑
i=1

yi ,j = 0 for j = 1, 2, . . . , n;

yi ,j = 0 when (i , j) 6∈ K .



3. The Transportation Problem (continued)

We can assume without loss of generality that
m∑
i=1

n∑
j=1

ci ,jyi ,j ≥ 0,

where the quantities ci ,j are the coefficients of the cost matrix C ,
because otherwise we can replace Y with −Y .

Let Zλ = X − λY for all real numbers λ, and let zi ,j(λ) denote the
coefficient (Zλ)i ,j in the ith row and jth column of the matrix Zλ.
Then zi ,j(λ) = xi ,j − λyi ,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
Moreover

n∑
j=1

zi ,j(λ) = si ;

m∑
i=1

zi ,j(λ) = dj ;

zi ,j(λ) = 0 whenever (i , j) 6∈ K ;
m∑
i=1

n∑
j=1

ci ,jzi ,j(λ) ≤
m∑
i=1

n∑
j=1

ci ,jxi ,j whenever λ ≥ 0.



3. The Transportation Problem (continued)

Now the matrix Y is a non-zero matrix whose rows and columns
all sum to zero. It follows that at least one of its coefficients must
be strictly positive. Thus there exists at least one ordered pair
(i , j) belonging to the set K for which yi ,j > 0. Let

λ0 = minimum

{
xi ,j
yi ,j

: (i , j) ∈ K and yi ,j > 0

}
.

Then λ0 > 0. Moreover if 0 ≤ λ < λ0 then xi ,j − λyi ,j > 0 for all
(i , j) ∈ K , and if λ > λ0 then there exists at least one element
(i0, j0) of K for which xi0,j0 − λyi0,j0 < 0. It follows that
xi ,j − λ0yi ,j ≥ 0 for all (i , j) ∈ K , and xi0,j0 − λ0yi0,j0 = 0.



3. The Transportation Problem (continued)

Thus Zλ0 is a feasible solution of the given transportation problem
whose cost does not exceed that of the given feasible solution X .
Moreover Zλ0 has fewer non-zero components than the given
feasible solution X .

If Zλ0 is itself a basic feasible solution, then we have found the
required basic feasible solution whose cost does not exceed that of
the given feasible solution. Otherwise we can iterate the process
until we arrive at the required basic feasible solution whose cost
does not exceed that of the given feasible solution.



3. The Transportation Problem (continued)

A transportation problem has only finitely many basic feasible
solutions. Indeed there are only finitely many bases for the
problem, and any basis is associated with at most one basic
feasible solution. Therefore there exists a basic feasible solution
whose cost does not exceed the cost of any other basic feasible
solution. It then follows from Proposition 3.7 that the cost of this
basic feasible solution cannot exceed the cost of any other feasible
solution of the given transportation problem. This basic feasible
solution is thus a basic optimal solution of the Transportation
Problem.

The transportation problem determined by the supply vector,
demand vector and cost matrix has only finitely many basic
feasible solutions, because there are only finitely many bases for
the problem, and each basis can determine at most one basic
feasible solution. Nevertheless the number of basic feasible
solutions may be quite large.



3. The Transportation Problem (continued)

But it can be shown that a transportation problem always has a
basic optimal solution. It can be found using an algorithm that
implements the Simplex Method devised by George B. Dantzig in
the 1940s. This algorithm involves passing from one basis to
another, lowering the cost at each stage, until one eventually finds
a basis that can be shown to determine a basic optimal solution of
the transportation problem.



3. The Transportation Problem (continued)

3.5. The Northwest Corner Method

Example
We discuss in detail how to find an initial basic feasible solution of
a transportation problem with 4 suppliers and 5 recipients, using a
method known as the Northwest Corner Method. This method
does not make use of cost information.
The course of the calculation is determined by the supply vector s
and the demand vector d, where

s = (9, 11, 4, 5), d = (6, 7, 5, 3, 8).



3. The Transportation Problem (continued)

We need to fill in the entries in a tableau of the form

xi ,j 1 2 3 4 5 si
1 · · · · · 9
2 · · · · · 11
3 · · · · · 4
4 · · · · · 5

dj 6 7 5 3 8 29



3. The Transportation Problem (continued)

In the tableau just presented the labels on the left hand side
identify the suppliers, the labels at the top identify the recipients,
the numbers on the right hand side list the number of units that
the relevant supplier must provide, and the numbers at the bottom
identify the number of units that the relevant recipient must
obtain. Number in the bottom right hand corner gives the
common value of the total supply and the total demand.

The values in the individual cells must be non-zero, the rows must
sum to the value on the left, and the columns must sum to the
value on the bottom.



3. The Transportation Problem (continued)

The Northwest Corner Method is applied recursively. At each stage
the undetermined cell in at the top left (the northwest corner) is
given the maximum possible value allowable with the constraints.
The remainder of either the first row or the first column must then
be completed with zeros. This leads to a reduced tableau to be
determined with either one fewer row or else one fewer column.
One continues in this fashion, as exemplified in the solution of this
particular problem, until the entire tableau has been completed.

The method will also determine a basis associated with the basic
feasible solution determined by the Northwest Corner Method.
This basis lists the cells that play the role of northwest corner at
each stage of the method.



3. The Transportation Problem (continued)

At the first stage, the northwest corner cell is associated with
supplier 1 and recipient 1. This cell is assigned a value equal to the
mimimum of the corresponding column and row sums. Thus, this
example, the northwest corner cell, is given the value 6, which is
the desired column sum. The remaining cells in that row are given
the value 0.

The tableau then takes the following form:—

xi ,j 1 2 3 4 5 si
1 6 · · · · 9
2 0 · · · · 11
3 0 · · · · 4
4 0 · · · · 5

dj 6 7 5 3 8 29

The ordered pair (1, 1) commences the list of elements making up
the associated basis.



3. The Transportation Problem (continued)

At the second stage, one applies the Northwest Corner Method to
the following reduced tableau:—

xi ,j 2 3 4 5 si
1 · · · · 3
2 · · · · 11
3 · · · · 4
4 · · · · 5

dj 7 5 3 8 23

The required value for the first row sum of the reduced tableau has
been reduced to reflect the fact that the values in the remaining
undetermined cells of the first row must sum to the value 3.
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The value 3 is then assigned to the northwest corner cell of the
reduced tableau (as 3 is the maximum possible value for this cell
subject to the constraints on row and column sums). The reduced
tableau therefore takes the following form after the second stage:—

xi ,j 2 3 4 5 si
1 3 0 0 0 3
2 · · · · 11
3 · · · · 4
4 · · · · 5

dj 7 5 3 8 23
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The main tableau at the completion of the second stage then
stands as follows:—

xi ,j 1 2 3 4 5 si
1 6 3 0 0 0 9
2 0 · · · · 11
3 0 · · · · 4
4 0 · · · · 5

dj 6 7 5 3 8 29

The list of ordered pairs representing the basis elements
determined at the second stage then stands as follows:—

Basis: (1, 1), (2, 1), . . ..
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The reduced tableau for the third stage then stands as follows:—

xi ,j 2 3 4 5 si
2 · · · · 11
3 · · · · 4
4 · · · · 5

dj 4 5 3 8 20

Accordingly the northwest corner of the reduced tableau should be
assigned the value 4, and the remaining elements of the first
column should be assigned the value 0.



3. The Transportation Problem (continued)

The reduced tableau at the completion of the third stage stands as
follows:—

xi ,j 2 3 4 5 si
2 4 · · · 11
3 0 · · · 4
4 0 · · · 5

dj 4 5 3 8 20
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The main tableau and list of basis elements at the completion of
the third stage then stand as follows:—

xi ,j 1 2 3 4 5 si
1 6 3 0 0 0 9
2 0 4 · · · 11
3 0 0 · · · 4
4 0 0 · · · 5

dj 6 7 5 3 8 29

Basis: (1, 1), (2, 1), (2, 2), . . ..
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The reduced tableau at the completion of the fourth stage is as
follows:—

xi ,j 3 4 5 si
2 5 · · 7
3 0 · · 4
4 0 · · 5

dj 5 3 8 16



3. The Transportation Problem (continued)

The main tableau and list of basis elements at the completion of
the fourth stage then stand as follows:—

xi ,j 1 2 3 4 5 si
1 6 3 0 0 0 9
2 0 4 5 · · 11
3 0 0 0 · · 4
4 0 0 0 · · 5

dj 6 7 5 3 8 29

Basis: (1, 1), (2, 1), (2, 2), (2, 3), . . ..



3. The Transportation Problem (continued)

At the fifth stage the sum of the undetermined cells for the 2nd
supplier must sum to 2. Therefore the main tableau and list of
basis elements at the completion of the fifth stage then stand as
follows:—

xi ,j 1 2 3 4 5 si
1 6 3 0 0 0 9
2 0 4 5 2 0 11
3 0 0 0 · · 4
4 0 0 0 · · 5

dj 6 7 5 3 8 29

Basis: (1, 1), (2, 1), (2, 2), (2, 3), (2, 4), . . ..
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At the sixth stage the sum of the undetermined cells for the 4th
recipient must sum to 1. Therefore the main tableau and list of
basis elements at the completion of the sixth stage then stand as
follows:—

xi ,j 1 2 3 4 5 si
1 6 3 0 0 0 9
2 0 4 5 2 0 11
3 0 0 0 1 · 4
4 0 0 0 0 · 5

dj 6 7 5 3 8 29

Basis: (1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4), . . ..



3. The Transportation Problem (continued)

Two further stages suffice to complete the tableau. Moreover, at
the completion of the eighth and final stage the main tableau and
list of basis elements stand as follows:—

xi ,j 1 2 3 4 5 si
1 6 3 0 0 0 9
2 0 4 5 2 0 11
3 0 0 0 1 3 4
4 0 0 0 0 5 5

dj 6 7 5 3 8 29

Basis: (1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5).



3. The Transportation Problem (continued)

We now check that we have indeed obtained a basis B, where

B = {(1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}.

If B is indeed a basis, then arbitrary values s1, s2, s3, s4 and
d1, d2, d3, d4, d5 should determine corresponding values of xi ,j for
(i , j) ∈ B, as indicated in the following tableau:—

xi ,j 1 2 3 4 5

1 x1,1 x1,2 s1
2 x2,2 x2,3 x2,4 s2
3 x3,4 x3,5 s3
4 x4,5 s4

d1 d2 d3 d4 d5



3. The Transportation Problem (continued)

Now analysis of the Northwest Corner Method shows that, when
successive elements of the set B are ordered by the stage of the
method at which they are determined. Then the value of xi ′,j ′ for a
given ordered pair (i ′, j ′) ∈ B is determined by the values of the
row sums si , the column sums dj , together with the values xi ,j for
the ordered pairs (i , j) in the set B determined at earlier stages of
the method.



3. The Transportation Problem (continued)

In the specific numerical example that we have just considered, we
find that the values of xi ,j for ordered pairs (i , j) in the set B,
where

B = {(1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)},

are determined by solving, successively, the following equations:—

x1,1 = d1, x1,2 = s1 − x1,1, x2,2 = d2 − x1,2,

x2,3 = d3, x2,4 = s2 − x2,3 − x2,2, x3,4 = d4 − x2,4,

x3,5 = s3 − x3,4, x4,5 = d5 − x3,5,

It follows that the values of xi ,j for (i , j) ∈ B are indeed
determined by s1, s2, s3, s4 and d1, d2, d3, d4, d5.
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Indeed we find that

x1,1 = d1,

x1,2 = s1 − d1,

x2,2 = d2 − s1 + d1,

x2,3 = d3,

x2,4 = s2 − d3 − d2 + s1 − d1,

x3,4 = d4 − s2 + d3 + d2 − s1 + d1,

x3,5 = s3 − d4 + s2 − d3 − d2 + s1 − d1,

x4,5 = d5 − s3 + d4 − s2 + d3 + d2 − s1 + d1.



3. The Transportation Problem (continued)

Note that, in this specific example, the values of xi ,j for ordered
pairs (i , j) in the basis B are expressed as sums of terms of the
form ±si and ±dj . Moreover the summands si all have the same
sign, the summands dj all have the same sign, and the sign of the
terms si is opposite to the sign of the terms dj . Thus, for example

x4,5 = (d1 + d2 + d3 + d4 + d5)− (s1 + s2 + s3).

This pattern is in fact a manifestation of a general result applicable
to all instances of the Transportation Problem.



3. The Transportation Problem (continued)

Remark
The basic feasible solution produced by applying the Northwest
Corner Method is just one amongst many basic feasible solutions.
There are many others. Some of these may be obtained on
applying the Northwest Corner Method after reordering the rows
and columns (thus renumbering the suppliers and recipients).

It would take significant work to calculate all basic feasible
solutions and then calculate the cost associated with each one.



3. The Transportation Problem (continued)

3.6. The Minimum Cost Method for finding Basic Feasible Solutions

We discuss another method for finding an initial basic feasible
solution of a transportation problem. This method is similar to the
Northwest Corner Method, but takes account of the transport
costs encoded in the cost matrix. The method is known as the
Minimum Cost Method, on account of the method of selecting the
cell of the tableau to be filled in at each stage in the application of
the algorithm. The initial basic feasible solution obtained by this
method is not necessarily optimal.



3. The Transportation Problem (continued)

Example
Let ci ,j be the coefficient in the ith row and jth column of the cost
matrix C , where

C =


8 4 16
3 7 2

13 8 6
5 7 8

 .

and let
s1 = 13, s2 = 8, s3 = 11, s4 = 13,

d1 = 19, d2 = 12, d3 = 14.



3. The Transportation Problem (continued)

We seek to find non-negative real numbers xi ,j for i = 1, 2, 3, 4 and

j = 1, 2, 3 that minimize
4∑

i=1

3∑
j=1

ci ,jxi ,j subject to the following

constraints:
3∑

j=1

xi ,j = si for i = 1, 2, 3, 4,

4∑
i=1

xi ,j = dj for j = 1, 2, 3,

and xi ,j ≥ 0 for all i and j .

For this problem the supply vector is (13, 8, 11, 13) and the
demand vector is (19, 12, 14). The components of both the supply
vector and the demand vector add up to 45.



3. The Transportation Problem (continued)

In order to start the process of finding an initial basic solution for
this problems, we set up a tableau that records the row sums (or
supplies), the column sums (or demands) and the costs ci ,j for the
given problem, whilst leaving cells to be filled in with the values of
the non-negative real numbers xi ,j that will specify the initial basic
feasible solution. The resultant tableau is structured as follows:—

ci ,j ↘ xi ,j 1 2 3 si

1 8 4 16
? ? ? 13

2 3 7 2
? ? ? 8

3 13 8 6
? ? ? 11

4 5 7 8
? ? ? 13

dj 19 12 14 45



3. The Transportation Problem (continued)

We apply the minimum cost method to find an initial basic
solution.

The cell with lowest cost is the cell (2, 3). We assign to this cell
the maximum value possible, which is the minimum of s2, which is
8, and d3, which is 14. Thus we set x2,3 = 8. This forces x2,1 = 0
and x2,2 = 0. The pair (2, 3) is added to the current basis.
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At the completion of the first stage the tableau is structured as
follows:—

ci ,j ↘ xi ,j 1 2 3 si

1 8 4 16
? ? ? 13

2 3 7 2 •
0 0 8 8

3 13 8 6
? ? ? 11

4 5 7 8
? ? ? 13

dj 19 12 14 45

We enter a • symbol into the tableau in the relevant cell to indicate
that (1, 2) will be belong to the basis constructed by this method.
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The next undetermined cell of lowest cost is (1, 2). We assign to
this cell the minimum of s1, which is 13, and d2 − x2,2, which is
12. Thus we set x1,2 = 12. This forces x3,2 = 0 and x4,2 = 0. The
pair (1, 2) is added to the current basis. At the completion of this
stage the tableau is structured as follows:—

ci ,j ↘ xi ,j 1 2 3 si

1 8 4 • 16
? 12 ? 13

2 3 7 2 •
0 0 8 8

3 13 8 6
? 0 ? 11

4 5 7 8
? 0 ? 13

dj 19 12 14 45



3. The Transportation Problem (continued)

The next undetermined cell of lowest cost is (4, 1). We assign to
this cell the minimum of s4 − x4,2, which is 13, and d1 − x2,1,
which is 19. Thus we set x4,1 = 13. This forces x4,3 = 0. The pair
(4, 1) is added to the current basis. At the completion of this stage
the tableau is structured as follows:—

ci ,j ↘ xi ,j 1 2 3 si

1 8 4 • 16
? 12 ? 13

2 3 7 2 •
0 0 8 8

3 13 8 6
? 0 ? 11

4 5 • 7 8
13 0 0 13

dj 19 12 14 45



3. The Transportation Problem (continued)

The next undetermined cell of lowest cost is (3, 3). We assign to
this cell the minimum of s3 − x3,2, which is 11, and
d3 − x2,3 − x4,3, which is 6 (= 14− 8). Thus we set x3,3 = 6. This
forces x1,3 = 0. The pair (3, 3) is added to the current basis. At
the completion of this stage the tableau is structured as follows:—

ci ,j ↘ xi ,j 1 2 3 si

1 8 4 • 16
? 12 0 13

2 3 7 2 •
0 0 8 8

3 13 8 6 •
? 0 6 11

4 5 • 7 8
13 0 0 13

dj 19 12 14 45



3. The Transportation Problem (continued)

The next undetermined cell of lowest cost is (1, 1). We assign to
this cell the minimum of s1 − x1,2 − x1,3, which is 1, and
d1 − x2,1 − x4,1, which is 6. Thus we set x1,1 = 1. The pair (1, 1)
is added to the current basis. At the completion of this stage the
tableau is structured as follows:—

ci ,j ↘ xi ,j 1 2 3 si

1 8 • 4 • 16
1 12 0 13

2 3 7 2 •
0 0 8 8

3 13 8 6 •
? 0 6 11

4 5 • 7 8
13 0 0 13

dj 19 12 14 45



3. The Transportation Problem (continued)

The final undetermined cell is (3, 1). We assign to this cell the
common value of s3 − x3,2 − x3,3 and d1 − x1,1 − x2,1 − x4,1, which
is 5. Thus we set x3,1 = 5. The pair (3, 1) is added to the current
basis. At the completion of this final stage the tableau is
structured as follows:—

ci ,j ↘ xi ,j 1 2 3 si

1 8 • 4 • 16
1 12 0 13

2 3 7 2 •
0 0 8 8

3 13 • 8 6 •
5 0 6 11

4 5 • 7 8
13 0 0 13

dj 19 12 14 45



3. The Transportation Problem (continued)

The initial basis is thus B where

B = {(1, 1), (1, 2), (2, 3), (3, 1), (3, 3), (4, 1)}.

The basic feasible solution is represented by the 6× 5 matrix X ,
where

X =


1 12 0
0 0 8
5 0 6

13 0 0

 .

The cost of this initial feasible basic solution is

8× 1 + 4× 12 + 2× 8 + 13× 5 + 6× 6

+ 5× 13

= 8 + 48 + 16 + 65 + 36 + 65

= 238.



3. The Transportation Problem (continued)

3.7. Effectiveness of the Minimum Cost Method

We now discuss the reasons why the Minimum Cost Method yields
a feasible solution to a transportation problem that is a basic
feasible solution.

Consider a transportation problem with m suppliers and n
recipients, determined by a supply vector s, a demand vector d and
a cost matrix C , where

s = (s1, s2, . . . , sm), d = (d1, d2, . . . , dn).

and where d ∈ Rn and cost matrix C , We denote by ci ,j the
coefficient in the ith row and jth column of the matrix C .
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The Minimum Cost Method determines a feasible solution to this
transportation problem. A feasible solution is represented by an
m × n matrix X whose coefficients xi ,j satisfy the following
conditions: xi ,j ≥ 0 for i = 1, 2, . . . ,m and j = 1, 2, . . . , n;
n∑

j=1
xi ,j = si for i = 1, 2, . . . ,m;

m∑
i=1

xi ,j = dj for j = 1, 2, . . . , n. We

must show that there exists a basis B such that the feasible
solution determined by the Minimum Cost Method satisfies xi ,j = 0
when (i , j) 6 ∈ B.

In applying the Minimum Cost Method, we begin by locating a
coefficient of the cost matrix which does not exceed the other
coefficients of this matrix. Renumbering the suppliers and
recipients, if necessary, we may assume, without loss of generality,
that ci ,j ≥ cm,n for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The feasible
solution with coefficients xi ,j that results from application of the
Minimum Cost Method then conforms to a structure specified in at
least one of the two cases that are described immediately below:—
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in Case I, the following conditions are satisfied: dn ≤ sm;

xm,n = dn; xi ,n = 0 when 1 ≤ i < n;
n−1∑
j=1

xi ,j = si for

1 ≤ i < m;
n−1∑
j=1

xm,j = sm − dn;
m∑
i=1

xi ,j = dj for 1 ≤ j < n; and

the coefficients xi ,j with 1 ≤ i ≤ m and 1 ≤ j < n constitute a
solution of the relevant transportation problem arising from
application of the Minimum Cost Method.

in Case II, the following conditions are satisfied: sm ≤ dn;

xm,n = sm; xm,j = 0 when 1 ≤ j < n;
m−1∑
i=1

xi ,j = dj for

1 ≤ j < n;
m−1∑
i=1

xi ,n = dn − sm;
n∑

j=1
xi ,j = si for 1 ≤ i < m; and

the coefficients xi ,j with 1 ≤ i < m and 1 ≤ j ≤ n constitute a
solution of the relevant transportation problem arising from
application of the Minimum Cost Method.



3. The Transportation Problem (continued)

The recursive nature of the Minimum Cost Method therefore
enables us to prove that the Minimum Cost Method yields a basic
feasible solution by induction on m + n, where m is the number of
suppliers and n is the number of recipients. The Minimum Cost
Method clearly yields a basic feasible solution in the trivial case
where m = n = 1. We suppose therefore as our inductive
hypothesis that the feasible solution determined by application of
the Minimum Cost Method is a basic feasible solution in those
cases where adding the number of suppliers to the number of
recipients results in a number less than m + n.

In particular, we may assume that, in applying the Minimum Cost
Method to the given problem with m suppliers and n recipients the
matrices X ′ and X ′′ that result from application of the Minimum
Cost Method to a smaller transportation problem as specified in
the descriptions of Case I and Case II above.
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Let us now restrict attention to Case I. In this case the reduced
transportation is a transportation problem with m suppliers and
n − 1 recipients. The inductive hypothesis guarantees that the
feasible solution that results from application of the Minimum Cost
Method is a basic solution. Therefore there exists a basis B ′ for
this reduced problem with n + m − 2 elements, Moreover if
1 ≤ i ≤ m, 1 ≤ j ≤ n − 1 and if xi ,j 6= 0 then (i , j) ∈ B ′. The
elements of the basis B ′ take the form of ordered pairs (i , j), where
i is some integer between 1 and m and j is some integer between 1
and n − 1. Let

B = B ′ ∪ {(m, n)}.

We claim that B is a basis for a transportation problem with m
suppliers and n recipients.
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Let a1, a2, . . . , am and b1, b2, . . . , bn be real numbers, where
m∑
i=1

ai =
n∑

j=1
bj . We must show that there exist unique real numbers

zi ,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n such that
n∑

j=1
zi ,j = ai for

i = 1, 2, . . . ,m,
m∑
i=1

zi ,j = bj for j = 1, 2, . . . , n, and zi ,j = 0 unless

(i , j) ∈ B.

In particular these equations require that
m∑
i=1

zi ,n = bn. But m is

the only value of i for which (i , n) ∈ B. It follows that the
coefficients zi ,j of any basic solution determined by the basis B
must satisfy zi ,n = 0 for i < m and zm,n = bn.



3. The Transportation Problem (continued)

It then follows that, in Case I, if the coefficients zi ,j satisfy the

equations
n∑

j=1
zi ,j = ai for 1 ≤ i ≤ m and

m∑
i=1

zi ,j = bj for

1 ≤ j ≤ n, and if zi ,j = 0 unless (i , j) ∈ B, then these coefficients
must satisfy the following conditions:—
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(i) zm,n = bn;

(ii) zi ,n = 0 when 1 ≤ i < m;

(iii)
n−1∑
j=1

zm,j = am − bn

(iv)
n−1∑
j=1

zi ,j = ai when 1 ≤ i < m;

(v)
m∑
i=1

zi ,j = bj when 1 ≤ j < n.

(vi) if j < n and zi ,j 6= 0 then (i , j) ∈ B ′.

Now B ′ is a basis for a transportation problem with m suppliers
and n − 1 recipients. It follows that there exist unique real
numbers zi ,j for 1 ≤ i ≤ m and 1 ≤ j < n that satisfy conditions
(iii), (iv), (v) and (vi) above.
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It follows from this that if the numbers zi ,n are determined in
accordance with conditions (i) and (ii) above then the numbers zi ,j

are the unique real numbers that solve the equations
n∑

j=1
zi ,j = ai

for 1 ≤ i ≤ m and
m∑
i=1

zi ,j = bj for 1 ≤ j ≤ n, and that also satisfy

zi ,j = 0 whenever (i , j) 6∈ B.
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We conclude that, when the Minimum Cost Method proceeds so as
to produce a feasible solution to a transportation problem with m
suppliers and n recipients that conforms to the conditions specified
in Case I above, then that feasible solution is a basic feasible
solution with associated basis B. A similar argument applies when
the feasible solution conforms to the conditions specified in Case II
above. The feasible solution produced by the Minimum Cost
Method conforms to conditions specified in one or other of these
two cases. We conclude therefore that the Minimum Cost Method
always determines a basic feasible solution to a transportation
problem.



3. The Transportation Problem (continued)

3.8. Formal Description of the Minimum Cost Method

We describe the Minimum Cost Method for finding an initial basic
feasible solution to a transportation problem.

Consider a transportation problem specified by positive integers m
and n and non-negative real numbers s1, s2, . . . , sm and

d1, d2, . . . , dn, where
m∑
i=1

si =
n∑

j=1
dj . Let I = {1, 2, . . . ,m} and let

J = {1, 2, . . . , n}. A feasible solution consists of an array of
non-negative real numbers xi ,j for i ∈ I and j ∈ J with the
property that

∑
j∈J

xi ,j = si for all i ∈ I and
∑
i∈I

xi ,j = dj for all j ∈ J.

The objective of the problem is to find a feasible solution that
minimizes cost, where the cost of a feasible solution
(xi ,j : i ∈ I andj ∈ J) is

∑
i∈I

∑
j∈J

ci ,jxi ,j .
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In applying the Minimum Cost Method to find an initial basic
solution to the Transportation we apply an algorithm that
corresponds to the determination of elements
(i1, j1), (i2, j2), . . . , (im+n−1, jm+n−1) of I × J and of subsets
I0, I1, . . . , Im+n−1 of I and J0, J1, . . . , Jm+n−1 of J such that I0 = I ,
J0 = J, and such that, for each integer k between 1 and m + n− 1,
exactly one of the following two conditions is satisfied:—

(i) ik 6∈ Ik , jk ∈ Jk , Ik−1 = Ik ∪ {ik} and Jk−1 = Jk ;

(ii) ik ∈ Ik , jk 6∈ Jk , Ik−1 = Ik and Jk−1 = Jk ∪ {jk};
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Indeed let I0 = I , J0 = J and B0 = {0}. The Minimum Cost
Method algorithm is accomplished in m + n − 1 stages.
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Let k be an integer satisfying 1 ≤ k ≤ m + n − 1 and that subsets
Ik−1 of I , Jk−1 of J and Bk−1 of I × J have been determined in
accordance with the rules that apply at previous stages of the
Minimum Cost algorithm. Suppose also that non-negative real
numbers xi ,j have been determined for all ordered pairs (i , j) in
I × J that satisfy either i 6∈ Ik−1 or j 6∈ Jk−1 so as to satisfy the
following conditions:—∑

j∈J\Jk−1

xi ,j ≤ si whenever i ∈ Ik−1;∑
j∈J

xi ,j = si whenever i 6∈ Ik−1;∑
i∈I\Ik−1

xi ,j ≤ dj whenever j ∈ Jk−1;∑
i∈I

xi ,j = dj whenever j 6∈ Jk−1.
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The Minimum Cost Method specifies that one should choose
(ik , jk) ∈ Ik−1 × Jk−1 so that

cik ,jk ≤ ci ,j for all (i , j) ∈ Ik−1 × Jk−1,

and set Bk = Bk−1 ∪ {(ik , jk)}. Having chosen (ik , jk), the
non-negative real number xik ,jk is then determined so that

xik ,jk = min

sik −
∑

j∈J\Jk−1

xik ,j , djk −
∑

i∈I\Ik−1

xi ,jk

 .

The subsets Ik and Jk of I and J respectively are then determined,
along with appropriate values of xi ,j , according to the following
rules:—
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(i) if

sik −
∑

j∈J\Jk−1

xik ,j < djk −
∑

i∈I\Ik−1

xi ,jk

then we set Ik = Ik−1 \ {ik} and Jk = Jk−1, and we also let
xik ,j = 0 for all j ∈ Jk−1 \ {jk};

(ii) if

sik −
∑

j∈J\Jk−1

xik ,j > djk −
∑

i∈I\Ik−1

xi ,jk

then we set Jk = Jk−1 \ {jk} and Ik = Ik−1, and we also let
xi ,jk = 0 for all i ∈ Ik−1 \ {ik};

(iii) if

sik −
∑

j∈J\Jk−1

xik ,j = djk −
∑

i∈I\Ik−1

xi ,jk

then we determine Ik and Jk and the corresponding values of
xi ,j either in accordance with the specification in rule (i) above
or else in accordance with the specification in rule (ii) above.
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These rules ensure that the real numbers xi ,j determined at this
stage are all non-negative, and that the following conditions are
satisfied at the conclusion of the kth stage of the Minimum Cost
Method algorithm:—∑

j∈J\Jk
xi ,j ≤ si whenever i ∈ Ik ;∑

j∈J
xi ,j = si whenever i 6∈ Ik ;∑

i∈I\Ik
xi ,j ≤ dj whenever j ∈ Jk ;∑

i∈I
xi ,j = dj whenever j 6∈ Jk .
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At the completion of the final stage (for which k = m + n − 1) we
have determined a subset B of I × J, where B = Bm+n−1, together
with non-negative real numbers xi ,j for i ∈ I and j ∈ I that
constitute a feasible solution to the given transportation problem.
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3.9. Formal Description of the Northwest Corner Method

The Northwest Corner Method for finding a basic feasible solution
proceeds according to the stages of the Minimum Cost Method
above, differing only from that method in the choice of the ordered
pair (ik , jk) at the kth stage of the method. In the Minimum Cost
Method, the ordered pair (ik , jk) is chosen such that
(ik , jk) ∈ Ik−1 × Jk−1 and

cik ,jk ≤ ci ,j for all (i , j) ∈ Ik−1 × Jk−1

(where the sets Ik−1, Jk−1 are determined as in the specification of
the Minimum Cost Method).
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In applying the Northwest Corner Method, costs associated with
ordered pairs (i , j) in I × J are not taken into account. Instead
(ik , jk) is chosen so that ik is the minimum of the integers in Ik−1
and jk is the minimum of the integers in Jk−1. Otherwise the
specification of the Northwest Corner Method corresponds to that
of the Minimum Cost Method, and results in a basic feasible
solution of the given transportation problem.
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3.10. A Method for finding Basic Optimal Solutions

We continue with the study of the optimization problem
introduced in the discussion of the minimum cost method.

Example
We seek to determine non-negative real numbers xi ,j for

i = 1, 2, 3, 4 and j = 1, 2, 3 that minimize
4∑

i=1

3∑
j=1

ci ,jxi ,j , where ci ,j

is the coefficient in the ith row and jth column of the cost
matrix C , where

C =


8 4 16
3 7 2

13 8 6
5 7 8

 .

subject to the constraints
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3∑
j=1

xi ,j = si (i = 1, 2, 3, 4)

and
4∑

i=1

xi ,j = dj (j = 1, 2, 3),

where
s1 = 13, s2 = 8, s3 = 11, s4 = 13,

d1 = 19, d2 = 12, d3 = 14.
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We have found an initial basic feasible solution by the Minimum
Cost Method. This solution satisfies xi ,j = (X )i ,j for all i and j ,
where

X =


1 12 0
0 0 8
5 0 6

13 0 0

 .

We next determine whether this initial basic feasible solution is an
optimal solution, and, if not, how to adjust the basis to obtain a
solution of lower cost.
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We determine u1, u2, u3, u4 and v1, v2, v3 such that ci ,j = vj − ui
for all (i , j) ∈ B, where B is the initial basis.

We seek a solution with u1 = 0. We then determine qi ,j so that
ci ,j = vj − ui + qi ,j for all i and j .
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We therefore complete the following tableau:—

ci ,j ↘ qi ,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 7 2 • ?
? ? 0

3 13 • 8 6 • ?
0 ? 0

4 5 • 7 8 ?
0 ? ?

vj ? ? ?
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Now u1 = 0, (1, 1) ∈ B and (1, 2) ∈ B force v1 = 8 and v2 = 4.
After entering these values the tableau stands as follows:

ci ,j ↘ qi ,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 7 2 • ?
? ? 0

3 13 • 8 6 • ?
0 ? 0

4 5 • 7 8 ?
0 ? ?

vj 8 4 ?
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Then v1 = 8, (3, 1) ∈ B and (4, 1) ∈ B force u3 = −5 and u4 = 3.
After entering these values the tableau stands as follows:

ci ,j ↘ qi ,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 7 2 • ?
? ? 0

3 13 • 8 6 • −5
0 ? 0

4 5 • 7 8 3
0 ? ?

vj 8 4 ?
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Then u3 = −5 and (3, 3) ∈ B force v3 = 1. After entering this
value the tableau stands as follows:

ci ,j ↘ qi ,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 7 2 • ?
? ? 0

3 13 • 8 6 • −5
0 ? 0

4 5 • 7 8 3
0 ? ?

vj 8 4 1

Then v3 = 1 and (2, 3) ∈ B force u2 = −1.
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After entering the numbers ui and vj , the tableau is as follows:—

ci ,j ↘ qi ,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 7 2 • −1
? ? 0

3 13 • 8 6 • −5
0 ? 0

4 5 • 7 8 3
0 ? ?

vj 8 4 1

Computing the numbers qi ,j such that ci ,j + ui = vj + qi ,j , we find
that q1,3 = 15, q2,1 = −6, q2,2 = 2, q3,2 = −1, q4,2 = 6 and
q4,3 = 10.
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The completed tableau is as follows:—

ci ,j ↘ qi ,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 15

2 3 7 2 • −1
−6 2 0

3 13 • 8 6 • −5
0 −1 0

4 5 • 7 8 3
0 6 10

vj 8 4 1
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The initial basic feasible solution is not optimal because some of
the quantities qi ,j are negative. To see this, suppose that the
numbers x i ,j for i = 1, 2, 3, 4 and j = 1, 2, 3 constitute a feasible

solution to the given problem. Then
3∑

j=1
x i ,j = si for i = 1, 2, 3 and

4∑
i=1

x i ,j = dj for j = 1, 2, 3, 4. It follows that

4∑
i=1

3∑
j=1

ci ,jx i ,j =
4∑

i=1

3∑
j=1

(vj − ui + qi ,j)x i ,j

=
3∑

j=1

vjdj −
4∑

i=1

ui si +
4∑

i=1

3∑
j=1

qi ,jx i ,j .
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Applying this identity to the initial basic feasible solution, we find
that

∑3
j=1 vjdj −

∑4
i=1 ui si = 238, given that 238 is the cost of

the initial basic feasible solution. Thus the cost C of any feasible
solution (x i ,j) satisfies

C = 238 + 15x1,3 − 6x2,1 + 2x2,2 − x3,2 + 6x4,2 + 10x4,3.

One could construct feasible solutions with x2,1 < 0 and x i ,j = 0
for (i , j) 6∈ B ∪ {(2, 1)}, and the cost of such feasible solutions
would be lower than that of the initial basic solution. We therefore
seek to bring (2, 1) into the basis, removing some other element of
the basis to ensure that the new basis corresponds to a feasible
basic solution.
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The procedure for achieving this requires us to determine a 4× 3
matrix Y satisfying the following conditions:—

y2,1 = 1;

yi ,j = 0 when (i , j) 6∈ B ∪ {(2, 1)};
all rows and columns of the matrix Y sum to zero.

Accordingly we fill in the following tableau with those coefficients
yi ,j of the matrix Y that correspond to cells in the current basis
(marked with the • symbol), so that all rows sum to zero and all
columns sum to zero:—

yi ,j 1 2 3

1 ? • ? • 0
2 1 ◦ ? • 0
3 ? • ? • 0
4 ? • 0

0 0 0 0
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The constraints that y2,1 = 1, yi ,j = 0 when (i , j) 6∈ B and the
constraints requiring the rows and columns to sum to zero
determine the values of yi ,j for all yi ,j ∈ B. These values are
recorded in the following tableau:—

yi ,j 1 2 3

1 0 • 0 • 0
2 1 ◦ −1 • 0
3 −1 • 1 • 0
4 0 • 0

0 0 0 0
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We now determine those values of λ for which X + λY is a
feasible solution, where

X + λY =


1 12 0
λ 0 8− λ

5− λ 0 6 + λ
13 0 0

 .

In order to drive down the cost as far as possible, we should make
λ as large as possible, subject to the requirement that all the
coefficients of the above matrix should be non-negative numbers.
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Accordingly we take λ = 5. Our new basic feasible solution X is
then as follows:—

X =


1 12 0
5 0 3
0 0 11

13 0 0

 .

We regard X as the current feasible basic solution.

The cost of the current feasible basic solution X is

8× 1 + 4× 12 + 3× 5 + 2× 3 + 6× 11

+ 5× 13

= 8 + 48 + 15 + 6 + 66 + 65

= 208.
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The cost has gone down by 30, as one would expect (the reduction
in the cost being −λq2,1 where λ = 5 and q2,1 = −6).

The current basic feasible solution X is associated with the basis B
where

B = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 3), (4, 1)}.

We now determine, for the current basis B values u1, u2, u3, u4 and
v1, v2, v3 such that ci ,j = vj − ui for all (i , j) ∈ B. the initial basis.

We seek a solution with u1 = 0. We then determine qi ,j so that
ci ,j = vj − ui + qi ,j for all i and j .
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We therefore complete the following tableau:—

ci ,j ↘ qi ,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 • 7 2 • ?
0 ? 0

3 13 8 6 • ?
? ? 0

4 5 • 7 8 ?
0 ? ?

vj ? ? ?

Now u1 = 0, (1, 1) ∈ B and (1, 2) ∈ B force v1 = 8 and v2 = 4.

Then v1 = 8, (2, 1) ∈ B and (4, 1) ∈ B force u2 = 5 and u4 = 3.

Then u2 = 5 and (3, 3) ∈ B force v3 = 7.

Then v3 = 7 and (3, 3) ∈ B force u3 = 1.
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Computing the numbers qi ,j such that ci ,j + ui = vj + qi ,j , we find
that q1,3 = 9, q2,2 = 8, q3,1 = 6, q3,2 = 5, q4,2 = 6 and q4,3 = 4.

The completed tableau is as follows:—

ci ,j ↘ qi ,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 9

2 3 • 7 2 • 5
0 8 0

3 13 8 6 • 1
6 5 0

4 5 • 7 8 3
0 6 4

vj 8 4 7
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All numbers qi ,j are non-negative for the current feasible basic
solution. This solution is therefore optimal. Indeed, arguing as
before we find that the cost C of any feasible solution (x i ,j)
satisfies

C = 208 + 9x1,3 + 8x2,2 + 6x3,1 + 5x3,2 + 6x4,2 + 4x4,3.

We conclude that X is an basic optimal solution, where

X =


1 12 0
5 0 3
0 0 11

13 0 0

 .
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3.11. Formal Analysis of the Solution of the Transportation Problem

We now describe in general terms the method for solving a
transportation problem in which total supply equals total demand.

We suppose that an initial basic feasible solution has been
obtained. We apply an iterative method (based on the general
Simplex Method for the solution of linear programming problems)
that will test a basic feasible solution for optimality and, in the
event that the feasible solution is shown not to be optimal,
establishes information that (with the exception of certain
‘degenerate’ cases of the transportation problem) enables one to
find a basic feasible solution with lower cost. Iterating this
procedure a finite number of times, one should arrive at a basic
feasible solution that is optimal for the given transportation
problem.
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We suppose that the given instance of the Transportation Problem
involves m suppliers and n recipients. The required supplies are
specified by non-negative real numbers s1, s2, . . . , sm, and the
required demands are specified by non-negative real numbers

d1, d2, . . . , dn. We further suppose that
m∑
i=1

si =
n∑

j=1
dj . A feasible

solution is represented by non-negative real numbers xi ,j for

i = 1, 2, . . . ,m and j = 1, 2, . . . , n, where
n∑

j=1
xi ,j = si for

i = 1, 2, . . . ,m and
m∑
i=1

xi ,j = dj for j = 1, 2, . . . , n.
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Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}. A subset B of I × J is
a basis for the transportation problem if and only if, given any real

numbers y1, y2, . . . , ym and z1, z2, . . . , zn, where
m∑
i=1

yi =
n∑

j=1
zj ,

there exist uniquely determined real numbers x i ,j for i ∈ I and

j ∈ J such that
n∑

j=1
x i ,j = yi for i ∈ I ,

m∑
i=1

x i ,j = zj for j ∈ J, where

x i ,j = 0 whenever (i , j) 6∈ B.

A feasible solution (xi ,j) is said to be a basic feasible solution
associated with the basis B if and only if xi ,j = 0 for all i ∈ I and
j ∈ J for which (i , j) 6∈ B.

Let xi ,j be a non-negative real number for each i ∈ I and j ∈ J.
Suppose that (xi ,j) is a basic feasible solution to the transportation
problem associated with basis B, where B ⊂ I × J.
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The cost associated with a feasible solution (xi ,j is given by
m∑
i=1

n∑
j=1

ci ,jxi ,j , where the constants ci ,j are real numbers for all i ∈ I

and j ∈ J. A feasible solution for a transportation problem is an
optimal solution if and only if it minimizes cost amongst all
feasible solutions to the problem.
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In order to test for optimality of a basic feasible solution (xi ,j)
associated with a basis B, we determine real numbers
u1, u2, . . . , um and v1, v2, . . . , vn with the property that
ci ,j = vj − ui for all (i , j) ∈ B. (Proposition 3.10 below guarantees
that, given any basis B, it is always possible to find the required
quantities ui and vj .) Having calculated these quantities ui and vj
we determine the values of qi ,j , where qi ,j = ci ,j − vj + ui for all
i ∈ I and j ∈ J. Then qi ,j = 0 whenever (i , j) ∈ B.

We claim that a basic feasible solution (xi ,j) associated with the
basis B is optimal if and only if qi ,j ≥ 0 for all i ∈ I and j ∈ J.
This is a consequence of the identity established in the following
proposition.
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Proposition 3.8

Let xi ,j , ci ,j and qi ,j be real numbers defined for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n, and let u1, u2, . . . , um and v1, v2, . . . , vn be real
numbers. Suppose that

ci ,j = vj − ui + qi ,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Then

m∑
i=1

n∑
j=1

ci ,jxi ,j =
n∑

j=1

vjdj −
m∑
i=1

ui si +
m∑
i=1

n∑
j=1

qi ,jxi ,j ,

where si =
n∑

j=1
xi ,j for i = 1, 2, . . . ,m and dj =

m∑
i=1

xi ,j for

j = 1, 2, . . . , n.
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Proof
The definitions of the relevant quantities ensure that

m∑
i=1

n∑
j=1

ci ,jxi ,j =
m∑
i=1

n∑
j=1

(vj − ui + qi ,j)xi ,j

=
n∑

j=1

(
vj

m∑
i=1

xi ,j

)
−

m∑
i=1

ui

n∑
j=1

xi ,j


+

m∑
i=1

n∑
j=1

qi ,jxi ,j

=
n∑

j=1

vjdj −
m∑
i=1

ui si +
m∑
i=1

n∑
j=1

qi ,jxi ,j ,

as required.
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Corollary 3.9

Let m and n be integers, and let I = {1, 2, . . . ,m} and
J = {1, 2, . . . , n}. Let xi ,j and ci ,j be real numbers defined for all
i ∈ I and j ∈ I , and let u1, u2, . . . , um and v1, v2, . . . , vn be real
numbers. Suppose that ci ,j = vj − ui for all (i , j) ∈ I × J for which
xi ,j 6= 0. Then

m∑
i=1

n∑
j=1

ci ,jxi ,j =
m∑
i=1

djvj −
n∑

j=1

siui ,

where si =
n∑

j=1
xi ,j for i = 1, 2, . . . ,m and dj =

m∑
i=1

xi ,j for

j = 1, 2, . . . , n.
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Proof
Let qi ,j = ci ,j + ui − vj for all i ∈ I and j ∈ J. Then qi ,j = 0
whenever xi ,j 6= 0. It follows from this that

m∑
i=1

n∑
j=1

qi ,jxi ,j = 0.

It then follows from Proposition 3.8 that

m∑
i=1

n∑
j=1

ci ,jxi ,j =
m∑
i=1

n∑
j=1

(vj − ui + qi ,j)xi ,j =
m∑
i=1

djvj −
n∑

j=1

siui ,

as required.
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Let m and n be positive integers, let I = {1, 2, . . . ,m} and
J = {1, 2, . . . , n}, and let the subset B of I × J be a basis for a
transportation problem with m suppliers and n recipients. Let the

cost of a feasible solution (x i ,j) be
m∑
i=1

n∑
j=1

ci ,jx i ,j . Now
n∑

j=1
x i ,j = si

and
m∑
i=1

x i ,j = dj , where the quantities si and dj are determined by

the specification of the problem and are the same for all feasible
solutions of the problem. Let quantities ui for i ∈ I and vj for
j ∈ J be determined such that ci ,j = vj − ui for all (i , j) ∈ B, and
let qi ,j = ci ,j + ui − vj for all i ∈ I and j ∈ J. Then qi ,j = 0 for all
(i , j) ∈ B.

It follows from Proposition 3.8 that

m∑
i=1

n∑
j=1

ci ,jx i ,j =
n∑

j=1

vjdj −
m∑
i=1

ui si +
m∑
i=1

n∑
j=1

qi ,jx i ,j .
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Now if the quantities xi ,j for i ∈ I and j ∈ J constitute a basic
feasible solution associated with the basis B then xi ,j = 0 whenever

(i , j) 6∈ B. It follows that
m∑
i=1

n∑
j=1

qi ,jxi ,j = 0, and therefore

n∑
j=1

vjdj −
m∑
i=1

ui si = C ,

where

C =
m∑
i=1

n∑
j=1

ci ,jxi ,j .

The cost C of the feasible solution (x i ,j) then satisfies the equation

C =
m∑
i=1

n∑
j=1

ci ,jx i ,j = C +
m∑
i=1

n∑
j=1

qi ,jx i ,j .
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If qi ,j ≥ 0 for all i ∈ I and j ∈ J, then the cost C of any feasible
solution (x i ,j) is bounded below by the cost of the basic feasible
solution (xi ,j). It follows that, in this case, the basic feasible
solution (xi ,j) is optimal.

Suppose that (i0, j0) is an element of I × J for which qi0,j0 < 0.
Then (i0, j0) 6∈ B. There is no basis for the transportation problem
that includes the set B ∪ {(i0, j0)}. A straightforward application
of Proposition 3.6 establishes the existence of quantities yi ,j for
i ∈ I and j ∈ J such that yi0,j0 = 1 and yi ,j = 0 for all i ∈ I and
j ∈ J for which (i , j) 6∈ B ∪ {(i0, j0)}.



3. The Transportation Problem (continued)

Let the m × n matrices X and Y be defined so that (X )i ,j = xi ,j
and (Y )i ,j = yi ,j for all i ∈ I and j ∈ J. Suppose that xi ,j > 0 for
all (i , j) ∈ B. Then the components of X in the basis positions are
strictly positive. It follows that, if λ is positive but sufficiently
small, then the components of the matrix X + λY in the basis
positions are also strictly positive, and therefore the components of
the matrix X + λY are non-negative for all sufficiently small
non-negative values of λ. There will then exist a maximum
value λ0 that is an upper bound on the values of λ for which all
components of the matrix X + λY are non-negative. It is then a
straightforward exercise in linear algebra to verify that X + λ0Y is
another basic feasible solution associated with a basis that includes
(i0, j0) together with all but one of the elements of the basis B.



3. The Transportation Problem (continued)

Moreover the cost of this new basic feasible solution is C + λ0qi0,j0 ,
where C is the cost of the basic feasible solution represented by
the matrix X . Thus if qi0,j0 < 0 then the cost of the new basic
feasible solution is lower than that of the basic feasible solution X
from which it was derived.

Suppose that, for all basic feasible solutions of the given
Transportation problem, the coefficients of the matrix specifying
the basic feasible solution are strictly positive at the basis positions.
Then a finite number of iterations of the procedure discussed above
with result in an basic optimal solution of the given transportation
problem. Such problems are said to be non-degenerate.



3. The Transportation Problem (continued)

However if it turns out that a basic feasible solution (xi ,j)
associated with a basis B satisfies xi ,j = 0 for some (i , j) ∈ B, then
we are in a degenerate case of the transportation problem. The
theory of degenerate cases of linear programming problems is
discussed in detail in textbooks that discuss the details of linear
programming algorithms.

We now establish the proposition that guarantees that, given any
basis B, there exist quantities u1, u2, . . . , um and v1, v2, . . . , vn
such that the costs ci ,j associated with the given transportation
problem satisfy ci ,j = vj − ui for all (i , j) ∈ B. This result is an
essential component of the method described here for testing basic
feasible solutions to determine whether or not they are optimal.



3. The Transportation Problem (continued)

Proposition 3.10

Let m and n be integers, let I = {1, 2, . . . ,m} and
J = {1, 2, . . . , n}, and let B be a subset of I × J that is a basis for
the transportation problem with m suppliers and n recipients. For
each (i , j) ∈ B let ci ,j be a corresponding real number. Then there
exist real numbers ui for i ∈ I and vj for j ∈ J such that
ci ,j = vj − ui for all (i , j) ∈ B. Moreover if ui and v j are real
numbers for i ∈ I and j ∈ J that satisfy the equations ci ,j = v j − ui
for all (i , j) ∈ B, then there exists some real number k such that
ui = ui + k for all i ∈ I and v j = vj + k for all j ∈ J.



3. The Transportation Problem (continued)

Proof
Let

MB = {X ∈ Mm,n(R) : (X )i ,j = 0 unless (i , j) ∈ B}.

It follows from the definition of bases for transportation problems
that there exist unique m × n matrices S1, S2, . . . ,Sm belonging to
MB , where S1 is the zero matrix, and where, for each integer i
satisfying 1 < i ≤ m, the matrix Sk has the properties that

n∑
`=1

(Si )k,` =


1 if k = 1,
−1 if k = i ,
0 if k ∈ I \ {1, i},

and
m∑

k=1

(Si )k,` = 0 for all ` ∈ J.



3. The Transportation Problem (continued)

Also there exist unique m × n matrices T1,T2, . . . ,Tm belonging
to MB where, for each integer j satisfying 1 ≤ j ≤ n, the matrix Tj

has the properties that

n∑
j=1

(Tj)k,l =

{
1 if k = 1,
0 if k ∈ I \ {1},

and
m∑
i=1

(Tj)k,` =

{
1 if ` = j ,
0 if ` ∈ J \ {j},



3. The Transportation Problem (continued)

Let

ui =
n∑

k=1

n∑
`=1

ck,`(Si )k,`

for i = 1, 2, . . . ,m and

vj =
m∑

k=1

n∑
`=1

ck,`(Tj)k,`.

for j = 1, 2, . . . , n. We claim the that numbers u1, u2, . . . , um and
v1, v2, . . . , vn have the required properties.



3. The Transportation Problem (continued)

Let X be an m × n matrix belonging to MB , and let

yi =
n∑

j=1

(X )i ,j for all i ∈ I

and

zj =
m∑
i=1

(X )i ,j for all j ∈ J,

and let

X =
n∑
`=1

z`T` −
m∑

k=1

ykSk .

Then
m∑
i=1

(X )i ,j = zj for all j ∈ J.

and
n∑

j=1

(X )i ,j = yi for all i ∈ I \ {1},



3. The Transportation Problem (continued)

Moreover
n∑

j=1

(X )1,j =
n∑
`=1

z` −
m∑

k=2

yk = y1,

because
m∑
i=1

yi =
n∑

j=1
zj .

But the definition of bases for transportation problems ensures that
X is the unique m × n matrix belonging to MB with the properties

that
n∑

j=1
(X )i ,j = yi for all i ∈ I and

m∑
i=1

(X )i ,j = zj for all j ∈ J. It

follows that

X = X =
n∑

j=1

zjTj −
m∑
i=1

yiSi ,

and therefore

m∑
k=1

n∑
`=1

ck,`(X )k,` =
n∑

j=1

zjvj −
m∑
i=1

yiui .



3. The Transportation Problem (continued)

Let (i , j) ∈ B. Then E (i ,j) ∈ MB , where

(E (i ,j))k,` =

{
1 if k = i and j = `;
0 if k 6= i or j 6= `.

It follows from the result just obtained that

ci ,j =
m∑

k=1

n∑
`=1

ck,`(E
(i ,j))k,` = vj − ui .

We have thus shown that, given any basis B for the transportation
problem with m suppliers and n recipients, there exist real numbers
u1, u2, . . . , um and v1, v2, . . . , vn with the required property that

ci ,j = vj − ui for all (i , j) ∈ B..



3. The Transportation Problem (continued)

Now let u1, u2, . . . , um and u1, u2, . . . , un be real numbers with the
property that

ci ,j = v j − ui for all (i , j) ∈ B..

Then bj − ai = 0 for all (i , j) ∈ B, where ai = ui − ui for
i = 1, 2, . . . ,m and bj = v j − vj for j = 1, 2, . . . , n, and therefore

m∑
k=1

n∑
`=1

(b` − ak)(E i ,j)k,` = 0

for all (i , j) ∈ B. Now the m × n matrices E (i ,j) for which
(i , j) ∈ B constitute a basis of the vector space MB . It follows that

m∑
k=1

n∑
`=1

(b` − ak)(X )k,` = 0

for all X ∈ MB .



3. The Transportation Problem (continued)

In particular
m∑

k=1

n∑
`=1

(b` − ak)(Si )k,` = 0

for i = 2, 3, . . . ,m, and

m∑
k=1

n∑
`=1

(b` − ak)(Tj)k,` = 0

for j = 1, 2, . . . , n.



3. The Transportation Problem (continued)

But it follows from the definitions of the matrices S1, S2, . . . ,Sm
and T1,T2, . . . ,Tn that

m∑
k=1

n∑
`=1

b`(Si )k,` =
n∑
`=1

(
b`

m∑
k=1

(Si )k,`

)
= 0,

m∑
k=1

n∑
`=1

ak(Si )k,` =
m∑

k=1

(
ak

n∑
`=1

(Si )k,`

)
= a1 − ai

for i = 2, 3, . . . ,m, and

m∑
k=1

n∑
`=1

b`(Tj)k,` =
n∑
`=1

(
b`

m∑
k=1

(Tj)k,`

)
= bj ,

m∑
k=1

n∑
`=1

ak(Si )k,` =
m∑

k=1

(
ak

n∑
`=1

(Si )k,`

)
= a1

for j = 1, 2, . . . , n.



3. The Transportation Problem (continued)

It follows that ai − a1 = 0 for i = 2, . . . , n and bj − a1 = 0 for
j = 1, 2, . . . , n. Thus if k = a1 then ui = ui + ai = ui + k for
i = 1, 2, . . . ,m and v j = vj + bj = vj + k for j = 1, 2, . . . , n, as
required.
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