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5. Duality and Convexity

5. Duality and Convexity

5.1. General Linear Programming Problems

Linear programming is concerned with problems seeking to
maximize or minimize a linear functional of several real variables
subject to a finite collection of constraints, where each constraint
either fixes the values of some linear function of the variables or
else requires those values to be bounded, above or below, by some
fixed quantity.

The objective of such a problem involving n real variables
x1, x2, . . . , xn is to maximize or minimize an objective function of
those variables that is of the form

c1x1 + c2x2 + · · ·+ cnxn,

subject to appropriate constraints. The coefficients c1, c2, . . . , cn
that determine the objective function are then fixed real numbers.



5. Duality and Convexity (continued)

Now such an optimization problem may be presented as a
minimization problem, because simply changing the signs of all the
coefficients c1, c2, . . . , cn converts any maximization problem into a
minimization problem. We therefore suppose, without loss of
generality, that the objective of the linear programming problem is
to find a feasible solution satisfying appropriate constraints which
minimizes the value of the objective function amongst all such
feasible solutions to the problem.
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Some of the constraints may simply require specific variables to be
non-negative or non-positive. Now a constraint that requires a
particular variable xj to be non-positive can be reformulated as one
requiring a variable to be non-negative by substituting xj for −xj in
the statement of the problem. Thus, without loss of generality, we
may suppose that all constraints that simply specify the sign of a
variable xj will require that variable to be non-negative. Then all
such constraints can be specified by specifying a subset J+ of
{1, 2, . . . , n}: the constraints then require that xj ≥ 0 for all
j ∈ J+.
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There may be further constraints in addition to those that simply
specify whether one of the variables is required to be non-positive
or non-negative. Suppose that there are m such additional
constraints, and let them be numbered between 1 and m. Then,
for each integer i between 1 and m, there exist real numbers
Ai ,1,Ai ,2, . . . ,Ai ,n and bi that allow the ith constraint to be
expressed either as an inequality constraint of the form

Ai ,1x1 + Ai ,2x2 + . . .+ Ai ,nxn ≥ bi

or else as an equality constraint of the form

Ai ,1x1 + Ai ,2x2 + . . .+ Ai ,nxn = bi .
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It follows from the previous discussion that the statement of a
general linear programming problem can be transformed, by
changing the signs of some of the variables and constants in the
statement of the problem, so as to ensure that the statement of
the problem conforms to the following restrictions:—

the objective function is to be minimized;

some of the variables may be required to be non-negative;

other constraints are either inequality constraints placing a
lower bound on the value of some linear function of the
variables or else equality constraints fixing the value of some
linear function of the variables.
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Let us describe the statement of a linear programming problem as
being in general primal form if it conforms to the restrictions just
described.

A linear programming problem is expressed in general primal form
if the specification of the problem conforms to the following
restrictions:—

the objective of the problem is to find an optimal solution
minimizing the objective function amongst all feasible
solutions to the problem;

any variables whose sign is prescribed are required to be
non-negative, not non-positive;

all inequality constraints are expressed by prescribing a lower
bound on the value on some linear function of the variables.
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A linear programming problem in general primal form can be
specified by specifying the following data: an m × n matrix A with
real coefficients, an m-dimensional vector b with real components;
an n-dimensional vector c with real components; a subset I+ of
{1, 2, . . . ,m}; and a subset J+ of {1, 2, . . . , n}. The linear
programming programming problem specified by this data is the
following:—

seek x ∈ Rn that minimizes the objective function cTx
subject to the following constraints:—

Ax ≥ b;
(Ax)i = (b)i unless i ∈ I+;
(x)j ≥ 0 for all j ∈ J+.
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We refer to the m × n matrix A, the m-dimensional vector b and
the n-dimensional vector c employed in specifying a linear
programming problem in general primal form as the constraint
matrix, target vector and cost vector respectively for the linear
programming problem. Let us refer to the subset I+ of
{1, 2, . . . ,m} specifying those constraints that are inequality
constraints as the inequality constraint specifier for the problem,
and let us refer to the subset J+ of {1, 2, . . . , n} that specifies
those variables that are required to be non-negative for a feasible
solution as the variable sign specifier for the problem.
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We denote by Primal(A,b, c, I+, J+) the linear programming
problem whose specification in general primal form is determined
by a constraint matrix A, target vector b, cost vector c, inequality
constraint specifier I+ and variable sign specifier J+.

A linear programming problem formulated in general primal form
can be reformulated as a problem in Dantzig standard form, thus
enabling the use of the Simplex Method to find solutions to the
problem.



5. Duality and Convexity (continued)

Indeed consider a linear programming problem
Primal(A,b, c, I+, J+) where the constraint matrix A is an m × n
matrix with real coefficients, the target vector b and the cost
vector c are vectors of dimension m and n respectively with real
coefficients. Then the inequality constraint specifier I+ is a subset
of {1, 2, . . . ,m} and the variable sign specifier J+ is a subset of
{1, 2, . . . , n}. The problem is already in Dantzig standard form if
and only if I+ = ∅ and J+ = {1, 2, . . . , n}.
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If the problem is not in Dantzig standard form, then each
variable xj for j 6∈ J+ can be replaced by a pair of variables x+j and

x−j satisfying the constraints x+j ≥ 0 and x−j ≥ 0: the difference

x+j − x−j of these new variables is substituted for xj in the objective
function and the constraints. Also a slack variable zi can be
introduced for each i ∈ I+, where zi is required to satisfy the sign
constraint zi ≥ 0, and the inequality constraint

Ai ,1x1 + Ai ,2x2 + . . .+ Ai ,nxn ≥ bi

is then replaced by the corresponding equality constraint

Ai ,1x1 + Ai ,2x2 + . . .+ Ai ,nxn − zi = bi .
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The linear programming problem Primal(A,b, c, I+, J+) in general
primal form can therefore be reformulated as a linear programming
problem in Dantzig standard form as follows:—

determine values of xj for all j ∈ J+, x+j and x−j for all

j ∈ J0, where J0 = {1, 2, . . . , n}\J+, and zi for all i ∈ I+

so as to minimize the objective function∑
j∈J+

cjxj +
∑
j∈J0

cjx
+
j −

∑
j∈J0

cjx
−
j

subject to the following constraints:—
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(i)
∑
j∈J+

Ai ,jxj +
∑
j∈J0

Ai ,jx
+
j −

∑
j∈J0

Ai ,jx
−
j = bi for each

i ∈ {1, 2, . . . , n} \ I+;

(ii)
∑
j∈J+

Ai ,jxj +
∑
j∈J0

Ai ,jx
+
j −

∑
j∈J0

Ai ,jx
−
j − zi = bi for

each i ∈ I+;

(iii) xj ≥ 0 for all j ∈ J+;
(iv) x+j ≥ 0 and x−j ≥ 0 for all j ∈ J0;

(v) zi ≥ 0 for all i ∈ I+.

Once the problem has been reformulated in Dantzig standard form,
techniques based on the Simplex Method can be employed in the
search for solutions to the problem.



5. Duality and Convexity (continued)

5.2. Duals of Linear Programming Problems

Every linear programming problem Primal(A,b, c, I+, J+) in
general primal form determines a corresponding linear programming
problem, which we shall denote by Dual(A,b, c, I+, J+), in general
dual form. The second linear programming problem is referred to
as the dual of the first, and the first linear programming problem is
referred to as the primal of its dual.

We shall give the definition of the dual problem associated with a
given linear programming problem, and investigate some important
relationships between the primal linear programming problem and
its dual.
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Let Primal(A,b, c, I+, J+) be a linear programming problem in
general primal form specified in terms of an m × n constraint
matrix A, m-dimensional target vector b, n-dimensional cost
vector c, inequality constraint specifier I+ and variable sign
specifier J+. The corresponding dual problem Dual(A,b, c, I+, J+)
may be specified in general dual form as follows:

seek p ∈ Rm that maximizes the objective function pTb
subject to the following constraints:—

pTA ≤ cT ;
(p)i ≥ 0 for all i ∈ I+;
(pTA)j = (c)j unless j ∈ J+.



5. Duality and Convexity (continued)

Lemma 5.1

Let Primal(A,b, c, I+, J+) be a linear programming problem
expressed in general primal form with constraint matrix A with m
rows and n columns, target vector b, cost vector c, inequality
constraint specifier I+ and variable sign specifier J+. Then the
feasible and optimal solutions of the corresponding dual linear
programming problem Dual(A,b, c, I+, J+) are those of the
problem Primal(−AT ,−c,−b, J+, I+).
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Proof
An m-dimensional vector p satisfies the constraints of the dual
linear programming problem Dual(A,b, c, I+, J+) if and only if
pTA ≤ cT , (p)i ≥ 0 for all i ∈ I+ and (pTA)j = (c)j unless
j ∈ J+. On taking the transposes of the relevant matrix equations
and inequalities, we see that these conditions are satisfied if and
only if −ATp ≥ −c, (p)i ≥ 0 for all i ∈ I+ and (−ATp)j = (−c)j
unless j ∈ J+. But these are the requirements that the vector p
must satisfy in order to be a feasible solution of the linear
programming problem Primal(−AT ,−c,−b, J+, I+). Moreover p
is an optimal solution of Dual(A,b, c, I+, J+) if and only if it
maximizes the value of pTb, and this is the case if and only if it
minimizes the value of −bTp. The result follows.



5. Duality and Convexity (continued)

A linear programming problem in Dantzig standard form is specified
by specifying integers m and n a constraint matrix A which is an
m × n matrix with real coefficients, a target vector b belonging to
the real vector space Rm and a cost vector c belonging to the real
vector space Rm. The objective of the problem is to find a feasible
solution to the problem that minimizes the quantity cTx amongst
all n-dimensional vectors x for which Ax = b and x ≥ 0.

The objective of the dual problem is then to find some feasible
solution to the problem that maximizes the quantity pTb amongst
all m-dimensional vectors p for which pTA ≤ c.



5. Duality and Convexity (continued)

5.3. Complementary Slackness and the Weak Duality Theorem

Theorem 5.2

(Weak Duality Theorem for Linear Programming Problems in
Dantzig Standard Form)
Let m and n be integers, let A be an m × n matrix with real
coefficients, let b ∈ Rm and let c ∈ Rn. Let x ∈ Rn satisfy the
constraints Ax = b and x ≥ 0, and let p ∈ Rm satisfy the
constraint pTA ≤ c. Then pTb ≤ cTx. Moreover pTb = cTx if
and only if the following complementary slackness condition is
satisfied:

(pTA)j = (c)j for all integers j between 1 and n for which
(x)j > 0.
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Proof
Let xj = (x)j and cj = (c)j for j = 1, 2, . . . , n. The constraints
satisfied by the vectors x and p ensure that

cTx− pTb = (cT − pTA)x + pT (Ax− b)

= (cT − pTA)x,

because Ax− b = 0. But also x ≥ 0 and cT − pTA ≥ 0, and
therefore (cT − pTA)x ≥ 0. Moreover

(cT − pTA)x =
n∑

j=1

(cj − (pTA)j)xj ,

where cj − (pTA)j ≥ 0 and xj ≥ 0 for j = 1, 2, . . . , n. It follows
that (cT − pTA)x = 0 if and only if cj − (pTA)j = 0 for all
integers j between 1 and n for which xj > 0. The result
follows.



5. Duality and Convexity (continued)

Corollary 5.3

Let a linear programming problem in Dantzig standard form be
specified by an m × n constraint matrix A, and m-dimensional
target vector b and an n-dimensional cost vector c. Let x∗ be a
feasible solution of this primal problem, and let p∗ be a solution of
the dual problem. Then p∗TA ≤ cT . Suppose that the
complementary slackness conditions for this primal-dual pair are
satisfied, so that (p∗TA)j = (c)j for all integers j between 1 and n
for which (x∗)j > 0. Then x∗ is an optimal solution of the primal
problem, and p∗ is an optimal solution of the dual problem.
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Proof
Because the complementary slackness conditions for this
primal-dual pair are satisfied, it follows from the Weak Duality
Theorem that cTx∗ = p∗Tb (see Theorem 5.2). But it then also
follows from the Weak Duality Theorem that

cTx ≥ p∗Tb = cTx∗

for all feasible solutions x of the primal problem. It follows that x∗

is an optimal solution of the primal problem. Similarly

pTb ≤ cTx∗ = p∗Tb

for all feasible solutions p of the dual problem. It follows that p∗ is
an optimal solution of the dual problem, as required.
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Another special case of duality in linear programming is exemplified
by a primal-dual pair of problems in Von Neumann Symmetric
Form. In this case the primal and dual problems are specified in
terms of an m × n constraint matrix A, an m-dimensional target
vector b and an n-dimensional cost vector c. The objective of the
problem is minimize cTx amongst n-dimensional vectors x that
satisfy the constraints Ax ≥ b and x ≥ 0. The dual problem is to
maximize pTb amongst m-dimensional vectors p that satisfy the
constraints pTA ≤ cT and p ≥ 0.
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Theorem 5.4

(Weak Duality Theorem for Linear Programming Problems in Von
Neumann Symmetric Form)

Let m and n be integers, let A be an m × n matrix with real
coefficients, let b ∈ Rm and let c ∈ Rn. Let x ∈ Rn satisfy the
constraints Ax ≥ b and x ≥ 0, and let p ∈ Rm satisfy the
constraints pTA ≤ c and pT ≥ 0. Then pTb ≤ cTx. Moreover
pTb = cTx if and only if the following complementary slackness
conditions are satisfied:

(Ax)i = (b)i for all integers i between 1 and m for which
(p)i > 0;

(pTA)j = (c)j for all integers j between 1 and n for which
(x)j > 0;
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Proof
The constraints satisfied by the vectors x and p ensure that

cTx− pTb = (cT − pTA)x + pT (Ax− b).

But x ≥ 0, p ≥ 0, Ax− b ≥ 0 and cT − pTA ≥ 0. It follows that
cTx− pTb ≥ 0. and therefore cTx ≥ pTb. Moreover
cTx− pTb = 0 if and only if (cT − pTA)j(x)j = 0 for
j = 1, 2, . . . , n and (p)i (Ax− b)i = 0, and therefore cTx = pTb if
and only if the complementary slackness conditions are
satisfied.
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Theorem 5.5

(Weak Duality Theorem for Linear Programming Problems in
General Primal Form)

Let x ∈ Rn be a feasible solution to a linear programming problem
Primal(A,b, c, I+, J+) expressed in general primal form with
constraint matrix A with m rows and n columns, target vector b,
cost vector c, inequality constraint specifier I+ and variable sign
specifier J+, and let p ∈ Rm be a feasible solution to the
corresponding dual programming problem Dual(A,b, c, I+, J+).
Then pTb ≤ cTx. Moreover pTb = cTx if and only if the
following complementary slackness conditions are satisfied:—

(Ax)i = bi whenever (p)i 6= 0;

(pTA)j = (c)j whenever (x)j 6= 0.
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Proof
The feasible solution x to the primal problem satisfies the following
constraints:—

Ax ≥ b;

(Ax)i = (b)i unless i ∈ I+;

(x)j ≥ 0 for all j ∈ J+.

The feasible solution p to the dual problem satisfies the following
constraints:—

pTA ≤ cT ;

(p)i ≥ 0 for all i ∈ I+;

(pTA)j = (c)j unless j ∈ J+.
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Now

cTx− pTb = (cT − pTA)x + pT (Ax− b)

=
n∑

j=1

(cT − pTA)j(x)j +
m∑
i=1

(p)i (Ax− b)i .

Let j be an integer between 1 and n. If j ∈ J+ then (x)j ≥ 0 and
(cT − pTA)j ≥ 0, and therefore

(cT − pTA)j(x)j ≥ 0.

If j 6∈ J+ then (pTA)j = (c)j , and therefore

(cT − pTA)j(x)j = 0,

irrespective of whether (x)j is positive, negative or zero.
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It follows that
n∑

j=1

(cT − pTA)j(x)j ≥ 0.

Moreover
n∑

j=1

(cT − pTA)j(x)j = 0

if and only if (pTA)j = (c)j for all indices j for which (x)j 6= 0.
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Next let i be an index between 1 and m. If i ∈ I+ then (p)i ≥ 0
and (Ax− b)i ≥ 0, and therefore (p)i (Ax− b)i ≥ 0. If i 6∈ I+ then
(Ax)i = (b)i , and therefore (p)i (Ax− b)i = 0, irrespective of
whether (p)i is positive, negative or zero. It follows that

m∑
i=1

(p)i (Ax− p)i ≥ 0.

Moreover
m∑
i=1

(p)i (Ax− p)i = 0.

if and only if (Ax)i = (b)i for all indices i for which (p)i 6= 0. The
result follows.
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Corollary 5.6

Let x∗ ∈ Rn be a feasible solution to a linear programming problem
Primal(A,b, c, I+, J+) expressed in general primal form with
constraint matrix A with m rows and n columns, target vector b,
cost vector c, inequality constraint specifier I+ and variable sign
specifier J+, and let p∗ ∈ Rm be a feasible solution to the
corresponding dual programming problem Dual(A,b, c, I+, J+).
Suppose that the complementary slackness conditions are satisfied
for this pair of problems, so that (Ax)i = bi whenever (p)i 6= 0,
and (pTA)j = (c)j whenever (x)j 6= 0. Then x∗ is an optimal
solution for the primal problem and p∗ is an optimal solution for
the dual problem.
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Proof
Because the complementary slackness conditions for this
primal-dual pair are satisfied, it follows from the Weak Duality
Theorem that cTx∗ = p∗Tb (see Theorem 5.5). But it then also
follows from the Weak Duality Theorem that

cTx ≥ p∗Tb = cTx∗

for all feasible solutions x of the primal problem. It follows that x∗

is an optimal solution of the primal problem. Similarly

pTb ≤ cTx∗ = p∗Tb

for all feasible solutions p of the dual problem. It follows that p∗ is
an optimal solution of the dual problem, as required.
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Example
Consider the following linear programming problem in general
primal form:—

find values of x1, x2, x3 and x4 so as to minimize the
objective function

c1x1 + c2x2 + c3x3 + c4x4

subject to the following constraints:—

a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 = b1;
a2,1x1 + a2,2x2 + a2,3x3 + a2,4x4 = b2;
a3,1x1 + a3,2x2 + a3,3x3 + a3,4x4 ≥ b3;
x1 ≥ 0 and x3 ≥ 0.

Here ai ,j , bi and cj are constants for i = 1, 2, 3 and j = 1, 2, 3, 4.



5. Duality and Convexity (continued)

The dual problem is the following:—

find values of p1, p2 and p3 so as to maximize the objective
function

p1b1 + p2b2 + p3b3

subject to the following constraints:—

p1a1,1 + p2a2,1 + p3a3,1 ≤ c1;
p1a1,2 + p2a2,2 + p3a3,2 = c2;
p1a1,3 + p2a2,3 + p3a3,3 ≤ c3;
p1a1,4 + p2a2,4 + p3a3,4 = c4;
p3 ≥ 0.
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We refer to the first and second problems as the primal problem
and the dual problem respectively. Let (x1, x2, x3, x4) be a feasible
solution of the primal problem, and let (p1, p2, p3) be a feasible
solution of the dual problem. Then

4∑
j=1

cjxj −
3∑

i=1

pibi =
4∑

j=1

(
cj −

3∑
i=1

piai ,j

)
xj

+
3∑

i=1

pi

 4∑
j=1

ai ,jxj − bi

 .
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Now the quantity cj −
3∑

i=1
piai ,j = 0 for j = 2 and j = 4, and

4∑
j=1

ai ,jxj − bi = 0 for i = 1 and i = 2. It follows that

4∑
j=1

cjxj −
3∑

i=1

pibi =

(
c1 −

3∑
i=1

piai ,1

)
x1

+

(
c3 −

3∑
i=1

piai ,3

)
x3

+ p3

 4∑
j=1

a3,jxj − b3

 .
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Now x1 ≥ 0, x3 ≥ 0 and p3 ≥ 0. Also

c1 −
3∑

i=1

piai ,1 ≥ 0, c3 −
3∑

i=1

piai ,3 ≥ 0

and
4∑

j=1

a3,jxj − b3 ≥ 0.

It follows that
4∑

j=1

cjxj −
3∑

i=1

pibi ≥ 0.

and thus
4∑

j=1

cjxj ≥
3∑

i=1

pibi .
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Now suppose that
4∑

j=1

cjxj =
3∑

i=1

pibi .

Then (
c1 −

3∑
i=1

piai ,1

)
x1 = 0,(

c3 −
3∑

i=1

piai ,3

)
x3 = 0,

p3

 4∑
j=1

a3,jxj − b3

 = 0,

because a sum of three non-negative quantities is equal to zero if
and only if each of those quantities is equal to zero.
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It follows that
4∑

j=1

cjxj =
3∑

i=1

pibi

if and only if the following three complementary slackness
conditions are satisfied:—

3∑
i=1

piai ,1 = c1 if x1 > 0;

3∑
i=1

piai ,3 = c3 if x3 > 0;∑4
j=1 a3,jxj = b3 if p3 > 0.



5. Duality and Convexity (continued)

5.4. Open and Closed Sets in Euclidean Spaces

Let m be a positive integer. The Euclidean norm |x| of an
element x of Rm is defined such that

|x|2 =
m∑
i=1

(x)2i .

The Euclidean distance function d on Rm is defined such that

d(x, y) = |y − x|

for all x, y ∈ Rm. The Euclidean distance function satisfies the
Triangle Inequality, together with all the other basic properties
required of a distance function on a metric space, and therefore
Rm with the Euclidean distance function is a metric space.
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A subset U of Rm is said to be open in Rm if, given any point b of
U, there exists some real number ε satisfying ε > 0 such that

{x ∈ Rm : |x− b| < ε} ⊂ U.

A subset of Rm is closed in Rm if and only if its complement is
open in Rm.

Every union of open sets in Rm is open in Rm, and every finite
intersection of open sets in Rm is open in Rm.

Every intersection of closed sets in Rm is closed in Rm, and every
finite union of closed sets in Rm is closed in Rm .
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Lemma 5.7

Let m be a positive integer, let u(1),u(2), . . . ,u(m) be a basis of
Rm, and let

F =

{
m∑
i=1

siu
(i) : si ≥ 0 for i = 1, 2, . . . ,m

}
.

Then F is a closed set in Rm.
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Proof
Let T : Rm → Rm be defined such that

T (s1, s2, . . . , sm) =
m∑
i=1

siu
(i)

for all real numbers s1, s2, . . . , sm. Then T is an invertible linear
operator on Rm, and F = T (G ), where

G = {x ∈ Rm : (x)i ≥ 0 for i = 1, 2, . . . ,m}.

Moreover the subset G of Rm is closed in Rm.
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Now it is a standard result of real analysis that every linear
operator on a finite-dimensional vector space is continuous.
Therefore T−1 : Rm → Rm is continuous. Moreover T (G ) is the
preimage of the closed set G under the continuous map T−1, and
the preimage of any closed set under a continuous map is itself
closed. It follows that T (G ) is closed in Rm. Thus F is closed in
Rm, as required.
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Lemma 5.8

Let m be a positive integer, let F be a non-empty closed set in
Rm, and let b be a vector in Rm. Then there exists an element g
of F such that |x− b| ≥ |g − b| for all x ∈ F .

Proof
Let R be a positive real number chosen large enough to ensure
that the set F0 is non-empty, where

F0 = F ∩ {x ∈ Rm : |x− b| ≤ R}.

Then F0 is a closed bounded subset of Rm. Let f : F0 → R be
defined such that f (x) = |x− b| for all x ∈ F . Then f : F0 → R is
a continuous function on F0.
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Now it is a standard result of real analysis that any continuous
real-valued function on a closed bounded subset of a
finite-dimensional Euclidean space attains a minimum value at
some point of that set. It follows that there exists an element g of
F0 such that

|x− b| ≥ |g − b|

for all x ∈ F0. If x ∈ F \ F0 then

|x− b| ≥ R ≥ |g − b|.

It follows that
|x− b| ≥ |g − b|

for all x ∈ F , as required.
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5.5. A Separating Hyperplane Theorem

Definition

A subset K of Rm is said to be convex if (1− µ)x + µx′ ∈ K for all
elements x and x′ of K and for all real numbers µ satisfying
0 ≤ µ ≤ 1.

It follows from the above definition that a subset K of Rm is a
convex subset of Rm if and only if, given any two points of K , the
line segment joining those two points is wholly contained in K .

Theorem 5.9

Let m be a positive integer, let K be a closed convex set in Rm,
and let b be a vector in Rm, where b 6∈ K. Then there exists a
linear functional ϕ : Rm → R and a real number c such that
ϕ(x) > c for all x ∈ K and ϕ(b) < c.
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Proof
It follows from Lemma 5.8 that there exists a point g of K such
that |x− b| ≥ |g − b| for all x ∈ K . Let x ∈ K . Then
(1− λ)g + λx ∈ K for all real numbers λ satisfying 0 ≤ λ ≤ 1,
because the set K is convex, and therefore

|(1− λ)g + λx− b| ≥ |g − b|

for all real numbers λ satisfying 0 ≤ λ ≤ 1. Now

(1− λ)g + λx− b = g − b + λ(x− g).
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It follows by a straightforward calculation from the definition of the
Euclidean norm that

|g − b|2 ≤ |(1− λ)g + λx− b|2

= |g − b|2 + 2λ(g − b)T (x− g)

+ λ2|x− g|2

for all real numbers λ satisfying 0 ≤ λ ≤ 1. In particular, this
inequality holds for all sufficiently small positive values of λ, and
therefore

(g − b)T (x− g) ≥ 0

for all x ∈ K .
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Let
ϕ(x) = (g − b)Tx

for all x ∈ Rm. Then ϕ : Rm → R is a linear functional on Rm, and
ϕ(x) ≥ ϕ(g) for all x ∈ K . Moreover

ϕ(g)− ϕ(b) = |g − b|2 > 0,

and therefore ϕ(g) > ϕ(b). It follows that ϕ(x) > c for all x ∈ K ,
where c = 1

2ϕ(b) + 1
2ϕ(g), and that ϕ(b) < c . The result

follows.
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5.6. Convex Cones

Definition

Let m be a positive integer. A subset C of Rm is said to be a
convex cone in Rm if λv + µw ∈ C for all v,w ∈ C and for all real
numbers λ and µ satisfying λ ≥ 0 and µ ≥ 0.

Lemma 5.10

Let m be a positive integer. Then every convex cone in Rm is a
convex subset of Rm.

Proof
Let C be a convex cone in Rm and let v,w ∈ C . Then
λv + µw ∈ C for all non-negative real numbers λ and µ. In
particular (1− λ)w + λv ∈ C . whenever 0 ≤ λ ≤ 1, and thus the
convex cone C is a convex set in Rm, as required.
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Lemma 5.11

Let S be a subset of Rm, and let C be the set of all elements of
Rm that can be expressed as a linear combination of the form

s1a(1) + s2a(2) + · · ·+ sna(n),

where a(1), a(2), . . . , a(n) are vectors belonging to S and
s1, s2, . . . , sn are non-negative real numbers. Then C is a convex
cone in Rm.
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Proof
Let v and w be elements of C . Then there exist finite subsets S1
and S2 of S such that v can be expressed as a linear combination
of the elements of S1 with non-negative coefficients and w can be
expressed as a linear combination of the elements of S2 with
non-negative coefficients. Let

S1 ∪ S2 = {a(1), a(2), . . . , a(n)}.
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Then there exist non-negative real numbers s1, s2, . . . , sn and
t1, t2, . . . , tn such that

v =
n∑

j=1

sja
(j) and w =

n∑
j=1

tja
(j).

Let λ and µ be non-negative real numbers. Then

λv + µw =
n∑

j=1

(λsj + µtj)a(j),

and λsj + µtj ≥ 0 for j = 1, 2, . . . , n. It follows that λv + µw ∈ C ,
as required.
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Proposition 5.12

Let m be a positive integer, let a(1), a(2), . . . , a(n) ∈ Rm, and let C
be the subset of Rm defined such that

C =


n∑

j=1

tja
(j) : tj ≥ 0 for j = 1, 2, . . . , n

 .

Then C is a closed convex cone in Rm.

Proof
It follows from Lemma 5.11 that C is a convex cone in Rm. We
must prove that this convex cone is a closed set.
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The vectors a(1), a(2), . . . , a(n) span a vector subspace V of Rm

that is isomorphic as a real vector space to Rk for some integer k
satisfying 0 ≤ k ≤ m. This vector subspace V of Rm is a closed
subset of Rm, and therefore any subset of V that is closed in V
will also be closed in Rm. Replacing Rm by Rk , if necessary, we
may assume, without loss of generality that the vectors
a(1), a(2), . . . , a(n) span the vector space Rm. Thus if A is the
m × n matrix defined such that (A)i ,j = (a(j))i for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n then the matrix A is of rank m.
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Let B be the collection consisting of all subsets B of {1, 2, . . . , n}
for which the members of the set {a(j) : j ∈ B} constitute a basis
of the real vector space Rm and, for each B ∈ B, let

CB =

{
m∑
i=1

sia
(ji ) : si ≥ 0 for i = 1, 2, . . . ,m

}
,

where j1, j2, . . . , jm are distinct and are the elements of the set B.
It follows from Lemma 5.7 that the set CB is closed in Rm for all
B ∈ B.
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Let b ∈ C . The definition of C then ensures that there exists some
x ∈ Rn that satisfies Ax = b and x ≥ 0. Thus the problem of
determining x ∈ Rn such that Ax = b and x ≥ 0 has a feasible
solution. It follows from Theorem 4.2 that there exists a basic
feasible solution to this problem, and thus there exist distinct
integers j1, j2, . . . , jm between 1 and n and non-negative real
numbers s1, s2, . . . , sm such that a(j1), a(j2), . . . , a(jm) are linearly
independent and

b =
m∑
i=1

sia
(ji ).

Therefore b ∈ CB where

B = {j1, j2, . . . , jm}.
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We have thus shown that, given any element b of C , there exists a
subset B of {1, 2, . . . , n} belonging to B for which b ∈ CB . It
follows from this that the subset C of Rm is the union of the
closed sets CB taken over all elements B of the finite set B. Thus
C is a finite union of closed subsets of Rm, and is thus itself a
closed subset of Rm, as required.
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5.7. Farkas’ Lemma

Proposition 5.13

Let C be a closed convex cone in Rm and let b be a vector in Rm.
Suppose that b 6∈ C. Then there exists a linear functional
ϕ : Rm → R such that ϕ(v) ≥ 0 for all v ∈ C and ϕ(b) < 0.

Proof
Suppose that b 6∈ C . The cone C is a closed convex set. It follows
from Theorem 5.9 that there exists a linear functional ϕ : Rm → R
and a real number c such that ϕ(v) > c for all v ∈ C and
ϕ(b) < c .
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Now 0 ∈ C , and ϕ(0) = 0. It follows that c < 0, and therefore
ϕ(b) ≤ c < 0.

Let v ∈ C . Then λv ∈ C for all real numbers λ satisfying λ > 0. It

follows that λϕ(v) = ϕ(λv) > c and thus ϕ(v) >
c

λ
for all real

numbers λ satisfying λ > 0, and therefore

ϕ(v) ≥ lim
λ→+∞

c

λ
= 0.

We conclude that ϕ(v) ≥ 0 for all v ∈ C .

Thus ϕ(v) ≥ 0 for all v ∈ C and ϕ(b) < 0, as required.
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Lemma 5.14

(Farkas’ Lemma) Let A be a m × n matrix with real coefficients,
and let b ∈ Rm be an m-dimensional real vector. Then exactly one
of the following two statements is true:—

(i) there exists x ∈ Rn such that Ax = b and x ≥ 0;

(ii) there exists y ∈ Rm such that yTA ≥ 0 and yTb < 0.
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Proof
Let a(1), a(2), . . . , a(n) be the vectors in Rm determined by the
columns of the matrix A, so that (a(j))i = (A)i ,j for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n, and let

C =


n∑

j=1

xja
(j) : xj ≥ 0 for j = 1, 2, . . . , n

 .

It follows from Proposition 5.12 that C is a closed convex cone in
Rm. Moreover

C = {Ax : x ∈ Rn and x ≥ 0}.

Thus b ∈ C if and only if there exists x ∈ Rn such that b = Ax
and x ≥ 0. Therefore statement (i) in the statement of Farkas’
Lemma is true if and only if b ∈ C .
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If b 6∈ C then it follows from Proposition 5.13 that there exists a
linear functional ϕ : Rm → R such that ϕ(v) ≥ 0 for all v ∈ C and
ϕ(b) < 0. Then there exists y ∈ Rm with the property that
ϕ(v) = yTv for all v ∈ Rm. Now Ax ∈ C for all x ∈ Rn satisfying
x ≥ 0. It follows that yTAx ≥ 0 for all x ∈ Rn satisfying x ≥ 0. In
particular (yTA)i = yTAe(i) ≥ 0 for i = 1, 2, . . . ,m, where e(i) is
the vector in Rm whose ith component is equal to 1 and whose
other components are zero. Thus if b 6∈ C then there exists
y ∈ Rm for which yTA ≥ 0 and yTb < 0.
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Conversely suppose that there exists y ∈ Rm such that yTA ≥ 0
and yTb < 0. Then yTAx ≥ 0 for all x ∈ Rn satisfying x ≥ 0, and
therefore yTv ≥ 0 for all v ∈ C . But yTb < 0. It follows that
b 6∈ C . Thus statement (ii) in the statement of Farkas’s Lemma is
true if and only if b 6∈ C . The result follows.
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Corollary 5.15

Let A be a m × n matrix with real coefficients, and let c ∈ Rn be
an n-dimensional real vector. Then exactly one of the following
two statements is true:—

(i) there exists y ∈ Rm such that yTA = cT and y ≥ 0;

(ii) there exists v ∈ Rn such that Av ≥ 0 and cTv < 0.
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Proof
It follows on applying Farkas’s Lemma to the transpose of the
matrix A that exactly one of the following statements is true:—

(i) there exists y ∈ Rm such that ATy = c and y ≥ 0;

(ii) there exists v ∈ Rm such that vTAT ≥ 0 and vTc < 0.

But vTc = cTv. Also ATy = c if and only if yTA = cT , and
vTAT ≥ 0 if and only if Av ≥ 0. The result follows.
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Corollary 5.16

Let A be a m × n matrix with real coefficients, and let c ∈ Rn be
an n-dimensional real vector. Suppose that cTv ≥ 0 for all v ∈ Rn

satisfying Av ≥ 0. Then there exists some there exists y ∈ Rm

such that yTA = cT and y ≥ 0.

Proof
Statement (ii) in the statement of Corollary 5.15 is false, by
assumption, and therefore statement (i) in the statement of that
corollary must be true. The result follows.
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Proposition 5.17

Let n be a positive integer, let I be a non-empty finite set, let
ϕ : Rn → R be a linear functional on Rn, and, for each i ∈ I , let
ηi : Rn → R be a linear functional on Rn. Suppose that ϕ(v) ≥ 0
for all v ∈ Rn with the property that ηi (v) ≥ 0 for all i ∈ I . Then
there exist non-negative real numbers gi for all i ∈ I such that
ϕ =

∑
i∈I

giηi .
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Proof
We may suppose that I = {1, 2, . . . ,m} for some positive
integer m. For each i ∈ I there exist real numbers
Ai ,1,Ai ,2, . . . ,Ai ,n such that

ηi (v1, v2, . . . , vn) =
n∑

j=1

Ai ,jvj

for i = 1, 2, . . . ,m and for all real numbers v1, v2, . . . , vn. Let A be
the m × n matrix whose coefficient in the ith row and jth column
is the real number Ai ,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
Then an n-dimensional vector v ∈ Rn satisfies ηi (v) ≥ 0 for all
i ∈ I if and only if Av ≥ 0.
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There exists an n-dimensional vector c ∈ Rn such that ϕ(v) = cTv
for all v ∈ Rn. Then cTv ≥ 0 for all v ∈ Rn satisfying Av ≥ 0. It
then follows from Corollary 5.16 that there exists y ∈ Rm such that
yTA = cT and y ≥ 0. Let gi = (y)i for i = 1, 2, . . . ,m. Then
gi ≥ 0 for i = 1, 2, . . . ,m and

∑
i∈I

giηi = ϕ, as required.
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Remark
The result of Proposition 5.17 can also be viewed as a consequence
of Proposition 5.13 applied to the convex cone in the dual space
Rn∗ of the real vector space Rn generated by the linear functionals
ηi for i ∈ I . Indeed let C be the subset of Rn∗ defined such that

C =

{∑
i∈I

giηi : gi ≥ 0 for all i ∈ I

}
.

It follows from Proposition 5.12 that C is a closed convex cone in
the dual space Rn∗ of Rn. If the linear functional ϕ did not belong
to this cone then it would follow from Proposition 5.13 that there
would exist a linear functional V : Rn∗ → R with the property that
V (ηi ) ≥ 0 for all i ∈ I and V (ϕ) < 0.
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But given any linear functional on the dual space of a given
finite-dimensional vector space, there exists some vector belonging
to the given vector space such that the linear functional on the
dual space evaluates elements of the dual space at that vector (see
Corollary 2.7). It follows that there would exist v ∈ Rn such that
V (ψ) = ψ(v) for all ψ ∈ Rn∗. But then ηi (v) ≥ 0 for all i ∈ I and
ϕ(v) < 0. This contradicts the requirement that ϕ(v) ≥ 0 for all
v ∈ Rn satisfying ηi (v) ≥ 0 for all i ∈ I . To avoid this
contradiction it must be the case that ϕ ∈ C , and therefore there
must exist non-negative real numbers gi for all i ∈ I such that
ϕ =

∑
i∈I giηi .
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Corollary 5.18

Let n be a positive integer, let I be a non-empty finite set, let
ϕ : Rn → R be a linear functional on Rn, and, for each i ∈ I , let
ηi : Rn → R be a linear functional on Rn. Suppose that there
exists a subset I0 of I such that ϕ(v) ≥ 0 for all v ∈ Rn with the
property that ηi (v) ≥ 0 for all i ∈ I0. Then there exist
non-negative real numbers gi for all i ∈ I such that ϕ =

∑
i∈I

giηi

and gi = 0 when i 6∈ I0.

Proof
It follows directly from Proposition 5.17 that there exist
non-negative real numbers gi for all i ∈ I0 such that ϕ =

∑
i∈I0

giηi .

Let gi = 0 for all i ∈ I \ I0. Then ϕ =
∑
i∈I0

giηi , as required.



5. Duality and Convexity (continued)

Definition

A subset X if Rn is said to be a convex polytope if there exist
linear functionals η1, η2, . . . , ηm on Rn and real numbers
s1, s2, . . . , sm such that

X = {x ∈ Rn : ηi (x) ≥ si for i = 1, 2, . . . ,m}.

Let (ηi : i ∈ I ) be a finite collection of linear functionals on Rn

indexed by a finite set I , let si be a real number for all i ∈ I , and let

X =
⋂
i∈I
{x ∈ R : ηi (x) ≥ si}.

Then X is a convex polytope in Rn. A point x of Rn belongs to
the convex polytope X if and only if ηi (x) ≥ si for all i ∈ I .
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Proposition 5.19

Let n be a positive integer, let I be a non-empty finite set, and, for
each i ∈ I , let ηi : Rn → R be non-zero linear functional and let si
be a real number. Let X be the convex polytope defined such that

X =
⋂
i∈I
{x ∈ R : ηi (x) ≥ si}.

(Thus a point x of Rn belongs to the convex polytope X if and
only if ηi (x) ≥ si for all i ∈ I .) Let ϕ : Rn → R be a non-zero
linear functional on Rn, and let x∗ ∈ X. Then ϕ(x∗) ≤ ϕ(x) for all
x ∈ X if and only if there exist non-negative real numbers gi for all
i ∈ I such that ϕ =

∑
i∈I

giηi and gi = 0 whenever ηi (x∗) > si .
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Proof
Let K = {i ∈ I : ηi (x∗) > si}. Suppose that there do not exist
non-negative real numbers gi for all i ∈ I such that ϕ =

∑
i∈I

giηi

and gi = 0 when i ∈ K . Corollary 5.18 then ensures that there
must exist some v ∈ Rn such that ηi (v) ≥ 0 for all i ∈ I \ K and
ϕ(v) < 0. Then

ηi (x∗ + λv) = ηi (x∗) + ληi (v) ≥ si

for all i ∈ I \ K and for all λ ≥ 0. If i ∈ K then ηi (x∗) > si . The
set K is finite. It follows that there must exist some real
number λ0 satisfying λ0 > 0 such that ηi (x∗ + λv) ≥ si for all
i ∈ K and for all real numbers λ satisfying 0 ≤ λ ≤ λ0.
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Combining the results in the cases when i ∈ I \K and when i ∈ K ,
we find that ηi (x∗ + λv) ≥ si for all i ∈ I and λ ∈ [0, λ0], and
therefore x∗ + λv ∈ X for all real numbers λ satisfying 0 ≤ λ ≤ λ0.
But

ϕ(x∗ + λv) = ϕ(x∗) + λϕ(v) < ϕ(x∗)

whenever λ > 0. It follows that the linear functional ϕ cannot
attain a minimum value in X at any point x∗ for which either
K = I or for which K is a proper subset of I but there exist
non-negative real numbers gi for all i ∈ I \ K such that
ϕ =

∑
i∈I\K

giηi . The result follows.
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5.8. Strong Duality

Example
Consider again the following linear programming problem in
general primal form:—

find values of x1, x2, x3 and x4 so as to minimize the
objective function

c1x1 + c2x2 + c3x3 + c4x4

subject to the following constraints:—

a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 = b1;
a2,1x1 + a2,2x2 + a2,3x3 + a2,4x4 = b2;
a3,1x1 + a3,2x2 + a3,3x3 + a3,4x4 ≥ b3;
x1 ≥ 0 and x3 ≥ 0.
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Now the constraint

a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 = b1

can be expressed as a pair of inequality constraints as follows:

a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 ≥ b1

−a1,1x1 − a1,2x2 − a1,3x3 − a1,4x4 ≥ −b1.

Similarly the equality constraint involving b2 can be expressed as a
pair or inequality constraints.
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Therefore the problem can be reformulated as follows:—

find values of x1, x2, x3 and x4 so as to minimize the
objective function

c1x1 + c2x2 + c3x3 + c4x4

subject to the following constraints:—

a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 ≥ b1;
−a1,1x1 − a1,2x2 − a1,3x3 − a1,4x4 ≥ −b1;
a2,1x1 + a2,2x2 + a2,3x3 + a2,4x4 ≥ b2;
−a2,1x1 − a2,2x2 − a2,3x3 − a2,4x4 ≥ −b2;
a3,1x1 + a3,2x2 + a3,3x3 + a3,4x4 ≥ b3;
x1 ≥ 0;
x3 ≥ 0.
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Let
ϕ(x1, x2, x3, x4) = c1x1 + c2x2 + c3x3 + c4x4,

and let

η+1 (x1, x2, x3, x4) = a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4,

η−1 (x1, x2, x3, x4) = −η1(x1, x2, x3, x4),

η+2 (x1, x2, x3, x4) = a2,1x1 + a2,2x2 + a2,3x3 + a2,4x4,

η−2 (x1, x2, x3, x4) = −η3(x1, x2, x3, x4),

η3(x1, x2, x3, x4) = a3,1x1 + a3,2x2 + a3,3x3 + a3,4x4,

ζ1(x1, x2, x3, x4) = x1,

ζ3(x1, x2, x3, x4) = x3,



5. Duality and Convexity (continued)

Then (x1, x2, x3, x4) is a feasible solution to the primal problem if
and only if this element of R4 belongs to the convex polytope X ,
where X is the subset of R4 consisting of all points x of R4 that
satisfy the following constraints:—

η+1 (x) ≥ b1;

η−1 (x) ≥ −b1;

η+2 (x) ≥ b2;

η−2 (x) ≥ −b2;

η3(x) ≥ b3;

ζ1(x) ≥ 0;

ζ3(x) ≥ 0.
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An inequality constraint is said to be binding for a particular
feasible solution x if equality holds in that constraint at the feasible
solution. Thus the constraints on the values of η+1 , η−1 , η+2 and η−2
are always binding at points of the convex polytope X , but the
constraints determined by η3, ζ1 and ζ3 need not be binding.

Suppose that the linear functional ϕ attains its minimum value at
a point x∗ of X , where x∗ = (x∗1 , x

∗
2 , x
∗
3 , x
∗
4 ). It then follows from

Proposition 5.19 that there exist non-negative real numbers p+1 ,
p−1 , p+2 , p−2 , p3, q1 and q3 such that

p+1 η
+
1 + p−1 η

−
1 + p+2 η

+
2 + p−2 η

−
2 + p3η3 + q1ζ1 + q3ζ3 = ϕ.

Moreover p3 = 0 if η3(x∗) > b3, q1 = 0 if ζ1(x∗) > 0, and q3 = 0
if ζ3(x∗) > 0.
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Now η−1 = −η+1 and η−2 = −η+2 . It follows that

p1η
+
1 + p2η

+
2 + p3η3 + q1ζ1 + q3ζ3 = ϕ,

where p1 = p+1 − p−1 and p2 = p+2 − p−2 . Moreover p3 = 0 if
4∑

i=1
a3,jx

∗
j > b3, q1 = 0 if x∗1 > 0, and q3 = 0 if x∗3 > 0.
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It follows that

p1a1,1 + p2a2,1 + p3a3,1 ≤ c1,

p1a1,2 + p2a2,2 + p3a3,2 = c2,

p1a1,3 + p2a2,3 + p3a3,3 ≤ c3,

p1a1,4 + p2a2,4 + p3a3,4 = c4,

p3 ≥ 0.

Moreover p3 = 0 if
4∑

i=1
a3,jx

∗
j > b3,

3∑
i=1

piai ,1 = c1 if x∗1 > 0, and

3∑
i=1

piai ,3 = c3 if x∗3 > 0. It follows that (p1, p2, p3) is a feasible

solution of the dual problem to the feasible primal problem.
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Moreover the complementary slackness conditions determined by
the primal problem are satisfied. It therefore follows from the
Weak Duality Theorem (Theorem 5.5) that (p1, p2, p3) is an
optimal solution to the dual problem.
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Theorem 5.20

(Strong Duality for Linear Programming Problems with Optimal
Solutions)
Let x∗ ∈ Rn be an optimal solution to a linear programming
problem

Primal(A,b, c, I+, J+)

expressed in general primal form with constraint matrix A with m
rows and n columns, target vector b, cost vector c, inequality
constraint specifier I+ and variable sign specifier J+. Then there
exists an optimal solution p∗ to the corresponding dual
programming problem

Dual(A,b, c, I+, J+),

and moreover p∗Tb = cTx∗.
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Proof
Let x∗ = (x∗1 , x

∗
2 , . . . , x

∗
n ), and let Ai ,j = (A)i ,j , bi = (b)i and

cj = (c)j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Then optimal
solution x∗ minimizes cTx∗ subject to the following constraints:—

Ax∗ ≥ b;

(Ax∗)i = bi unless i ∈ I+;

x∗j ≥ 0 for all j ∈ J+.
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Let p be a feasible solution to the dual linear programming
problem, where p = (p1, p2, . . . , pm). Then p must satisfy the
following constraints:—

pTA ≤ cT ;

pi ≥ 0 for all i ∈ I+;

(pTA)j = cj unless j ∈ J+.
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Now the constraints of the primal problem can be expressed in
inequality form as follows:—

(Ax∗)i ≥ bi for all i ∈ I+;

(Ax∗)i ≥ bi for all i ∈ I \ I+; (−Ax∗)i ≥ −bi for all i ∈ I \ I+;

x∗j ≥ 0 for all j ∈ J+.

Let

ϕ(x1, x2, . . . , xn) =
n∑

j=1

cjxj ,

ηi (x1, x2, . . . , xn) =
n∑

j=1

(A)i ,jxj (i = 1, 2, . . . ,m)

ζj(x1, x2, . . . , xn) = xj (j = 1, 2, . . . , n)
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It follows from Proposition 5.19 that if there exists an optimal
solution to the primal problem then there exist non-negative
quantities pi for all i ∈ I+, p+i and p− for all i ∈ I \ I+ and qj for
all j ∈ J+ such that

ϕ =
∑
i∈I+

piηi +
∑

i∈I\I+
(p+i − p−i )ηi +

∑
j∈J+

qjζj .

Moreover pi = 0 whenever i ∈ I+ and ηi (x
∗
1 , x
∗
2 , . . . , x

∗
n )i > bi and

qj = 0 whenever x∗j > 0.
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Let p∗ ∈ Rm be defined such that (p∗)i = pi for all i ∈ I+ and
(p∗)i = p+i − p−i for all i ∈ I \ I+. Then (p∗TA)j ≤ cj for
j = 1, 2, . . . , n, (p∗)i ≥ 0 for all i ∈ I+, and (p∗TA)j = cj unless
j ∈ J+. Moreover (p∗)i = 0 whenever (Ax∗)i > bi and qi = 0
whenever xj > 0. It follows that p∗ is a feasible solution of the
dual problem. Moreover the relevant complementary slackness
conditions are satisfied by x∗ and p∗. It is then a consequence of
the Weak Duality Theorem that cTx∗ = p∗Tb, and that therefore
p∗ is an optimal solution of the dual problem (see Corollary 5.6).
The result follows.



5. Duality and Convexity (continued)

5.9. Kuhn-Tucker Theory

We consider the General Maximum Problem of nonlinear
programming. This problem may be stated as follows:

(The General Maximum Problem of Nonlinear Pro-
gramming) Let g, f1, f2, . . . , fm be differentiable real-
valued functions on the set

{x ∈ Rn : x ≥ 0},

and let

X = {x ∈ Rn : x ≥ 0 and fi (x) ≥ 0 for i = 1, 2, . . . ,m}.

Determine x∗ ∈ X such that g(x∗) ≥ g(x) for all x ∈ X.
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Let g , f1, f2, . . . , fm be differentiable real-valued functions on the
set

{x ∈ Rn : x ≥ 0},

and let

X = {x ∈ Rn : x ≥ 0 and fi (x) ≥ 0 for i = 1, 2, . . . ,m}.

Let x∗ be an element of X with the property that g(x∗) ≥ g(x) for
all x ∈ X .
Let γ : (−δ, δ)→ Rm be a differentiable path in Rm, defined over
an open interval (−δ, δ) centred on 0, where δ > 0, with the
properties that γ(t) ∈ X for all real numbers t satisfying 0 ≤ t < δ
and γ(0) = x∗, and let

v = γ′(0) =
∂γ(t)

∂t

∣∣∣∣
t=0

.
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Let
I 0 = {i ∈ N : 1 ≤ i ≤ m and fi (x∗) = 0}

and
J0 = {j ∈ N : 1 ≤ j ≤ n and (x∗)j = 0}.

If i ∈ I ∗ then fi (γ(0)) = 0 and fi (γ(t)) ≥ 0 for all t ∈ [0, δ). It
follows from the Chain Rule of multivariable differential calculus
that

(Dfi )x∗(v) = (grad fi )
T
x∗v =

n∑
j=1

(v)j
∂fi
∂xj

∣∣∣∣
x∗

=
dfi (γ(t))

dt

∣∣∣∣
t=0

≥ 0.

Thus (Dfi )x∗(v) ≥ 0 for all i ∈ I 0.
Also if j ∈ J0 then (γ(0))j = 0 and (γ(t))j ≥ 0 for all t ∈ [0, δ)
and therefore (v)j ≥ 0.
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Definition

Let X be a subset of Rn, let g be a differentiable real-valued
function defined throughout some open neighbourhood of X , and
let x∗ be a point of X . We say that the function g achieves a local
maximum on X at the point x∗, if the inequality g(x) ≤ g(x∗) for
all points x of X that lie sufficiently close to the point x∗.
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Let g be a differentiable real-valued function defined throughout
some open neighbourhood of the set X , and let x∗ be a point of
X . Suppose that the function g achieves a local maximum on X at
the point x∗. Let γ : (−δ, δ)→ Rn be a differentiable curve, where
δ > 0, γ(0) = x∗, and γ(t) ∈ X for all real numbers t satisfying
0 ≤ t < δ. Then g(γ(t)) ≤ g(γ(0)) for all real numbers t
satisfying 0 ≤ t < δ, and therefore

(Dg)x∗(v) =
d(g(γ(t)))

dt

∣∣∣∣
t=0

≤ 0,

where

v = γ′(0) =
d(γ(t))

dt

∣∣∣∣
t=0

.



5. Duality and Convexity (continued)

We have shown that if a vector v is tangent to a differentiable
curve γ : (−δ, δ)→ Rn for which γ(0) = x∗ and γ(t) ∈ X when
0 ≤ t < δ then (Dfi )x∗(v) ≥ 0 for all i ∈ I 0 and (v)j ≥ 0 for all
j ∈ J0. Those points x∗ where these properties characterize
tangent vectors to diffentiable curves entering the region X at x∗

are said to satisfy the constraint qualification (CQ). This
constraint qualification is thus formally defined as follows.
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Definition

Let f1, f2, . . . , fm be differentiable real-valued functions Rn, let

X = {x ∈ Rn : fi (x) ≥ 0 for i = 1, 2, . . . ,m},

and let x∗ ∈ X . The constraint qualification (CQ) is said to be
satisfied at x∗ if, given any vector v ∈ Rn with the properties that
(Dfi )x∗(v) ≥ 0 for all i ∈ I 0, where the set I 0 consists of those
indices i between 1 and m for which fi (x∗) = 0, there exists a
differentiable curve γ : (−δ, δ)→ Rn, where δ > 0, with the
property that

v =
dγ(t)

dt

∣∣∣∣
t=0

.
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Theorem 5.21 (Karush-Kuhn-Tucker)

Let f1, f2, . . . , fm be differentiable real-valued functions on the set
{x ∈ Rn : x ≥ 0}, let

X = {x ∈ Rn : fi (x) ≥ 0 for i = 1, 2, . . . ,m}

and let g : X → R be a real-valued function on X . Suppose that
the function g achieves a local maximum at some point x∗ of X
and is differentiable there. Suppose also that fi (x∗) = 0 for
i = 1, 2, . . . ,m and that the constraint qualification (CQ) is
satisfied at the point x∗. Then there exist non-negative real
numbers λ1, λ2, . . . λm such that

∂g

∂xj

∣∣∣∣
x∗

+
m∑
i=1

λi
∂fi
∂xj

∣∣∣∣
x∗

= 0

for j = 1, 2, . . . , n.
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Proof
Let C be the subset of Rn consisting of those vectors v ∈ Rn with
the properties that (Dfi )x∗(v) ≥ 0 for i = 1, 2, . . . ,m. Then C is a
closed convex cone in Rn. Let v ∈ C . The constraint qualification
(CQ) ensures that there exists a differentiable curve
γ : (−δ, δ)→ Rn, where δ > 0, such that γ(0) = x∗, γ(t) ∈ X
when 0 ≤ t < δ and

dγ(t)

dt

∣∣∣∣
t=0

= v.

But then

(Dg)x∗(v) =
dg(γ(t))

dt

∣∣∣∣
t=0

≤ 0.
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Let A be the m× n matrix whose coefficient in the ith row and jth

column is
∂fi
∂xj

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and let c be

the n-dimensional vector whose jth component is
∂g

∂xj
for

j = 1, 2, . . . , n. Then cTv ≤ 0 for all v ∈ Rn satisfying Av ≥ 0. It
then follows from Corollary 5.16 that there exists y ∈ Rm for which
yTA = −c. Let

yT = (λ1, λ2, . . . , λm).

Then
m∑
i=1

λj
∂fi
∂xj

= − ∂g
∂xj

.

The result follows.
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Let f1, f2, . . . , fm be differentiable real-valued functions on the set
{x ∈ Rn : x ≥ 0}, let

X = {x ∈ Rn : x ≥ 0 and fi (x) ≥ 0 for i = 1, 2, . . . ,m},

and let x∗ ∈ X . The constraint qualification (CQ) is said to be
satisfied at x∗ if, given any vector v ∈ Rn with the properties that
(Dfi )x∗(v) ≥ 0 for all i ∈ I 0 and (v)j ≥ 0 for all j ∈ J0, where the
set I 0 consists of those indices i between 1 and m for which
fi (x∗) = 0 and the set J0 consists of those indices j between 1 and
n for which (x∗)j = 0, there exists a differentiable curve
γ : (−δ, δ)→ Rn (where δ > 0) with the property that

v =
dγ(t)

dt

∣∣∣∣
t=0

.



5. Duality and Convexity (continued)

Corollary 5.22

Let f1, f2, . . . , fm be differentiable real-valued functions on the set
{x ∈ Rn : x ≥ 0}, let

X = {x ∈ Rn : x ≥ 0 and fi (x) ≥ 0 for i = 1, 2, . . . ,m}

and let g : X → R be a real-valued function on X . Suppose that
the function g achieves a local maximum at some point x∗ of X
and is differentiable there. Let I 0 be the set consisting of those
indices i between 1 and m for which fi (x∗) = 0 and let J0 be the
set consisting of those indices j between 1 and n for which
(x∗)j = 0. Suppose that the constraint qualification (CQ) is
satisfied at the point x∗. Then there exist real numbers
λ1, λ2, . . . λm, and µ1, µ2, . . . , µn for which the following properties
are satisfied:—
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(i)
∂g

∂xj

∣∣∣∣
x∗

+
m∑
i=1

λi
∂fi
∂xj

∣∣∣∣
x∗

+ µj = 0 for j = 1, 2, . . . , n;

(ii) λi ≥ 0 for i = 1, 2, . . . ,m and µj ≥ 0 for j = 1, 2, . . . , n;

(iii) λi = 0 unless i ∈ I 0, and µj = 0 unless j ∈ J0.
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Proof
We may assume, without loss of generality, that I 0 = {1, 2, . . . ,m}
and that if j is an index between 1 and n for which (x∗)j = 0 then
the coordinate function x 7→ (x)j is included amongst the functions
f1, f2, . . . , fm. This follows from the observation that we can,
without loss of generality, ignore those functions fi for which
fi (x∗) > 0. Also we can augment the functions fi for i ∈ I 0 with
the functions x 7→ (x)j for all j ∈ J0 in order to reduce the general
problem to one in which the function g is defined over a subset X
of Rn of the form

X = {x ∈ Rn : fi (x) ≥ 0 for i = 1, 2, . . . ,m},

where X ⊂ {x ∈ Rn : x ≥ 0} and fi (x∗) = 0 for i = 1, 2, . . . ,m.
The result then follows on application of Theorem 5.21.
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Example
This example was presented by Kuhn and Tucker in 1950. Let

X = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0 and f (x1, x2) ≥ 0},

where
f (x1, x2) = (1− x1)3 − x2.

and let g : R2 → R be defined so that g(x1, x2) = x1. Then the
maximum value of the function g on X is achieved at (1, 0). At
this point the gradient of g is (1, 0) and the gradient of f is
(0,−1). These gradients are not collinear. This is not a counter
example to the Kuhn-Tucker conditions stated in Theorem 5.21
because the constraint qualification (CQ) is not satisfied at (1, 0).
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