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5. Duality and Convexity (continued)

5.9. Kuhn-Tucker Theory

We consider the General Maximum Problem of nonlinear
programming. This problem may be stated as follows:

(The General Maximum Problem of Nonlinear
Programming) Let g , f1, f2, . . . , fm be differentiable
real-valued functions on the set

{x ∈ Rn : x ≥ 0},

and let

X = {x ∈ Rn : x ≥ 0 and fi (x) ≥ 0 for i = 1, 2, . . . ,m}.

Determine x∗ ∈ X such that g(x∗) ≥ g(x) for all x ∈ X .



5. Duality and Convexity (continued)

Let g , f1, f2, . . . , fm be differentiable real-valued functions on the
set

{x ∈ Rn : x ≥ 0},

and let

X = {x ∈ Rn : x ≥ 0 and fi (x) ≥ 0 for i = 1, 2, . . . ,m}.

Let x∗ be an element of X with the property that g(x∗) ≥ g(x) for
all x ∈ X .
Let γ : (−δ, δ)→ Rm be a differentiable path in Rm, defined over
an open interval (−δ, δ) centred on 0, where δ > 0, with the
properties that γ(t) ∈ X for all real numbers t satisfying 0 ≤ t < δ
and γ(0) = x∗, and let

v = γ′(0) =
∂γ(t)

∂t

∣∣∣∣
t=0

.



5. Duality and Convexity (continued)

Let
I 0 = {i ∈ N : 1 ≤ i ≤ m and fi (x∗) = 0}

and
J0 = {j ∈ N : 1 ≤ j ≤ n and (x∗)j = 0}.

If i ∈ I ∗ then fi (γ(0)) = 0 and fi (γ(t)) ≥ 0 for all t ∈ [0, δ). It
follows from the Chain Rule of multivariable differential calculus
that

(Dfi )x∗(v) = (grad fi )
T
x∗v =

n∑
j=1

(v)j
∂fi
∂xj

∣∣∣∣
x∗

=
dfi (γ(t))

dt

∣∣∣∣
t=0

≥ 0.

Thus (Dfi )x∗(v) ≥ 0 for all i ∈ I 0.
Also if j ∈ J0 then (γ(0))j = 0 and (γ(t))j ≥ 0 for all t ∈ [0, δ)
and therefore (v)j ≥ 0.



5. Duality and Convexity (continued)

Definition

Let X be a subset of Rn, let g be a differentiable real-valued
function defined throughout some open neighbourhood of X , and
let x∗ be a point of X . We say that the function g achieves a local
maximum on X at the point x∗, if the inequality g(x) ≤ g(x∗) for
all points x of X that lie sufficiently close to the point x∗.



5. Duality and Convexity (continued)

Let g be a differentiable real-valued function defined throughout
some open neighbourhood of the set X , and let x∗ be a point of
X . Suppose that the function g achieves a local maximum on X at
the point x∗. Let γ : (−δ, δ)→ Rn be a differentiable curve, where
δ > 0, γ(0) = x∗, and γ(t) ∈ X for all real numbers t satisfying
0 ≤ t < δ. Then g(γ(t)) ≤ g(γ(0)) for all real numbers t
satisfying 0 ≤ t < δ, and therefore

(Dg)x∗(v) =
d(g(γ(t)))

dt

∣∣∣∣
t=0

≤ 0,

where

v = γ′(0) =
d(γ(t))

dt

∣∣∣∣
t=0

.



5. Duality and Convexity (continued)

We have shown that if a vector v is tangent to a differentiable
curve γ : (−δ, δ)→ Rn for which γ(0) = x∗ and γ(t) ∈ X when
0 ≤ t < δ then (Dfi )x∗(v) ≥ 0 for all i ∈ I 0 and (v)j ≥ 0 for all
j ∈ J0. Those points x∗ where these properties characterize
tangent vectors to diffentiable curves entering the region X at x∗

are said to satisfy the constraint qualification (CQ). This
constraint qualification is thus formally defined as follows.



5. Duality and Convexity (continued)

Definition

Let f1, f2, . . . , fm be differentiable real-valued functions Rn, let

X = {x ∈ Rn : fi (x) ≥ 0 for i = 1, 2, . . . ,m},

and let x∗ ∈ X . The constraint qualification (CQ) is said to be
satisfied at x∗ if, given any vector v ∈ Rn with the properties that
(Dfi )x∗(v) ≥ 0 for all i ∈ I 0, where the set I 0 consists of those
indices i between 1 and m for which fi (x∗) = 0, there exists a
differentiable curve γ : (−δ, δ)→ Rn, where δ > 0, with the
property that

v =
dγ(t)

dt

∣∣∣∣
t=0

.



5. Duality and Convexity (continued)

Theorem 5.21 (Karush-Kuhn-Tucker)

Let f1, f2, . . . , fm be differentiable real-valued functions on the set
{x ∈ Rn : x ≥ 0}, let

X = {x ∈ Rn : fi (x) ≥ 0 for i = 1, 2, . . . ,m}

and let g : X → R be a real-valued function on X . Suppose that
the function g achieves a local maximum at some point x∗ of X
and is differentiable there. Suppose also that fi (x∗) = 0 for
i = 1, 2, . . . ,m and that the constraint qualification (CQ) is
satisfied at the point x∗. Then there exist non-negative real
numbers λ1, λ2, . . . λm such that

∂g

∂xj

∣∣∣∣
x∗

+
m∑
i=1

λi
∂fi
∂xj

∣∣∣∣
x∗

= 0

for j = 1, 2, . . . , n.



5. Duality and Convexity (continued)

Proof
Let C be the subset of Rn consisting of those vectors v ∈ Rn with
the properties that (Dfi )x∗(v) ≥ 0 for i = 1, 2, . . . ,m. Then C is a
closed convex cone in Rn. Let v ∈ C . The constraint qualification
(CQ) ensures that there exists a differentiable curve
γ : (−δ, δ)→ Rn, where δ > 0, such that γ(0) = x∗, γ(t) ∈ X
when 0 ≤ t < δ and

dγ(t)

dt

∣∣∣∣
t=0

= v.

But then

(Dg)x∗(v) =
dg(γ(t))

dt

∣∣∣∣
t=0

≤ 0.



5. Duality and Convexity (continued)

Let A be the m× n matrix whose coefficient in the ith row and jth

column is
∂fi
∂xj

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and let c be

the n-dimensional vector whose jth component is
∂g

∂xj
for

j = 1, 2, . . . , n. Then cTv ≤ 0 for all v ∈ Rn satisfying Av ≥ 0. It
then follows from Corollary 5.16 that there exists y ∈ Rm for which
yTA = −c. Let

yT = (λ1, λ2, . . . , λm).

Then
m∑
i=1

λj
∂fi
∂xj

= − ∂g
∂xj

.

The result follows.



5. Duality and Convexity (continued)

Let f1, f2, . . . , fm be differentiable real-valued functions on the set
{x ∈ Rn : x ≥ 0}, let

X = {x ∈ Rn : x ≥ 0 and fi (x) ≥ 0 for i = 1, 2, . . . ,m},

and let x∗ ∈ X . The constraint qualification (CQ) is said to be
satisfied at x∗ if, given any vector v ∈ Rn with the properties that
(Dfi )x∗(v) ≥ 0 for all i ∈ I 0 and (v)j ≥ 0 for all j ∈ J0, where the
set I 0 consists of those indices i between 1 and m for which
fi (x∗) = 0 and the set J0 consists of those indices j between 1 and
n for which (x∗)j = 0, there exists a differentiable curve
γ : (−δ, δ)→ Rn (where δ > 0) with the property that

v =
dγ(t)

dt

∣∣∣∣
t=0

.



5. Duality and Convexity (continued)

Corollary 5.22

Let f1, f2, . . . , fm be differentiable real-valued functions on the set
{x ∈ Rn : x ≥ 0}, let

X = {x ∈ Rn : x ≥ 0 and fi (x) ≥ 0 for i = 1, 2, . . . ,m}

and let g : X → R be a real-valued function on X . Suppose that
the function g achieves a local maximum at some point x∗ of X
and is differentiable there. Let I 0 be the set consisting of those
indices i between 1 and m for which fi (x∗) = 0 and let J0 be the
set consisting of those indices j between 1 and n for which
(x∗)j = 0. Suppose that the constraint qualification (CQ) is
satisfied at the point x∗. Then there exist real numbers
λ1, λ2, . . . λm, and µ1, µ2, . . . , µn for which the following properties
are satisfied:—



5. Duality and Convexity (continued)

(i)
∂g

∂xj

∣∣∣∣
x∗

+
m∑
i=1

λi
∂fi
∂xj

∣∣∣∣
x∗

+ µj = 0 for j = 1, 2, . . . , n;

(ii) λi ≥ 0 for i = 1, 2, . . . ,m and µj ≥ 0 for j = 1, 2, . . . , n;

(iii) λi = 0 unless i ∈ I 0, and µj = 0 unless j ∈ J0.



5. Duality and Convexity (continued)

Proof
We may assume, without loss of generality, that I 0 = {1, 2, . . . ,m}
and that if j is an index between 1 and n for which (x∗)j = 0 then
the coordinate function x 7→ (x)j is included amongst the functions
f1, f2, . . . , fm. This follows from the observation that we can,
without loss of generality, ignore those functions fi for which
fi (x∗) > 0. Also we can augment the functions fi for i ∈ I 0 with
the functions x 7→ (x)j for all j ∈ J0 in order to reduce the general
problem to one in which the function g is defined over a subset X
of Rn of the form

X = {x ∈ Rn : fi (x) ≥ 0 for i = 1, 2, . . . ,m},

where X ⊂ {x ∈ Rn : x ≥ 0} and fi (x∗) = 0 for i = 1, 2, . . . ,m.
The result then follows on application of Theorem 5.21.



5. Duality and Convexity (continued)

Example
This example was presented by Kuhn and Tucker in 1950. Let

X = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0 and f (x1, x2) ≥ 0},

where
f (x1, x2) = (1− x1)3 − x2.

and let g : R2 → R be defined so that g(x1, x2) = x1. Then the
maximum value of the function g on X is achieved at (1, 0). At
this point the gradient of g is (1, 0) and the gradient of f is
(0,−1). These gradients are not collinear. This is not a counter
example to the Kuhn-Tucker conditions stated in Theorem 5.21
because the constraint qualification (CQ) is not satisfied at (1, 0).
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