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5. Duality and Convexity (continued)

5.9. Kuhn-Tucker Theory

We consider the General Maximum Problem of nonlinear
programming. This problem may be stated as follows:

(The General Maximum Problem of Nonlinear
Programming) Let g, fi, f5, ..., fy, be differentiable
real-valued functions on the set

{xeR": x>0},
and let
X={xeR":x>0andfi(x)>0fori=1,2,...,m}.

Determine x* € X such that g(x*) > g(x) for all x € X.



5. Duality and Convexity (continued)

Let g, A1, f, ...,y be differentiable real-valued functions on the

set
{xeR": x>0},

and let
X={xeR":x>0and fi(x) >0fori=1,2,...,m}.

Let x* be an element of X with the property that g(x*) > g(x) for
all x € X.

Let v: (—0,0) — R™ be a differentiable path in R™, defined over
an open interval (—d,0) centred on 0, where § > 0, with the
properties that (t) € X for all real numbers t satisfying 0 < t < ¢
and v(0) = x*, and let




5. Duality and Convexity (continued)

Let
I°={ieN:1<i<mand fi(x*) =0}

and
S ={jeN:1<j<nand (x*); =0}

If i € I* then f;(v(0)) = 0 and fi(y(t)) > 0 for all t € [0,6). It
follows from the Chain Rule of multivariable differential calculus
that

n

(Dfi)x:(v) = (grad fi)v = > (v); gxf;

dfi(y(t))
dt

= > 0.

t=0

j=1 x*
Thus (Df)x<(v) > 0 for all i € I°.

Also if j € JO then (v(0)); = 0 and (v(t)); > 0 for all t € [0, 6)
and therefore (v); > 0.



5. Duality and Convexity (continued)

Definition

Let X be a subset of R”, let g be a differentiable real-valued
function defined throughout some open neighbourhood of X, and
let x* be a point of X. We say that the function g achieves a local
maximum on X at the point x*, if the inequality g(x) < g(x*) for
all points x of X that lie sufficiently close to the point x*.




5. Duality and Convexity (continued)

Let g be a differentiable real-valued function defined throughout
some open neighbourhood of the set X, and let x* be a point of
X. Suppose that the function g achieves a local maximum on X at
the point x*. Let v: (—d,0) — R" be a differentiable curve, where
d >0, v(0) = x*, and y(t) € X for all real numbers t satisfying

0 <t<d. Then g(y(t)) < g(~(0)) for all real numbers t
satisfying 0 < t < §, and therefore

(0g)e(v) = U] <o,
where J
v = ’}//(O) — (/L(tt)) .




5. Duality and Convexity (continued)

We have shown that if a vector v is tangent to a differentiable
curve y: (—6,0) — R” for which v(0) = x* and ~(t) € X when
0 <t < § then (Df)x-(v) >0 for all i € 1° and (v); > 0 for all
j € J° Those points x* where these properties characterize
tangent vectors to diffentiable curves entering the region X at x*
are said to satisfy the constraint qualification (CQ). This
constraint qualification is thus formally defined as follows.



5. Duality and Convexity (continued)

Definition
Let f1, f,..., fn be differentiable real-valued functions R”, let

X={xeR": fi(x)>0fori=1,2,...,m},

and let x* € X. The constraint qualification (CQ) is said to be
satisfied at x* if, given any vector v € R" with the properties that
(Df)x+(v) > 0 for all i € I, where the set /° consists of those
indices i between 1 and m for which f;(x*) = 0, there exists a
differentiable curve v: (—d,d) — R", where § > 0, with the

property that
v = D@

Cdt |,




5. Duality and Convexity (continued)

Theorem 5.21 (Karush-Kuhn-Tucker)

Let f1, fa, ..., fm be differentiable real-valued functions on the set
{xeR": x>0}, let

X={xeR":fi(x)>0fori=1,2,...,m}

and let g: X — R be a real-valued function on X. Suppose that
the function g achieves a local maximum at some point x* of X
and is differentiable there. Suppose also that f;(x*) = 0 for
i=1,2,...,m and that the constraint qualification (CQ) is
satisfied at the point x*. Then there exist non-negative real
numbers A1, Ap, ... Ay such that

m

o +) A

Ot

i =0
I

x* x*

forj=1,2,...,n.




5. Duality and Convexity (continued)

Proof
Let C be the subset of R" consisting of those vectors v € R" with

the properties that (Df;)x«(v) >0 for i=1,2,...,m. Then C is a
closed convex cone in R"”. Let v € C. The constraint qualification
(CQ) ensures that there exists a differentiable curve

v: (—=9,9) = R", where § > 0, such that v(0) = x*, v(t) € X
when 0 < t < § and

dy(t)|  _,
dt t=0 .
But then J .
N L




5. Duality and Convexity (continued)

Let A be the m x n matrix whose coefficient in the ith row and jth
of;
columnis — for i=1,2,...,mand j=1,2,...,n, and let c be
Xj
. . ) . Og
the n-dimensional vector whose jth component is — for
Xj
j=1,2,...,n. Then c"v <0 for all v € R" satisfying Av > 0. It
then follows from Corollary 5.16 that there exists y € R™ for which
yT"A=—c. Let
T= (1,22 Am)-

Then

J 6XJ 6XJ

=1

The result follows. |}



5. Duality and Convexity (continued)

Let f1, f,..., fy, be differentiable real-valued functions on the set
{x e R": x>0}, let

X={xeR":x>0and fi(x) >0fori=1,2,...,m},

and let x* € X. The constraint qualification (CQ) is said to be
satisfied at x* if, given any vector v € R" with the properties that
(Df;)x=(v) >0 for all i € 1% and (v); > 0 for all j € J°, where the
set /9 consists of those indices i between 1 and m for which

f;(x*) = 0 and the set JO consists of those indices j between 1 and
n for which (x*); = 0, there exists a differentiable curve

v: (—=0,9) — R" (where 6 > 0) with the property that

_ dy(1)
dt

t=0



5. Duality and Convexity (continued)

Corollary 5.22

Let f1, fa, ..., fm be differentiable real-valued functions on the set
{xeR": x>0}, let

X={xeR":x>0andfi(x)>0fori=12,...,m}

and let g: X — R be a real-valued function on X. Suppose that
the function g achieves a local maximum at some point x* of X
and is differentiable there. Let I° be the set consisting of those
indices i between 1 and m for which f:(x*) = 0 and let J° be the
set consisting of those indices j between 1 and n for which

(x*); = 0. Suppose that the constraint qualification (CQ) is
satisfied at the point x*. Then there exist real numbers

A1, A2, ... Am, and p1, o, - . ., pp for which the following properties
are satisfied:—

4




5. Duality and Convexity (continued)

T of;
® _XJX*+Z)\ dx;

ii) \j>0fori=1,2,....mand uj >0forj=1,2,... n
j J

iii) A\; =0 unless i € 19 and p; = 0 unless j € JO.
j

+pj=0forj=1,2,..

x*




5. Duality and Convexity (continued)

Proof

We may assume, without loss of generality, that 1 = {1,2,..., m}
and that if j is an index between 1 and n for which (x*); = 0 then
the coordinate function x — (x); is included amongst the functions
fi, >, ..., fm. This follows from the observation that we can,
without loss of generality, ignore those functions f; for which

f;(x*) > 0. Also we can augment the functions f; for i € I° with
the functions x — (x); for all j € J% in order to reduce the general
problem to one in which the function g is defined over a subset X
of R” of the form

X={xeR":fi(x)>0fori=1,2,...,m},

where X C {x € R" : x>0} and fi(x*) =0 fori=1,2,..., m.
The result then follows on application of Theorem 5.21. |}



5. Duality and Convexity (continued)

Example
This example was presented by Kuhn and Tucker in 1950. Let

X ={(x1,x2) € R?:x; >0, x>0 and f(xi,x2) > 0},

where
f(x1,x)=(1- X1)3 — Xo.

and let g: R? — R be defined so that g(xi,x2) = x1. Then the
maximum value of the function g on X is achieved at (1,0). At
this point the gradient of g is (1,0) and the gradient of f is
(0,—1). These gradients are not collinear. This is not a counter
example to the Kuhn-Tucker conditions stated in Theorem 5.21
because the constraint qualification (CQ) is not satisfied at (1,0).
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