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5. Duality and Convexity (continued)

Proposition 5.17

Let n be a positive integer, let I be a non-empty finite set, let
ϕ : Rn → R be a linear functional on Rn, and, for each i ∈ I , let
ηi : Rn → R be a linear functional on Rn. Suppose that ϕ(v) ≥ 0
for all v ∈ Rn with the property that ηi (v) ≥ 0 for all i ∈ I . Then
there exist non-negative real numbers gi for all i ∈ I such that
ϕ =

∑
i∈I

giηi .



5. Duality and Convexity (continued)

Proof
We may suppose that I = {1, 2, . . . ,m} for some positive
integer m. For each i ∈ I there exist real numbers
Ai ,1,Ai ,2, . . . ,Ai ,n such that

ηi (v1, v2, . . . , vn) =
n∑

j=1

Ai ,jvj

for i = 1, 2, . . . ,m and for all real numbers v1, v2, . . . , vn. Let A be
the m × n matrix whose coefficient in the ith row and jth column
is the real number Ai ,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
Then an n-dimensional vector v ∈ Rn satisfies ηi (v) ≥ 0 for all
i ∈ I if and only if Av ≥ 0.
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There exists an n-dimensional vector c ∈ Rn such that ϕ(v) = cTv
for all v ∈ Rn. Then cTv ≥ 0 for all v ∈ Rn satisfying Av ≥ 0. It
then follows from Corollary 5.16 that there exists y ∈ Rm such that
yTA = cT and y ≥ 0. Let gi = (y)i for i = 1, 2, . . . ,m. Then
gi ≥ 0 for i = 1, 2, . . . ,m and

∑
i∈I

giηi = ϕ, as required.
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Remark
The result of Proposition 5.17 can also be viewed as a consequence
of Proposition 5.13 applied to the convex cone in the dual space
Rn∗ of the real vector space Rn generated by the linear functionals
ηi for i ∈ I . Indeed let C be the subset of Rn∗ defined such that

C =

{∑
i∈I

giηi : gi ≥ 0 for all i ∈ I

}
.

It follows from Proposition 5.12 that C is a closed convex cone in
the dual space Rn∗ of Rn. If the linear functional ϕ did not belong
to this cone then it would follow from Proposition 5.13 that there
would exist a linear functional V : Rn∗ → R with the property that
V (ηi ) ≥ 0 for all i ∈ I and V (ϕ) < 0.
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But given any linear functional on the dual space of a given
finite-dimensional vector space, there exists some vector belonging
to the given vector space such that the linear functional on the
dual space evaluates elements of the dual space at that vector (see
Corollary 2.7). It follows that there would exist v ∈ Rn such that
V (ψ) = ψ(v) for all ψ ∈ Rn∗. But then ηi (v) ≥ 0 for all i ∈ I and
ϕ(v) < 0. This contradicts the requirement that ϕ(v) ≥ 0 for all
v ∈ Rn satisfying ηi (v) ≥ 0 for all i ∈ I . To avoid this
contradiction it must be the case that ϕ ∈ C , and therefore there
must exist non-negative real numbers gi for all i ∈ I such that
ϕ =

∑
i∈I giηi .



5. Duality and Convexity (continued)

Corollary 5.18

Let n be a positive integer, let I be a non-empty finite set, let
ϕ : Rn → R be a linear functional on Rn, and, for each i ∈ I , let
ηi : Rn → R be a linear functional on Rn. Suppose that there
exists a subset I0 of I such that ϕ(v) ≥ 0 for all v ∈ Rn with the
property that ηi (v) ≥ 0 for all i ∈ I0. Then there exist
non-negative real numbers gi for all i ∈ I such that ϕ =

∑
i∈I

giηi

and gi = 0 when i 6∈ I0.

Proof
It follows directly from Proposition 5.17 that there exist
non-negative real numbers gi for all i ∈ I0 such that ϕ =

∑
i∈I0

giηi .

Let gi = 0 for all i ∈ I \ I0. Then ϕ =
∑
i∈I0

giηi , as required.



5. Duality and Convexity (continued)

Definition

A subset X is said to be a convex polytope if there exist linear
functionals η1, η2, . . . , ηm on Rn and real numbers s1, s2, . . . , sm
such that

X = {x ∈ Rn : ηi (x) ≥ si for i = 1, 2, . . . ,m}.

Let (ηi : i ∈ I ) be a finite collection of linear functionals on Rn

indexed by a finite set I , let si be a real number for all i ∈ I , and let

X =
⋂
i∈I
{x ∈ R : ηi (x) ≥ si}.

Then X is a convex polytope in Rn. A point x of Rn belongs to
the convex polytope X if and only if ηi (x) ≥ si for all i ∈ I .
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Proposition 5.19

Let n be a positive integer, let I be a non-empty finite set, and, for
each i ∈ I , let ηi : Rn → R be non-zero linear functional and let si
be a real number. Let X be the convex polytope defined such that

X =
⋂
i∈I
{x ∈ R : ηi (x) ≥ si}.

(Thus a point x of Rn belongs to the convex polytope X if and
only if ηi (x) ≥ si for all i ∈ I .) Let ϕ : Rn → R be a non-zero
linear functional on Rn, and let x∗ ∈ X . Then ϕ(x∗) ≤ ϕ(x) for all
x ∈ X if and only if there exist non-negative real numbers gi for all
i ∈ I such that ϕ =

∑
i∈I

giηi and gi = 0 whenever ηi (x∗) > si .
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Proof
Let K = {i ∈ I : ηi (x∗) > si}. Suppose that there do not exist
non-negative real numbers gi for all i ∈ I such that ϕ =

∑
i∈I

giηi

and gi = 0 when i ∈ K . Corollary 5.18 then ensures that there
must exist some v ∈ Rn such that ηi (v) ≥ 0 for all i ∈ I \ K and
ϕ(v) < 0. Then

ηi (x∗ + λv) = ηi (x∗) + ληi (v) ≥ si

for all i ∈ I \ K and for all λ ≥ 0. If i ∈ K then ηi (x∗) > si . The
set K is finite. It follows that there must exist some real
number λ0 satisfying λ0 > 0 such that ηi (x∗ + λv) ≥ si for all
i ∈ K and for all real numbers λ satisfying 0 ≤ λ ≤ λ0.
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Combining the results in the cases when i ∈ I \K and when i ∈ K ,
we find that ηi (x∗ + λv) ≥ si for all i ∈ I and λ ∈ [0, λ0], and
therefore x∗ + λv ∈ X for all real numbers λ satisfying 0 ≤ λ ≤ λ0.
But

ϕ(x∗ + λv) = ϕ(x∗) + λϕ(v) < ϕ(x∗)

whenever λ > 0. It follows that the linear functional ϕ cannot
attain a minimum value in X at any point x∗ for which either
K = I or for which K is a proper subset of I but there exist
non-negative real numbers gi for all i ∈ I \ K such that
ϕ =

∑
i∈I\K

giηi . The result follows.
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5.8. Strong Duality

Example
Consider again the following linear programming problem in
general primal form:—

find values of x1, x2, x3 and x4 so as to minimize the
objective function

c1x1 + c2x2 + c3x3 + c4x4

subject to the following constraints:—

a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 = b1;
a2,1x1 + a2,2x2 + a2,3x3 + a2,4x4 = b2;
a3,1x1 + a3,2x2 + a3,3x3 + a3,4x4 ≥ b3;
x1 ≥ 0 and x3 ≥ 0.
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Now the constraint

a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 = b1

can be expressed as a pair of inequality constraints as follows:

a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 ≥ b1

−a1,1x1 − a1,2x2 − a1,3x3 − a1,4x4 ≥ −b1.

Similarly the equality constraint involving b2 can be expressed as a
pair or inequality constraints.
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Therefore the problem can be reformulated as follows:—

find values of x1, x2, x3 and x4 so as to minimize the
objective function

c1x1 + c2x2 + c3x3 + c4x4

subject to the following constraints:—

a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 ≥ b1;
−a1,1x1 − a1,2x2 − a1,3x3 − a1,4x4 ≥ −b1;
a2,1x1 + a2,2x2 + a2,3x3 + a2,4x4 ≥ b2;
−a2,1x1 − a2,2x2 − a2,3x3 − a2,4x4 ≥ −b2;
a3,1x1 + a3,2x2 + a3,3x3 + a3,4x4 ≥ b3;
x1 ≥ 0;
x3 ≥ 0.
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Let
ϕ(x1, x2, x3, x4) = c1x1 + c2x2 + c3x3 + c4x4,

and let

η+1 (x1, x2, x3, x4) = a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4,

η−1 (x1, x2, x3, x4) = −η1(x1, x2, x3, x4),

η+2 (x1, x2, x3, x4) = a2,1x1 + a2,2x2 + a2,3x3 + a2,4x4,

η−2 (x1, x2, x3, x4) = −η3(x1, x2, x3, x4),

η3(x1, x2, x3, x4) = a3,1x1 + a3,2x2 + a3,3x3 + a3,4x4,

ζ1(x1, x2, x3, x4) = x1,

ζ3(x1, x2, x3, x4) = x3,
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Then (x1, x2, x3, x4) is a feasible solution to the primal problem if
and only if this element of R4 belongs to the convex polytope X ,
where X is the subset of R4 consisting of all points x of R4 that
satisfy the following constraints:—

η+1 (x) ≥ b1;

η−1 (x) ≥ −b1;

η+2 (x) ≥ b2;

η−2 (x) ≥ −b2;

η3(x) ≥ b3;

ζ1(x) ≥ 0;

ζ3(x) ≥ 0.
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An inequality constraint is said to be binding for a particular
feasible solution x if equality holds in that constraint at the feasible
solution. Thus the constraints on the values of η+1 , η−1 , η+2 and η−2
are always binding at points of the convex polytope X , but the
constraints determined by η3, ζ1 and ζ3 need not be binding.

Suppose that the linear functional ϕ attains its minimum value at
a point x∗ of X , where x∗ = (x∗1 , x

∗
2 , x
∗
3 , x
∗
4 ). It then follows from

Proposition 5.19 that there exist non-negative real numbers p+1 ,
p−1 , p+2 , p−2 , p3, q1 and q3 such that

p+1 η
+
1 + p−1 η

−
1 + p+2 η

+
2 + p−2 η

−
2 + p3η3 + q1ζ1 + q3ζ3 = ϕ.

Moreover p3 = 0 if η3(x∗) > b3, q1 = 0 if ζ1(x∗) > 0, and q3 = 0
if ζ3(x∗) > 0.
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Now η−1 = −η+1 and η−2 = −η+2 . It follows that

p1η
+
1 + p2η

+
2 + p3η3 + q1ζ1 + q3ζ3 = ϕ,

where p1 = p+1 − p−1 and p2 = p+2 − p−2 . Moreover p3 = 0 if
4∑

i=1
a3,jx

∗
j > b3, q1 = 0 if x∗1 > 0, and q3 = 0 if x∗3 > 0.
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It follows that

p1a1,1 + p2a2,1 + p3a3,1 ≤ c1,

p1a1,2 + p2a2,2 + p3a3,2 = c2,

p1a1,3 + p2a2,3 + p3a3,3 ≤ c3,

p1a1,4 + p2a2,4 + p3a3,4 = c4,

p3 ≥ 0.

Moreover p3 = 0 if
4∑

i=1
a3,jx

∗
j > b3,

3∑
i=1

piai ,1 = c1 if x∗1 > 0, and

3∑
i=1

piai ,3 = c3 if x∗3 > 0. It follows that (p1, p2, p3) is a feasible

solution of the dual problem to the feasible primal problem.
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Moreover the complementary slackness conditions determined by
the primal problem are satisfied. It therefore follows from the
Weak Duality Theorem (Theorem 5.5) that (p1, p2, p3) is an
optimal solution to the dual problem.
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Theorem 5.20

(Strong Duality for Linear Programming Problems with Optimal
Solutions)
Let x∗ ∈ Rn be an optimal solution to a linear programming
problem

Primal(A,b, c, I+, J+)

expressed in general primal form with constraint matrix A with m
rows and n columns, target vector b, cost vector c, inequality
constraint specifier I+ and variable sign specifier J+. Then there
exists an optimal solution p∗ to the corresponding dual
programming problem

Dual(A,b, c, I+, J+),

and moreover p∗Tb = cTx∗.
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Proof
Let x∗ = (x∗1 , x

∗
2 , . . . , x

∗
n ), and let Ai ,j = (A)i ,j , bi = (b)i and

cj = (c)j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Then optimal
solution x∗ minimizes cTx∗ subject to the following constraints:—

Ax∗ ≥ b;

(Ax∗)i = bi unless i ∈ I+;

x∗j ≥ 0 for all j ∈ J+.
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Let p be a feasible solution to the dual linear programming
problem, where p = (p1, p2, . . . , pm). Then p must satisfy the
following constraints:—

pTA ≤ cT ;

pi ≥ 0 for all i ∈ I+;

(pTA)j = cj unless j ∈ J+.
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Now the constraints of the primal problem can be expressed in
inequality form as follows:—

(Ax∗)i ≥ bi for all i ∈ I+;

(Ax∗)i ≥ bi for all i ∈ I \ I+; (−Ax∗)i ≥ −bi for all i ∈ I \ I+;

x∗j ≥ 0 for all j ∈ J+.

Let

ϕ(x1, x2, . . . , xn) =
n∑

j=1

cjxj ,

ηi (x1, x2, . . . , xn) =
n∑

j=1

(A)i ,jxj (i = 1, 2, . . . ,m)

ζj(x1, x2, . . . , xn) = xj (j = 1, 2, . . . , n)
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It follows from Proposition 5.19 that if there exists an optimal
solution to the primal problem then there exist non-negative
quantities pi for all i ∈ I+, p+i and p− for all i ∈ I \ I+ and qj for
all j ∈ J+ such that

ϕ =
∑
i∈I+

piηi +
∑

i∈I\I+
(p+i − p−i )ηi +

∑
j∈J+

qjζj .

Moreover pi = 0 whenever i ∈ I+ and ηi (x
∗
1 , x
∗
2 , . . . , x

∗
n )i > bi and

qj = 0 whenever x∗j > 0.
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Let p∗ ∈ Rm be defined such that (p∗)i = pi for all i ∈ I+ and
(p∗)i = p+i − p−i for all i ∈ I \ I+. Then (p∗TA)j ≤ cj for
j = 1, 2, . . . , n, (p∗)i ≥ 0 for all i ∈ I+, and (p∗TA)j = cj unless
j ∈ J+. Moreover (p∗)i = 0 whenever (Ax∗)i > bi and qi = 0
whenever xj > 0. It follows that p∗ is a feasible solution of the
dual problem. Moreover the relevant complementary slackness
conditions are satisfied by x∗ and p∗. It is then a consequence of
the Weak Duality Theorem that cTx∗ = p∗Tb, and that therefore
p∗ is an optimal solution of the dual problem (see Corollary 5.6).
The result follows.
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