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5. Duality and Convexity (continued)

5.5. A Separating Hyperplane Theorem

Definition

A subset K of Rm is said to be convex if (1− µ)x + µx′ ∈ K for all
elements x and x′ of K and for all real numbers µ satisfying
0 ≤ µ ≤ 1.

It follows from the above definition that a subset K of Rm is a
convex subset of Rm if and only if, given any two points of K , the
line segment joining those two points is wholly contained in K .

Theorem 5.9

Let m be a positive integer, let K be a closed convex set in Rm,
and let b be a vector in Rm, where b 6∈ K. Then there exists a
linear functional ϕ : Rm → R and a real number c such that
ϕ(x) > c for all x ∈ K and ϕ(b) < c.



5. Duality and Convexity (continued)

Proof
It follows from Lemma 5.8 that there exists a point g of K such
that |x− b| ≥ |g − b| for all x ∈ K . Let x ∈ K . Then
(1− λ)g + λx ∈ K for all real numbers λ satisfying 0 ≤ λ ≤ 1,
because the set K is convex, and therefore

|(1− λ)g + λx− b| ≥ |g − b|

for all real numbers λ satisfying 0 ≤ λ ≤ 1. Now

(1− λ)g + λx− b = g − b + λ(x− g).
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It follows by a straightforward calculation from the definition of the
Euclidean norm that

|g − b|2 ≤ |(1− λ)g + λx− b|2

= |g − b|2 + 2λ(g − b)T (x− g)

+ λ2|x− g|2

for all real numbers λ satisfying 0 ≤ λ ≤ 1. In particular, this
inequality holds for all sufficiently small positive values of λ, and
therefore

(g − b)T (x− g) ≥ 0

for all x ∈ K .
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Let
ϕ(x) = (g − b)Tx

for all x ∈ Rm. Then ϕ : Rm → R is a linear functional on Rm, and
ϕ(x) ≥ ϕ(g) for all x ∈ K . Moreover

ϕ(g)− ϕ(b) = |g − b|2 > 0,

and therefore ϕ(g) > ϕ(b). It follows that ϕ(x) > c for all x ∈ K ,
where c = 1

2ϕ(b) + 1
2ϕ(g), and that ϕ(b) < c . The result

follows.
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5.6. Convex Cones

Definition

Let m be a positive integer. A subset C of Rm is said to be a
convex cone in Rm if λv + µw ∈ C for all v,w ∈ C and for all real
numbers λ and µ satisfying λ ≥ 0 and µ ≥ 0.

Lemma 5.10

Let m be a positive integer. Then every convex cone in Rm is a
convex subset of Rm.

Proof
Let C be a convex cone in Rm and let v,w ∈ C . Then
λv + µw ∈ C for all non-negative real numbers λ and µ. In
particular (1− λ)w + λv ∈ C . whenever 0 ≤ λ ≤ 1, and thus the
convex cone C is a convex set in Rm, as required.
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Lemma 5.11

Let S be a subset of Rm, and let C be the set of all elements of
Rm that can be expressed as a linear combination of the form

s1a(1) + s2a(2) + · · ·+ sna(n),

where a(1), a(2), . . . , a(n) are vectors belonging to S and
s1, s2, . . . , sn are non-negative real numbers. Then C is a convex
cone in Rm.
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Proof
Let v and w be elements of C . Then there exist finite subsets S1
and S2 of S such that v can be expressed as a linear combination
of the elements of S1 with non-negative coefficients and w can be
expressed as a linear combination of the elements of S2 with
non-negative coefficients. Let

S1 ∪ S2 = {a(1), a(2), . . . , a(n)}.
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Then there exist non-negative real numbers s1, s2, . . . , sn and
t1, t2, . . . , tn such that

v =
n∑

j=1

sja
(j) and w =

n∑
j=1

tja
(j).

Let λ and µ be non-negative real numbers. Then

λv + µw =
n∑

j=1

(λsj + µtj)a(j),

and λsj + µtj ≥ 0 for j = 1, 2, . . . , n. It follows that λv + µw ∈ C ,
as required.
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Proposition 5.12

Let m be a positive integer, let a(1), a(2), . . . , a(n) ∈ Rm, and let C
be the subset of Rm defined such that

C =


n∑

j=1

tja
(j) : tj ≥ 0 for j = 1, 2, . . . , n

 .

Then C is a closed convex cone in Rm.

Proof
It follows from Lemma 5.11 that C is a convex cone in Rm. We
must prove that this convex cone is a closed set.
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The vectors a(1), a(2), . . . , a(n) span a vector subspace V of Rm

that is isomorphic as a real vector space to Rk for some integer k
satisfying 0 ≤ k ≤ m. This vector subspace V of Rm is a closed
subset of Rm, and therefore any subset of V that is closed in V
will also be closed in Rm. Replacing Rm by Rk , if necessary, we
may assume, without loss of generality that the vectors
a(1), a(2), . . . , a(n) span the vector space Rm. Thus if A is the
m × n matrix defined such that (A)i ,j = (a(j))i for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n then the matrix A is of rank m.
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Let B be the collection consisting of all subsets B of {1, 2, . . . , n}
for which the members of the set {a(j) : j ∈ B} constitute a basis
of the real vector space Rm and, for each B ∈ B, let

CB =

{
m∑
i=1

sia
(ji ) : si ≥ 0 for i = 1, 2, . . . ,m

}
,

where j1, j2, . . . , jm are distinct and are the elements of the set B.
It follows from Lemma 5.7 that the set CB is closed in Rm for all
B ∈ B.
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Let b ∈ C . The definition of C then ensures that there exists some
x ∈ Rn that satisfies Ax = b and x ≥ 0. Thus the problem of
determining x ∈ Rn such that Ax = b and x ≥ 0 has a feasible
solution. It follows from Theorem 4.2 that there exists a basic
feasible solution to this problem, and thus there exist distinct
integers j1, j2, . . . , jm between 1 and n and non-negative real
numbers s1, s2, . . . , sm such that a(j1), a(j2), . . . , a(jm) are linearly
independent and

b =
m∑
i=1

sia
(ji ).

Therefore b ∈ CB where

B = {j1, j2, . . . , jm}.
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We have thus shown that, given any element b of C , there exists a
subset B of {1, 2, . . . , n} belonging to B for which b ∈ CB . It
follows from this that the subset C of Rm is the union of the
closed sets CB taken over all elements B of the finite set B. Thus
C is a finite union of closed subsets of Rm, and is thus itself a
closed subset of Rm, as required.
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5.7. Farkas’ Lemma

Proposition 5.13

Let C be a closed convex cone in Rm and let b be a vector in Rm.
Suppose that b 6∈ C. Then there exists a linear functional
ϕ : Rm → R such that ϕ(v) ≥ 0 for all v ∈ C and ϕ(b) < 0.

Proof
Suppose that b 6∈ C . The cone C is a closed convex set. It follows
from Theorem 5.9 that there exists a linear functional ϕ : Rn → R
and a real number c such that ϕ(v) > c for all v ∈ C and
ϕ(b) < c .
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Now 0 ∈ C , and ϕ(0) = 0. It follows that c < 0, and therefore
ϕ(b) ≤ c < 0.

Let v ∈ C . Then λv ∈ C for all real numbers λ satisfying λ > 0. It

follows that λϕ(v) = ϕ(λv) > c and thus ϕ(v) >
c

λ
for all real

numbers λ satisfying λ > 0, and therefore

ϕ(v) ≥ lim
λ→+∞

c

λ
= 0.

We conclude that ϕ(v) ≥ 0 for all v ∈ C .

Thus ϕ(v) ≥ 0 for all v ∈ C and ϕ(b) < 0, as required.
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Lemma 5.14

(Farkas’ Lemma) Let A be a m × n matrix with real coefficients,
and let b ∈ Rm be an m-dimensional real vector. Then exactly one
of the following two statements is true:—

(i) there exists x ∈ Rn such that Ax = b and x ≥ 0;

(ii) there exists y ∈ Rm such that yTA ≥ 0 and yTb < 0.
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Proof
Let a(1), a(2), . . . , a(n) be the vectors in Rm determined by the
columns of the matrix A, so that (a(j))i = (A)i ,j for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n, and let

C =


n∑

j=1

xja
(j) : xj ≥ 0 for j = 1, 2, . . . , n

 .

It follows from Proposition 5.12 that C is a closed convex cone in
Rm. Moreover

C = {Ax : x ∈ Rn and x ≥ 0}.

Thus b ∈ C if and only if there exists x ∈ Rn such that b = Ax
and x ≥ 0. Therefore statement (i) in the statement of Farkas’
Lemma is true if and only if b ∈ C .
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If b 6∈ C then it follows from Proposition 5.13 that there exists a
linear functional ϕ : Rm → R such that ϕ(v) ≥ 0 for all v ∈ C and
ϕ(b) < 0. Then there exists y ∈ Rm with the property that
ϕ(v) = yTv for all v ∈ Rm. Now Ax ∈ C for all x ∈ Rn satisfying
x ≥ 0. It follows that yTAx ≥ 0 for all x ∈ Rn satisfying x ≥ 0. In
particular (yTA)i = yTAe(i) ≥ 0 for i = 1, 2, . . . ,m, where e(i) is
the vector in Rm whose ith component is equal to 1 and whose
other components are zero. Thus if b 6∈ C then there exists
y ∈ Rm for which yTA ≥ 0 and yTb < 0.
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Conversely suppose that there exists y ∈ Rm such that yTA ≥ 0
and yTb < 0. Then yTAx ≥ 0 for all x ∈ Rn satisfying x ≥ 0, and
therefore yTv ≥ 0 for all v ∈ C . But yTb < 0. It follows that
b 6∈ C . Thus statement (ii) in the statement of Farkas’s Lemma is
true if and only if b 6∈ C . The result follows.
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Corollary 5.15

Let A be a m × n matrix with real coefficients, and let c ∈ Rn be
an n-dimensional real vector. Then exactly one of the following
two statements is true:—

(i) there exists y ∈ Rm such that yTA = cT and y ≥ 0;

(ii) there exists v ∈ Rn such that Av ≥ 0 and cTv < 0.
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Proof
It follows on applying Farkas’s Lemma to the transpose of the
matrix A that exactly one of the following statements is true:—

(i) there exists y ∈ Rm such that ATy = c and y ≥ 0;

(ii) there exists v ∈ Rm such that vTAT ≥ 0 and vTc < 0.

But vTc = cTv. Also ATy = c if and only if yTA = cT , and
vTAT ≥ 0 if and only if Av ≥ 0. The result follows.
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Corollary 5.16

Let A be a m × n matrix with real coefficients, and let c ∈ Rn be
an n-dimensional real vector. Suppose that cTv ≥ 0 for all v ∈ Rn

satisfying Av ≥ 0. Then there exists some there exists y ∈ Rm

such that yTA = cT and y ≥ 0.

Proof
Statement (ii) in the statement of Corollary 5.15 is false, by
assumption, and therefore statement (i) in the statement of that
corollary must be true. The result follows.
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