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5. Duality and Convexity (continued)

5.5. A Separating Hyperplane Theorem

Definition

A subset K of R™ is said to be convex if (1 — pu)x+ ux’ € K for all
elements x and x’ of K and for all real numbers p satisfying
0<wp<l

It follows from the above definition that a subset K of R” is a
convex subset of R™ if and only if, given any two points of K, the
line segment joining those two points is wholly contained in K.

Theorem 5.9

Let m be a positive integer, let K be a closed convex set in R™,
and let b be a vector in R™, where b ¢ K. Then there exists a
linear functional ¢: R™ — R and a real number c such that
@w(x) > ¢ for all x € K and ¢(b) < c.




5. Duality and Convexity (continued)

Proof

It follows from Lemma 5.8 that there exists a point g of K such
that [x —b| > |g — b| for all x € K. Let x € K. Then

(1 —X)g+ Ax € K for all real numbers X satisfying 0 < A\ <1,
because the set K is convex, and therefore

[(1-A)g+Ax—b| > |g—bj
for all real numbers X satisfying 0 < A < 1. Now

(I-Ng+Xx—b=g—b+A(x—g).
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It follows by a straightforward calculation from the definition of the
Euclidean norm that

(1 - A)g+ Ax —bl|?

= lg—-b?+2X\g-b) (x—g)
+ M|x— gl

g —bf?

IA

for all real numbers X satisfying 0 < A < 1. In particular, this
inequality holds for all sufficiently small positive values of A, and
therefore

(g-b)(x—g)>0
for all x € K.
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Let

p(x) = (g —b)"x
for all x € R™. Then ¢: R™ — R is a linear functional on R™, and
©(x) > ¢(g) for all x € K. Moreover

©(g) — ¢(b) = g — b|* >0,

and therefore p(g) > ¢(b). It follows that ¢(x) > ¢ for all x € K,
where ¢ = 1(b) + 2¢(g), and that ¢(b) < c. The result
follows. |}



5. Duality and Convexity (continued)

5.6. Convex Cones

Definition

Let m be a positive integer. A subset C of R™ is said to be a
convex cone in R™ if Av + uw € C for all v,w € C and for all real
numbers A and p satisfying A > 0 and p > 0.

| A\

Lemma 5.10

Let m be a positive integer. Then every convex cone in R™ is a
convex subset of R™.

A\

Proof

Let C be a convex cone in R™ and let v,w € C. Then

Av + puw € C for all non-negative real numbers A and p. In
particular (1 — A)w 4+ Av € C. whenever 0 < A <1, and thus the
convex cone C is a convex set in R™, as required. |}
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Lemma 5.11

Let S be a subset of R™, and let C be the set of all elements of
R™ that can be expressed as a linear combination of the form

S]_a(l) + 52a(2) + coo + sna(n)7

where aV) a® . al" are vectors belonging to S and
S1,52,---,Sp are non-negative real numbers. Then C is a convex

cone in R™.




5. Duality and Convexity (continued)

Proof

Let v and w be elements of C. Then there exist finite subsets S;
and S, of S such that v can be expressed as a linear combination
of the elements of S; with non-negative coefficients and w can be
expressed as a linear combination of the elements of Sy with
non-negative coefficients. Let

S51US, = {a(l),a(z), . ,a(”)}.
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Then there exist non-negative real numbers s1, s, ...,s, and
t1, to, ..., t, such that

n n
v = Z sjaU) and w = Z tjaU).
j=1 j=1

Let A and i be non-negative real numbers. Then
n .
AV + puw = Z()\sj + ,utj)a(f)7
j=1

and As; +ut; > 0 for j =1,2,...,n. It follows that Av + uw € C,
as required. |



5. Duality and Convexity (continued)

Proposition 5.12

Let m be a positive integer, let a®. a®@ . alM eR™ and let C
be the subset of R™ defined such that

C = lea(j):tJEOforjzl,Z...,n
j=1

Then C is a closed convex cone in R™.

Proof
It follows from Lemma 5.11 that C is a convex cone in R™. We
must prove that this convex cone is a closed set.



5. Duality and Convexity (continued)

The vectors a®) . a® ... al" span a vector subspace V of R™
that is isomorphic as a real vector space to R¥ for some integer k
satisfying 0 < k < m. This vector subspace V of R™ is a closed
subset of R™, and therefore any subset of V that is closed in V
will also be closed in R™. Replacing R™ by R¥, if necessary, we
may assume, without loss of generality that the vectors

a® a®@ .. al" span the vector space R™. Thus if A is the

m x n matrix defined such that (A);; = (a¥)); for i =1,2,...,m
and j =1,2,..., n then the matrix A is of rank m.
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Let B be the collection consisting of all subsets B of {1,2,...,n}
for which the members of the set {aU) : j € B} constitute a basis
of the real vector space R™ and, for each B € B, let

Cg = {Zs;a(j"):S;ZOfOFf=1’2,-~-»m}’

i=1

where j1, o, ..., Jm are distinct and are the elements of the set B.
It follows from Lemma 5.7 that the set Cg is closed in R™ for all
B € B.
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Let b € C. The definition of C then ensures that there exists some
x € R" that satisfies Ax = b and x > 0. Thus the problem of
determining x € R” such that Ax = b and x > 0 has a feasible
solution. It follows from Theorem 4.2 that there exists a basic
feasible solution to this problem, and thus there exist distinct
integers j1,J2,...,/m between 1 and n and non-negative real
numbers s1, S, .. ., sm such that al) al2) .. aUm) are linearly

independent and
b=3 sal),
i=1

Therefore b € Cg where

B = {j17j27 R ,_jm}-
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We have thus shown that, given any element b of C, there exists a
subset B of {1,2,...,n} belonging to B for which b € Cg. It
follows from this that the subset C of R™ is the union of the
closed sets Cg taken over all elements B of the finite set B. Thus
C is a finite union of closed subsets of R™, and is thus itself a
closed subset of R™, as required. |}



5. Duality and Convexity (continued)

5.7. Farkas’ Lemma

Proposition 5.13

Let C be a closed convex cone in R™ and let b be a vector in R™.
Suppose that b & C. Then there exists a linear functional
@: R™ — R such that p(v) > 0 for all v € C and ¢(b) < 0.

Proof

Suppose that b € C. The cone C is a closed convex set. It follows
from Theorem 5.9 that there exists a linear functional ¢: R" — R
and a real number ¢ such that ¢(v) > ¢ for all v € C and

o(b) < c.
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Now 0 € C, and ¢(0) = 0. It follows that ¢ < 0, and therefore
p(b) <c<0.

Let ve C. Then Av € C for all real numbers X satisfying A > 0. It
c

follows that Ap(v) = p(Av) > ¢ and thus p(v) > X for all real

numbers A satisfying A > 0, and therefore

C
> lim < =o0.
QO(V) - )\—I>Too

We conclude that ¢(v) > 0 for all v € C.
Thus ¢(v) > 0 for all v € C and ¢(b) < 0, as required. |}
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Lemma 5.14

(Farkas' Lemma) Let A be a m x n matrix with real coefficients,
and let b € R™ be an m-dimensional real vector. Then exactly one
of the following two statements is true:—

(i) there exists x € R" such that Ax =b and x > 0;
(i) there exists y € R™ such thaty’ A> 0 andy’b < 0.
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Proof

Let a®.a@ ... a(" pe the vectors in R™ determined by the
columns of the matrix A, so that (al)); = (A);; for i =1,2,...,m
and j=1,2,...,n, and let

C= ija(j):szOforjzl,Z...,n
j=1

It follows from Proposition 5.12 that C is a closed convex cone in
R™. Moreover

C={Ax:xecR"and x > 0}.

Thus b € C if and only if there exists x € R" such that b = Ax
and x > 0. Therefore statement (i) in the statement of Farkas’
Lemma is true if and only if b € C.
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If b & C then it follows from Proposition 5.13 that there exists a
linear functional ¢: R™ — R such that ¢(v) > 0 for all v € C and
©(b) < 0. Then there exists y € R™ with the property that

@o(v) =yTv for all v € R™. Now Ax € C for all x € R” satisfying
x > 0. It follows that y " Ax > 0 for all x € R” satisfying x > 0. In
particular (y" A); = yT Ael) > 0 for i =1,2,..., m, where () is
the vector in R™ whose ith component is equal to 1 and whose
other components are zero. Thus if b € C then there exists

y € R™ for whichy’A>0andy’b < 0.
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Conversely suppose that there exists y € R™ such that y’ A > 0
and y"b < 0. Then y" Ax > 0 for all x € R” satisfying x > 0, and
therefore y"v > 0 for all v e C. But y'b < 0. It follows that

b ¢ C. Thus statement (ii) in the statement of Farkas's Lemma is
true if and only if b ¢ C. The result follows. |}
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Corollary 5.15

Let A be a m x n matrix with real coefficients, and let c € R" be
an n-dimensional real vector. Then exactly one of the following
two statements is true:—

(i) there exists y € R™ such thaty" A=c' andy > 0;
(i) there exists v € R" such that Av >0 and c¢’v < 0.
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Proof
It follows on applying Farkas's Lemma to the transpose of the
matrix A that exactly one of the following statements is true:—

(i) there exists y € R™ such that ATy = c and y > 0;

(i) there exists v.€ R™ such that vV AT >0 and vic < 0.
Butvic=c’v. Also ATy =cifand only ify’A=c’, and
v AT >0 if and only if Av > 0. The result follows. |}
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Corollary 5.16

Let A be a m x n matrix with real coefficients, and let c € R" be
an n-dimensional real vector. Suppose that ¢"v > 0 for all v € R"
satisfying Av > 0. Then there exists some there exists y € R™
such thatyTA=c' andy > 0.

Proof

Statement (ii) in the statement of Corollary 5.15 is false, by
assumption, and therefore statement (i) in the statement of that
corollary must be true. The result follows. |}
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