MA3484—Methods of Mathematical Economics School of Mathematics, Trinity College Hilary Term 2017 Lecture 20 (March 10, 2017)

David R. Wilkins

5.3. Complementary Slackness and the Weak Duality Theorem

Theorem 5.2

(Weak Duality Theorem for Linear Programming Problems in Dantzig Standard Form) Let *m* and *n* be integers, let *A* be an $m \times n$ matrix with real coefficients, let $\mathbf{b} \in \mathbb{R}^m$ and let $\mathbf{c} \in \mathbb{R}^n$. Let $\mathbf{x} \in \mathbb{R}^n$ satisfy the constraints $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$, and let $\mathbf{p} \in \mathbb{R}^m$ satisfy the constraint $\mathbf{p}^T A \le \mathbf{c}$. Then $\mathbf{p}^T \mathbf{b} \le \mathbf{c}^T \mathbf{x}$. Moreover $\mathbf{p}^T \mathbf{b} = \mathbf{c}^T \mathbf{x}$ if and only if the following complementary slackness condition is satisfied:

(**p**^TA)_j = (**c**)_j for all integers j between 1 and n for which (**x**)_j > 0.

Proof

Let $x_j = (\mathbf{x})_j$ and $c_j = (\mathbf{c})_j$ for j = 1, 2, ..., n. The constraints satisfied by the vectors \mathbf{x} and \mathbf{p} ensure that

$$\begin{aligned} \mathbf{c}^T \mathbf{x} - \mathbf{p}^T \mathbf{b} &= (\mathbf{c}^T - \mathbf{p}^T A) \mathbf{x} + \mathbf{p}^T (A \mathbf{x} - \mathbf{b}) \\ &= (\mathbf{c}^T - \mathbf{p}^T A) \mathbf{x}, \end{aligned}$$

because $A\mathbf{x} - \mathbf{b} = \mathbf{0}$. But also $\mathbf{x} \ge \mathbf{0}$ and $\mathbf{c}^T - \mathbf{p}^T A \ge \mathbf{0}$, and therefore $(\mathbf{c}^T - \mathbf{p}^T A)\mathbf{x} \ge 0$. Moreover

$$(\mathbf{c}^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}} A)\mathbf{x} = \sum_{j=1}^{n} (c_j - (\mathbf{p}^{\mathsf{T}} A)_j)x_j,$$

where $c_j - (\mathbf{p}^T A)_j \ge 0$ and $x_j \ge 0$ for j = 1, 2, ..., n. It follows that $(\mathbf{c}^T - \mathbf{p}^T A)\mathbf{x} = 0$ if and only if $c_j - (\mathbf{p}^T A)_j = 0$ for all integers j between 1 and n for which $x_j > 0$. The result follows.

Corollary 5.3

Let a linear programming problem in Dantzig standard form be specified by an $m \times n$ constraint matrix A, and m-dimensional target vector **b** and an n-dimensional cost vector **c**. Let \mathbf{x}^* be a feasible solution of this primal problem, and let \mathbf{p}^* be a solution of the dual problem. Then $\mathbf{p}^{*T}A \leq \mathbf{c}^T$. Suppose that the complementary slackness conditions for this primal-dual pair are satisfied, so that $(\mathbf{p}^{*T}A)_j = (\mathbf{c})_j$ for all integers j between 1 and nfor which $(\mathbf{x}^*)_j > 0$. Then \mathbf{x}^* is an optimal solution of the primal problem, and \mathbf{p}^* is an optimal solution of the dual problem.

Proof

Because the complementary slackness conditions for this primal-dual pair are satisfied, it follows from the Weak Duality Theorem that $\mathbf{c}^T \mathbf{x}^* = \mathbf{p}^{*T} \mathbf{b}$ (see Theorem 5.2). But it then also follows from the Weak Duality Theorem that

$$\mathbf{c}^T \mathbf{x} \ge \mathbf{p}^{*T} \mathbf{b} = \mathbf{c}^T \mathbf{x}^*$$

for all feasible solutions ${\bf x}$ of the primal problem. It follows that ${\bf x}^*$ is an optimal solution of the primal problem. Similarly

$$\mathbf{p}^T \mathbf{b} \leq \mathbf{c}^T \mathbf{x}^* = \mathbf{p}^* {}^T \mathbf{b}$$

for all feasible solutions \mathbf{p} of the dual problem. It follows that \mathbf{p}^* is an optimal solution of the dual problem, as required.

Another special case of duality in linear programming is exemplified by a primal-dual pair of problems in *Von Neumann Symmetric Form.* In this case the primal and dual problems are specified in terms of an $m \times n$ constraint matrix A, an m-dimensional target vector **b** and an n-dimensional cost vector **c**. The objective of the problem is minimize $\mathbf{c}^T \mathbf{x}$ amongst n-dimensional vectors \mathbf{x} that satisfy the constraints $A\mathbf{x} \ge \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$. The dual problem is to maximize $\mathbf{p}^T \mathbf{b}$ amongst m-dimensional vectors \mathbf{p} that satisfy the constraints $\mathbf{p}^T A \le \mathbf{c}^T$ and $\mathbf{p} \ge \mathbf{0}$.

Theorem 5.4

(Weak Duality Theorem for Linear Programming Problems in Von Neumann Symmetric Form)

Let *m* and *n* be integers, let *A* be an $m \times n$ matrix with real coefficients, let $\mathbf{b} \in \mathbb{R}^m$ and let $\mathbf{c} \in \mathbb{R}^n$. Let $\mathbf{x} \in \mathbb{R}^n$ satisfy the constraints $A\mathbf{x} \ge \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$, and let $\mathbf{p} \in \mathbb{R}^m$ satisfy the constraints $\mathbf{p}^T A \le \mathbf{c}$ and $\mathbf{p}^T \ge \mathbf{0}$. Then $\mathbf{p}^T \mathbf{b} \le \mathbf{c}^T \mathbf{x}$. Moreover $\mathbf{p}^T \mathbf{b} = \mathbf{c}^T \mathbf{x}$ if and only if the following complementary slackness conditions are satisfied:

- $(A\mathbf{x})_i = (\mathbf{b})_i$ for all integers *i* between 1 and *m* for which $(\mathbf{p})_i > 0$;
- (**p**^TA)_j = (**c**)_j for all integers j between 1 and n for which (**x**)_j > 0;

Proof

The constraints satisfied by the vectors \mathbf{x} and \mathbf{p} ensure that

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} - \mathbf{p}^{\mathsf{T}}\mathbf{b} = (\mathbf{c}^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}}A)\mathbf{x} + \mathbf{p}^{\mathsf{T}}(A\mathbf{x} - \mathbf{b}).$$

But $\mathbf{x} \ge \mathbf{0}$, $\mathbf{p} \ge \mathbf{0}$, $A\mathbf{x} - \mathbf{b} \ge \mathbf{0}$ and $\mathbf{c}^T - \mathbf{p}^T A \ge \mathbf{0}$. It follows that $\mathbf{c}^T \mathbf{x} - \mathbf{p}^T \mathbf{b} \ge 0$. and therefore $\mathbf{c}^T \mathbf{x} \ge \mathbf{p}^T \mathbf{b}$. Moreover $\mathbf{c}^T \mathbf{x} - \mathbf{p}^T \mathbf{b} = 0$ if and only if $(\mathbf{c}^T - \mathbf{p}^T A)_j(\mathbf{x})_j = 0$ for j = 1, 2, ..., n and $(\mathbf{p})_i (A\mathbf{x} - \mathbf{b})_i = 0$, and therefore $\mathbf{c}^T \mathbf{x} = \mathbf{p}^T \mathbf{b}$ if and only if the complementary slackness conditions are satisfied.

Theorem 5.5

(Weak Duality Theorem for Linear Programming Problems in General Primal Form)

Let $\mathbf{x} \in \mathbb{R}^n$ be a feasible solution to a linear programming problem Primal($A, \mathbf{b}, \mathbf{c}, I^+, J^+$) expressed in general primal form with constraint matrix A with m rows and n columns, target vector \mathbf{b} , cost vector \mathbf{c} , inequality constraint specifier I^+ and variable sign specifier J^+ , and let $\mathbf{p} \in \mathbb{R}^m$ be a feasible solution to the corresponding dual programming problem Dual($A, \mathbf{b}, \mathbf{c}, I^+, J^+$). Then $\mathbf{p}^T \mathbf{b} \leq \mathbf{c}^T \mathbf{x}$. Moreover $\mathbf{p}^T \mathbf{b} = \mathbf{c}^T \mathbf{x}$ if and only if the following complementary slackness conditions are satisfied:—

•
$$(A\mathbf{x})_i = \mathbf{b}_i$$
 whenever $(\mathbf{p})_i \neq 0$;

•
$$(\mathbf{p}^T A)_j = (\mathbf{c})_j$$
 whenever $(\mathbf{x})_j \neq 0$.

Proof

The feasible solution ${\bf x}$ to the primal problem satisfies the following constraints:—

- $A\mathbf{x} \ge \mathbf{b};$
- $(A\mathbf{x})_i = (\mathbf{b})_i$ unless $i \in I^+$;
- $(\mathbf{x})_j \ge 0$ for all $j \in J^+$.

The feasible solution ${\bf p}$ to the dual problem satisfies the following constraints:—

- $\mathbf{p}^T A \leq \mathbf{c}^T$;
- $(\mathbf{p})_i \geq 0$ for all $i \in I^+$;
- $(\mathbf{p}^T A)_j = (\mathbf{c})_j$ unless $j \in J^+$.

Now

$$\mathbf{c}^{T}\mathbf{x} - \mathbf{p}^{T}\mathbf{b} = (\mathbf{c}^{T} - \mathbf{p}^{T}A)\mathbf{x} + \mathbf{p}^{T}(A\mathbf{x} - \mathbf{b})$$

=
$$\sum_{j=1}^{n} (\mathbf{c}^{T} - \mathbf{p}^{T}A)_{j}(\mathbf{x})_{j} + \sum_{i=1}^{m} (\mathbf{p})_{i}(A\mathbf{x} - \mathbf{b})_{i}.$$

Let j be an integer between 1 and n. If $j \in J^+$ then $(\mathbf{x})_j \ge 0$ and $(\mathbf{c}^T - \mathbf{p}^T A)_j \ge 0$, and therefore

$$(\mathbf{c}^T - \mathbf{p}^T A)_j (\mathbf{x})_j \geq 0.$$

If $j \notin J^+$ then $(\mathbf{p}^T A)_j = (\mathbf{c})_j$, and therefore

$$(\mathbf{c}^T - \mathbf{p}^T A)_j(\mathbf{x})_j = 0$$

irrespective of whether $(\mathbf{x})_i$ is positive, negative or zero.

It follows that $\sum_{j=1}^n (\mathbf{c}^{\mathcal{T}} - \mathbf{p}^{\mathcal{T}} \mathcal{A})_j (\mathbf{x})_j \geq 0.$

Moreover

$$\sum_{j=1}^{n} (\mathbf{c}^{T} - \mathbf{p}^{T} A)_{j} (\mathbf{x})_{j} = 0$$

if and only if $(\mathbf{p}^T A)_j = (\mathbf{c})_j$ for all indices j for which $(\mathbf{x})_j \neq 0$.

Next let *i* be an index between 1 and *m*. If $i \in I^+$ then $(\mathbf{p})_i \ge 0$ and $(A\mathbf{x} - \mathbf{b})_i \ge 0$, and therefore $(\mathbf{p})_i(A\mathbf{x} - \mathbf{b})_i \ge 0$. If $i \notin I^+$ then $(A\mathbf{x})_i = (\mathbf{b})_i$, and therefore $(\mathbf{p})_i(A\mathbf{x} - \mathbf{b})_i = 0$, irrespective of whether $(\mathbf{p})_i$ is positive, negative or zero. It follows that

$$\sum_{i=1}^m (\mathbf{p})_i (A\mathbf{x} - \mathbf{p})_i \ge 0$$

Moreover

$$\sum_{i=1}^m (\mathbf{p})_i (A\mathbf{x} - \mathbf{p})_i = 0.$$

if and only if $(A\mathbf{x})_i = (\mathbf{b})_i$ for all indices *i* for which $(\mathbf{p})_i \neq 0$. The result follows.

Corollary 5.6

Let $\mathbf{x}^* \in \mathbb{R}^n$ be a feasible solution to a linear programming problem $Primal(A, \mathbf{b}, \mathbf{c}, I^+, J^+)$ expressed in general primal form with constraint matrix A with m rows and n columns, target vector **b**, cost vector \mathbf{c} , inequality constraint specifier I^+ and variable sign specifier J^+ , and let $\mathbf{p}^* \in \mathbb{R}^m$ be a feasible solution to the corresponding dual programming problem $Dual(A, \mathbf{b}, \mathbf{c}, I^+, J^+)$. Suppose that the complementary slackness conditions are satisfied for this pair of problems, so that $(A\mathbf{x})_i = \mathbf{b}_i$ whenever $(\mathbf{p})_i \neq 0$, and $(\mathbf{p}^T A)_i = (\mathbf{c})_i$ whenever $(\mathbf{x})_i \neq 0$. Then \mathbf{x}^* is an optimal solution for the primal problem and \mathbf{p}^* is an optimal solution for the dual problem.

Proof

Because the complementary slackness conditions for this primal-dual pair are satisfied, it follows from the Weak Duality Theorem that $\mathbf{c}^T \mathbf{x}^* = \mathbf{p}^{*T} \mathbf{b}$ (see Theorem 5.5). But it then also follows from the Weak Duality Theorem that

$$\mathbf{c}^T \mathbf{x} \ge \mathbf{p}^{*T} \mathbf{b} = \mathbf{c}^T \mathbf{x}^*$$

for all feasible solutions ${\bf x}$ of the primal problem. It follows that ${\bf x}^*$ is an optimal solution of the primal problem. Similarly

$$\mathbf{p}^T \mathbf{b} \leq \mathbf{c}^T \mathbf{x}^* = \mathbf{p}^* {}^T \mathbf{b}$$

for all feasible solutions \mathbf{p} of the dual problem. It follows that \mathbf{p}^* is an optimal solution of the dual problem, as required.

Example

Consider the following linear programming problem in general primal form:—

find values of x_1 , x_2 , x_3 and x_4 so as to minimize the objective function

 $c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$

subject to the following constraints:-

•
$$a_{1,1}x_1 + a_{1,2}x_2 + a_{1,3}x_3 + a_{1,4}x_4 = b_1;$$

• $a_{2,1}x_1 + a_{2,2}x_2 + a_{2,3}x_3 + a_{2,4}x_4 = b_2;$
• $a_{3,1}x_1 + a_{3,2}x_2 + a_{3,3}x_3 + a_{3,4}x_4 \ge b_3;$
• $x_1 \ge 0$ and $x_3 \ge 0$.

Here $a_{i,j}$, b_i and c_j are constants for i = 1, 2, 3 and j = 1, 2, 3, 4.

The dual problem is the following:—

find values of p_1 , p_2 and p_3 so as to maximize the objective function

 $p_1b_1 + p_2b_2 + p_3b_3$

subject to the following constraints:-

- $p_1a_{1,1} + p_2a_{2,1} + p_3a_{3,1} \le c_1;$
- $p_1a_{1,2} + p_2a_{2,2} + p_3a_{3,2} = c_2;$
- $p_1a_{1,3} + p_2a_{2,3} + p_3a_{3,3} \le c_3;$
- $p_1a_{1,4} + p_2a_{2,4} + p_3a_{3,4} = c_4;$
- $p_3 \ge 0$.

We refer to the first and second problems as the *primal problem* and the *dual problem* respectively. Let (x_1, x_2, x_3, x_4) be a feasible solution of the primal problem, and let (p_1, p_2, p_3) be a feasible solution of the dual problem. Then

$$\sum_{j=1}^{4} c_j x_j - \sum_{i=1}^{3} p_i b_i = \sum_{j=1}^{4} \left(c_j - \sum_{i=1}^{3} p_i a_{i,j} \right) x_j + \sum_{i=1}^{3} p_i \left(\sum_{j=1}^{4} a_{i,j} x_j - b_i \right).$$

Now the quantity
$$c_j - \sum_{i=1}^{3} p_i a_{i,j} = 0$$
 for $j = 2$ and $j = 4$, and $\sum_{j=1}^{4} a_{i,j} x_j - b_i = 0$ for $i = 1$ and $i = 2$. It follows that

$$\sum_{j=1}^{4} c_j x_j - \sum_{i=1}^{3} p_i b_i = \left(c_1 - \sum_{i=1}^{3} p_i a_{i,1}\right) x_1 \\ + \left(c_3 - \sum_{i=1}^{3} p_i a_{i,3}\right) x_3 \\ + p_3 \left(\sum_{j=1}^{4} a_{3,j} x_j - b_3\right).$$

Now $x_1 \ge 0$, $x_3 \ge 0$ and $p_3 \ge 0$. Also

$$c_1 - \sum_{i=1}^{3} p_i a_{i,1} \ge 0, \quad c_3 - \sum_{i=1}^{3} p_i a_{i,3} \ge 0$$

and

$$\sum_{j=1}^4 a_{3,j} x_j - b_3 \ge 0.$$

It follows that

$$\sum_{j=1}^{4} c_j x_j - \sum_{i=1}^{3} p_i b_i \ge 0.$$

and thus

$$\sum_{j=1}^4 c_j x_j \geq \sum_{i=1}^3 p_i b_i.$$

Now suppose that

$$\sum_{j=1}^4 c_j x_j = \sum_{i=1}^3 p_i b_i$$

Then

$$\begin{pmatrix} c_1 - \sum_{i=1}^{3} p_i a_{i,1} \end{pmatrix} x_1 = 0, \\ \begin{pmatrix} c_3 - \sum_{i=1}^{3} p_i a_{i,3} \end{pmatrix} x_3 = 0, \\ p_3 \left(\sum_{j=1}^{4} a_{3,j} x_j - b_3 \right) = 0,$$

because a sum of three non-negative quantities is equal to zero if and only if each of those quantities is equal to zero. It follows that

$$\sum_{j=1}^4 c_j x_j = \sum_{i=1}^3 p_i b_i$$

if and only if the following three complementary slackness conditions are satisfied:—

•
$$\sum_{i=1}^{3} p_i a_{i,1} = c_1$$
 if $x_1 > 0$;
• $\sum_{i=1}^{3} p_i a_{i,3} = c_3$ if $x_3 > 0$;
• $\sum_{i=1}^{4} a_{3,i} x_j = b_3$ if $p_3 > 0$.

5.4. Open and Closed Sets in Euclidean Spaces

Let *m* be a positive integer. The *Euclidean norm* $|\mathbf{x}|$ of an element \mathbf{x} of \mathbb{R}^m is defined such that

$$|\mathbf{x}|^2 = \sum_{i=1}^m (\mathbf{x})_i^2.$$

The Euclidean distance function d on \mathbb{R}^m is defined such that

$$d(\mathbf{x}, \mathbf{y}) = |\mathbf{y} - \mathbf{x}|$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$. The Euclidean distance function satisfies the Triangle Inequality, together with all the other basic properties required of a distance function on a metric space, and therefore \mathbb{R}^m with the Euclidean distance function is a metric space.

A subset U of \mathbb{R}^m is said to be *open* in \mathbb{R}^m if, given any point **b** of U, there exists some real number ε satisfying $\varepsilon > 0$ such that

$$\{\mathbf{x} \in \mathbb{R}^m : |\mathbf{x} - \mathbf{b}| < \varepsilon\} \subset U.$$

A subset of \mathbb{R}^m is *closed* in \mathbb{R}^m if and only if its complement is open in \mathbb{R}^m .

Every union of open sets in \mathbb{R}^m is open in \mathbb{R}^m , and every finite intersection of open sets in \mathbb{R}^m is open in \mathbb{R}^m .

Every intersection of closed sets in \mathbb{R}^m is closed in \mathbb{R}^m , and every finite union of closed sets in \mathbb{R}^m is closed in \mathbb{R}^m .

Lemma 5.7

Let *m* be a positive integer, let $\mathbf{u}^{(1)}, \mathbf{u}^{(2)}, \dots, \mathbf{u}^{(m)}$ be a basis of \mathbb{R}^m , and let

$$F = \left\{ \sum_{i=1}^{m} s_i \mathbf{u}^{(i)} : s_i \ge 0 \text{ for } i = 1, 2, \dots, m \right\}$$

Then F is a closed set in \mathbb{R}^m .

Proof Let $T: \mathbb{R}^m \to \mathbb{R}^m$ be defined such that

$$T(s_1, s_2, \ldots, s_m) = \sum_{i=1}^m s_i \mathbf{u}^{(i)}$$

for all real numbers s_1, s_2, \ldots, s_m . Then T is an invertible linear operator on \mathbb{R}^m , and F = T(G), where

$$G = \{ \mathbf{x} \in \mathbb{R}^m : (\mathbf{x})_i \ge 0 \text{ for } i = 1, 2, \dots, m \}.$$

Moreover the subset G of \mathbb{R}^m is closed in \mathbb{R}^m .

Now it is a standard result of real analysis that every linear operator on a finite-dimensional vector space is continuous. Therefore $T^{-1}: \mathbb{R}^m \to \mathbb{R}^m$ is continuous. Moreover T(G) is the preimage of the closed set G under the continuous map T^{-1} , and the preimage of any closed set under a continuous map is itself closed. It follows that T(G) is closed in \mathbb{R}^m . Thus F is closed in \mathbb{R}^m , as required.

Lemma 5.8

Let *m* be a positive integer, let *F* be a non-empty closed set in \mathbb{R}^m , and let **b** be a vector in \mathbb{R}^m . Then there exists an element **g** of *F* such that $|\mathbf{x} - \mathbf{b}| \ge |\mathbf{g} - \mathbf{b}|$ for all $\mathbf{x} \in F$.

Proof

Let R be a positive real number chosen large enough to ensure that the set F_0 is non-empty, where

$$F_0 = F \cap \{ \mathbf{x} \in \mathbb{R}^m : |\mathbf{x} - \mathbf{b}| \le R \}.$$

Then F_0 is a closed bounded subset of \mathbb{R}^m . Let $f: F_0 \to \mathbb{R}$ be defined such that $f(\mathbf{x}) = |\mathbf{x} - \mathbf{b}|$ for all $\mathbf{x} \in F$. Then $f: F_0 \to \mathbb{R}$ is a continuous function on F_0 .

Now it is a standard result of real analysis that any continuous real-valued function on a closed bounded subset of a finite-dimensional Euclidean space attains a minimum value at some point of that set. It follows that there exists an element \mathbf{g} of F_0 such that

$$|\mathbf{x} - \mathbf{b}| \ge |\mathbf{g} - \mathbf{b}|$$

for all $\mathbf{x} \in F_0$. If $\mathbf{x} \in F \setminus F_0$ then

$$|\mathbf{x} - \mathbf{b}| \ge R \ge |\mathbf{g} - \mathbf{b}|.$$

It follows that

$$|\mathbf{x} - \mathbf{b}| \ge |\mathbf{g} - \mathbf{b}|$$

for all $\mathbf{x} \in F$, as required.