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5. Duality and Convexity (continued)

5.3. Complementary Slackness and the Weak Duality Theorem

Theorem 5.2

(Weak Duality Theorem for Linear Programming Problems in
Dantzig Standard Form)
Let m and n be integers, let A be an m × n matrix with real
coefficients, let b ∈ Rm and let c ∈ Rn. Let x ∈ Rn satisfy the
constraints Ax = b and x ≥ 0, and let p ∈ Rm satisfy the
constraint pTA ≤ c. Then pTb ≤ cTx. Moreover pTb = cTx if
and only if the following complementary slackness condition is
satisfied:

(pTA)j = (c)j for all integers j between 1 and n for which
(x)j > 0.
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Proof
Let xj = (x)j and cj = (c)j for j = 1, 2, . . . , n. The constraints
satisfied by the vectors x and p ensure that

cTx− pTb = (cT − pTA)x + pT (Ax− b)

= (cT − pTA)x,

because Ax− b = 0. But also x ≥ 0 and cT − pTA ≥ 0, and
therefore (cT − pTA)x ≥ 0. Moreover

(cT − pTA)x =
n∑

j=1

(cj − (pTA)j)xj ,

where cj − (pTA)j ≥ 0 and xj ≥ 0 for j = 1, 2, . . . , n. It follows
that (cT − pTA)x = 0 if and only if cj − (pTA)j = 0 for all
integers j between 1 and n for which xj > 0. The result
follows.
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Corollary 5.3

Let a linear programming problem in Dantzig standard form be
specified by an m × n constraint matrix A, and m-dimensional
target vector b and an n-dimensional cost vector c. Let x∗ be a
feasible solution of this primal problem, and let p∗ be a solution of
the dual problem. Then p∗TA ≤ cT . Suppose that the
complementary slackness conditions for this primal-dual pair are
satisfied, so that (p∗TA)j = (c)j for all integers j between 1 and n
for which (x∗)j > 0. Then x∗ is an optimal solution of the primal
problem, and p∗ is an optimal solution of the dual problem.
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Proof
Because the complementary slackness conditions for this
primal-dual pair are satisfied, it follows from the Weak Duality
Theorem that cTx∗ = p∗Tb (see Theorem 5.2). But it then also
follows from the Weak Duality Theorem that

cTx ≥ p∗Tb = cTx∗

for all feasible solutions x of the primal problem. It follows that x∗

is an optimal solution of the primal problem. Similarly

pTb ≤ cTx∗ = p∗Tb

for all feasible solutions p of the dual problem. It follows that p∗ is
an optimal solution of the dual problem, as required.
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Another special case of duality in linear programming is exemplified
by a primal-dual pair of problems in Von Neumann Symmetric
Form. In this case the primal and dual problems are specified in
terms of an m × n constraint matrix A, an m-dimensional target
vector b and an n-dimensional cost vector c. The objective of the
problem is minimize cTx amongst n-dimensional vectors x that
satisfy the constraints Ax ≥ b and x ≥ 0. The dual problem is to
maximize pTb amongst m-dimensional vectors p that satisfy the
constraints pTA ≤ cT and p ≥ 0.
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Theorem 5.4

(Weak Duality Theorem for Linear Programming Problems in Von
Neumann Symmetric Form)

Let m and n be integers, let A be an m × n matrix with real
coefficients, let b ∈ Rm and let c ∈ Rn. Let x ∈ Rn satisfy the
constraints Ax ≥ b and x ≥ 0, and let p ∈ Rm satisfy the
constraints pTA ≤ c and pT ≥ 0. Then pTb ≤ cTx. Moreover
pTb = cTx if and only if the following complementary slackness
conditions are satisfied:

(Ax)i = (b)i for all integers i between 1 and m for which
(p)i > 0;

(pTA)j = (c)j for all integers j between 1 and n for which
(x)j > 0;
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Proof
The constraints satisfied by the vectors x and p ensure that

cTx− pTb = (cT − pTA)x + pT (Ax− b).

But x ≥ 0, p ≥ 0, Ax− b ≥ 0 and cT − pTA ≥ 0. It follows that
cTx− pTb ≥ 0. and therefore cTx ≥ pTb. Moreover
cTx− pTb = 0 if and only if (cT − pTA)j(x)j = 0 for
j = 1, 2, . . . , n and (p)i (Ax− b)i = 0, and therefore cTx = pTb if
and only if the complementary slackness conditions are
satisfied.
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Theorem 5.5

(Weak Duality Theorem for Linear Programming Problems in
General Primal Form)

Let x ∈ Rn be a feasible solution to a linear programming problem
Primal(A,b, c, I+, J+) expressed in general primal form with
constraint matrix A with m rows and n columns, target vector b,
cost vector c, inequality constraint specifier I+ and variable sign
specifier J+, and let p ∈ Rm be a feasible solution to the
corresponding dual programming problem Dual(A,b, c, I+, J+).
Then pTb ≤ cTx. Moreover pTb = cTx if and only if the
following complementary slackness conditions are satisfied:—

(Ax)i = bi whenever (p)i 6= 0;

(pTA)j = (c)j whenever (x)j 6= 0.
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Proof
The feasible solution x to the primal problem satisfies the following
constraints:—

Ax ≥ b;

(Ax)i = (b)i unless i ∈ I+;

(x)j ≥ 0 for all j ∈ J+.

The feasible solution p to the dual problem satisfies the following
constraints:—

pTA ≤ cT ;

(p)i ≥ 0 for all i ∈ I+;

(pTA)j = (c)j unless j ∈ J+.
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Now

cTx− pTb = (cT − pTA)x + pT (Ax− b)

=
n∑

j=1

(cT − pTA)j(x)j +
m∑
i=1

(p)i (Ax− b)i .

Let j be an integer between 1 and n. If j ∈ J+ then (x)j ≥ 0 and
(cT − pTA)j ≥ 0, and therefore

(cT − pTA)j(x)j ≥ 0.

If j 6∈ J+ then (pTA)j = (c)j , and therefore

(cT − pTA)j(x)j = 0,

irrespective of whether (x)j is positive, negative or zero.
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It follows that
n∑

j=1

(cT − pTA)j(x)j ≥ 0.

Moreover
n∑

j=1

(cT − pTA)j(x)j = 0

if and only if (pTA)j = (c)j for all indices j for which (x)j 6= 0.
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Next let i be an index between 1 and m. If i ∈ I+ then (p)i ≥ 0
and (Ax− b)i ≥ 0, and therefore (p)i (Ax− b)i ≥ 0. If i 6∈ I+ then
(Ax)i = (b)i , and therefore (p)i (Ax− b)i = 0, irrespective of
whether (p)i is positive, negative or zero. It follows that

m∑
i=1

(p)i (Ax− p)i ≥ 0.

Moreover
m∑
i=1

(p)i (Ax− p)i = 0.

if and only if (Ax)i = (b)i for all indices i for which (p)i 6= 0. The
result follows.
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Corollary 5.6

Let x∗ ∈ Rn be a feasible solution to a linear programming problem
Primal(A,b, c, I+, J+) expressed in general primal form with
constraint matrix A with m rows and n columns, target vector b,
cost vector c, inequality constraint specifier I+ and variable sign
specifier J+, and let p∗ ∈ Rm be a feasible solution to the
corresponding dual programming problem Dual(A,b, c, I+, J+).
Suppose that the complementary slackness conditions are satisfied
for this pair of problems, so that (Ax)i = bi whenever (p)i 6= 0,
and (pTA)j = (c)j whenever (x)j 6= 0. Then x∗ is an optimal
solution for the primal problem and p∗ is an optimal solution for
the dual problem.
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Proof
Because the complementary slackness conditions for this
primal-dual pair are satisfied, it follows from the Weak Duality
Theorem that cTx∗ = p∗Tb (see Theorem 5.5). But it then also
follows from the Weak Duality Theorem that

cTx ≥ p∗Tb = cTx∗

for all feasible solutions x of the primal problem. It follows that x∗

is an optimal solution of the primal problem. Similarly

pTb ≤ cTx∗ = p∗Tb

for all feasible solutions p of the dual problem. It follows that p∗ is
an optimal solution of the dual problem, as required.
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Example
Consider the following linear programming problem in general
primal form:—

find values of x1, x2, x3 and x4 so as to minimize the
objective function

c1x1 + c2x2 + c3x3 + c4x4

subject to the following constraints:—

a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 = b1;
a2,1x1 + a2,2x2 + a2,3x3 + a2,4x4 = b2;
a3,1x1 + a3,2x2 + a3,3x3 + a3,4x4 ≥ b3;
x1 ≥ 0 and x3 ≥ 0.

Here ai ,j , bi and cj are constants for i = 1, 2, 3 and j = 1, 2, 3, 4.
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The dual problem is the following:—

find values of p1, p2 and p3 so as to maximize the
objective function

p1b1 + p2b2 + p3b3

subject to the following constraints:—

p1a1,1 + p2a2,1 + p3a3,1 ≤ c1;
p1a1,2 + p2a2,2 + p3a3,2 = c2;
p1a1,3 + p2a2,3 + p3a3,3 ≤ c3;
p1a1,4 + p2a2,4 + p3a3,4 = c4;
p3 ≥ 0.
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We refer to the first and second problems as the primal problem
and the dual problem respectively. Let (x1, x2, x3, x4) be a feasible
solution of the primal problem, and let (p1, p2, p3) be a feasible
solution of the dual problem. Then

4∑
j=1

cjxj −
3∑

i=1

pibi =
4∑

j=1

(
cj −

3∑
i=1

piai ,j

)
xj

+
3∑

i=1

pi

 4∑
j=1

ai ,jxj − bi

 .
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Now the quantity cj −
3∑

i=1
piai ,j = 0 for j = 2 and j = 4, and

4∑
j=1

ai ,jxj − bi = 0 for i = 1 and i = 2. It follows that

4∑
j=1

cjxj −
3∑

i=1

pibi =

(
c1 −

3∑
i=1

piai ,1

)
x1

+

(
c3 −

3∑
i=1

piai ,3

)
x3

+ p3

 4∑
j=1

a3,jxj − b3

 .
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Now x1 ≥ 0, x3 ≥ 0 and p3 ≥ 0. Also

c1 −
3∑

i=1

piai ,1 ≥ 0, c3 −
3∑

i=1

piai ,3 ≥ 0

and
4∑

j=1

a3,jxj − b3 ≥ 0.

It follows that
4∑

j=1

cjxj −
3∑

i=1

pibi ≥ 0.

and thus
4∑

j=1

cjxj ≥
3∑

i=1

pibi .



5. Duality and Convexity (continued)

Now suppose that
4∑

j=1

cjxj =
3∑

i=1

pibi .

Then (
c1 −

3∑
i=1

piai ,1

)
x1 = 0,(

c3 −
3∑

i=1

piai ,3

)
x3 = 0,

p3

 4∑
j=1

a3,jxj − b3

 = 0,

because a sum of three non-negative quantities is equal to zero if
and only if each of those quantities is equal to zero.
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It follows that
4∑

j=1

cjxj =
3∑

i=1

pibi

if and only if the following three complementary slackness
conditions are satisfied:—

3∑
i=1

piai ,1 = c1 if x1 > 0;

3∑
i=1

piai ,3 = c3 if x3 > 0;∑4
j=1 a3,jxj = b3 if p3 > 0.
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5.4. Open and Closed Sets in Euclidean Spaces

Let m be a positive integer. The Euclidean norm |x| of an
element x of Rm is defined such that

|x|2 =
m∑
i=1

(x)2i .

The Euclidean distance function d on Rm is defined such that

d(x, y) = |y − x|

for all x, y ∈ Rm. The Euclidean distance function satisfies the
Triangle Inequality, together with all the other basic properties
required of a distance function on a metric space, and therefore
Rm with the Euclidean distance function is a metric space.
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A subset U of Rm is said to be open in Rm if, given any point b of
U, there exists some real number ε satisfying ε > 0 such that

{x ∈ Rm : |x− b| < ε} ⊂ U.

A subset of Rm is closed in Rm if and only if its complement is
open in Rm.

Every union of open sets in Rm is open in Rm, and every finite
intersection of open sets in Rm is open in Rm.

Every intersection of closed sets in Rm is closed in Rm, and every
finite union of closed sets in Rm is closed in Rm .
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Lemma 5.7

Let m be a positive integer, let u(1),u(2), . . . ,u(m) be a basis of
Rm, and let

F =

{
m∑
i=1

siu
(i) : si ≥ 0 for i = 1, 2, . . . ,m

}
.

Then F is a closed set in Rm.
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Proof
Let T : Rm → Rm be defined such that

T (s1, s2, . . . , sm) =
m∑
i=1

siu
(i)

for all real numbers s1, s2, . . . , sm. Then T is an invertible linear
operator on Rm, and F = T (G ), where

G = {x ∈ Rm : (x)i ≥ 0 for i = 1, 2, . . . ,m}.

Moreover the subset G of Rm is closed in Rm.
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Now it is a standard result of real analysis that every linear
operator on a finite-dimensional vector space is continuous.
Therefore T−1 : Rm → Rm is continuous. Moreover T (G ) is the
preimage of the closed set G under the continuous map T−1, and
the preimage of any closed set under a continuous map is itself
closed. It follows that T (G ) is closed in Rm. Thus F is closed in
Rm, as required.
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Lemma 5.8

Let m be a positive integer, let F be a non-empty closed set in
Rm, and let b be a vector in Rm. Then there exists an element g
of F such that |x− b| ≥ |g − b| for all x ∈ F .

Proof
Let R be a positive real number chosen large enough to ensure
that the set F0 is non-empty, where

F0 = F ∩ {x ∈ Rm : |x− b| ≤ R}.

Then F0 is a closed bounded subset of Rm. Let f : F0 → R be
defined such that f (x) = |x− b| for all x ∈ F . Then f : F0 → R is
a continuous function on F0.
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Now it is a standard result of real analysis that any continuous
real-valued function on a closed bounded subset of a
finite-dimensional Euclidean space attains a minimum value at
some point of that set. It follows that there exists an element g of
F0 such that

|x− b| ≥ |g − b|

for all x ∈ F0. If x ∈ F \ F0 then

|x− b| ≥ R ≥ |g − b|.

It follows that
|x− b| ≥ |g − b|

for all x ∈ F , as required.
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