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4. The Simplex Method (continued)

4.8. The Simplex Tableau Algorithm

In describing the Simplex Tableau Algorithm, we adopt notation
previously introduced. Thus we are concerned with the solution of
a linear programming problem in Dantzig standard form, specified
by positive integers m and n, an m× n constraint matrix A of rank
m, a target vector b ∈ Rm and a cost vector c ∈ Rn. The
optimization problem requires us to find a vector x ∈ Rn that
minimizes cTx amongst all vectors x ∈ Rn that satisfy the
constraints Ax = b and x ≥ 0.

We denote by Ai ,j the coefficient in the ith row and jth column of
the matrix A, we denote the ith component of the target vector b
by bi and we denote the jth component of the cost vector c by cj
for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

As usual, we define vectors a(j) ∈ Rm for j = 1, 2, . . . , n such that
(a(j))i = Ai ,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.



4. The Simplex Method (continued)

Distinct integers j1, j2, . . . , jm between 1 and n determine a
basis B, where

B = {j1, j2, . . . , jm},

if and only if the corresponding vectors a(j1), a(j2), . . . , a(jm)

constitute a basis of Rm. Given such a basis B we let MB denote
the invertible m ×m matrix defined such that (MB)i ,k = Ai ,jk for
all integers i and k between 1 and m.

We let ti ,j = (M−1
B A)i ,j and si = (M−1

B b)i for i = 1, 2, . . . ,m and
j = 1, 2, . . . , n. Then

a(j) =
m∑
i=1

ti ,ja
(ji )

for j = 1, 2, . . . , n, and

b =
m∑
i=1

sia
(ji ).



4. The Simplex Method (continued)

A basis B determines an associated basic feasible solution if and
only if si ≥ 0 for i = 1, 2, . . . ,m. We suppose in what follows that
the basis B determines a basic feasible solution.

Let

C =
m∑
i=1

cji si .

Then C is the cost of the basic feasible solution associated with
the basis B.

Let

−qj =
m∑
i=1

cji ti ,j − cj .

Then qj = 0 for all j ∈ {j1, j2, . . . , jm}. Also the cost of any feasible
solution (x1, x2, . . . , xn) of the linear programming problem is

C +
n∑

j=1

qjx j .



4. The Simplex Method (continued)

The simplex tableau associated with the basis B is that portion of
the extended simplex tableau that omits the columns labelled by
e(1), e(2), . . . , e(m). The simplex table has the following structure:

a(1) a(2) · · · a(n) b

a(j1) t1,1 t1,2 · · · t1,n s1
a(j2) t2,1 t2,2 · · · t2,n s2
...

...
...

. . .
...

...

a(jm) tm,1 tm,2 · · · tm,n sm

−q1 −q2 · · · −qn C



4. The Simplex Method (continued)

Let cB denote the m-dimensional vector defined such that

cTB =
(
cj1 cj2 · · · cjm

)
.

Then the simplex tableau can be represented in block form as
follows:—

a(1) · · · a(n) b

a(j1)

... M−1
B A M−1

B b
a(jm)

cTBM
−1
B A− cT cTBM

−1
B b



4. The Simplex Method (continued)

Example
We consider again the following linear programming problem:—

minimize
3x1 + 4x2 + 2x3 + 9x4 + 5x5

subject to the following constraints:
5x1 + 3x2 + 4x3 + 7x4 + 3x5 = 11;
4x1 + x2 + 3x3 + 8x4 + 4x5 = 6;
xj ≥ 0 for j = 1, 2, 3, 4, 5.

We are given the following initial basic feasible solution
(1, 2, 0, 0, 0). We need to determine whether this initial basic
feasible solution is optimal and, if not, how to improve it till we
obtain an optimal solution.



4. The Simplex Method (continued)

The constraints require that x1, x2, x3, x4, x5 be non-negative real
numbers satisfying the matrix equation

(
5 3 4 7 3
4 1 3 8 4

)
x1
x2
x3
x4
x5

 =

(
11
6

)
.

Thus we are required to find a (column) vector x with components
x1, x2, x3, x4 and x5 that maximizes cTx subject to the constraints
Ax = b and x ≥ 0, where

A =

(
5 3 4 7 3
4 1 3 8 4

)
, b =

(
11
6

)
,

and
cT =

(
3 4 2 9 5

)
.



4. The Simplex Method (continued)

Our initial basis B satisfies B = {j1, j2}, where j1 = 1 and j2 = 2.
The first two columns of the matrix A provide the corresponding
invertible 2× 2 matrix MB . Thus

MB =

(
5 3
4 1

)
.

Inverting this matrix, we find that

M−1
B = −1

7

(
1 −3
−4 5

)
.

For each integer j between 1 and 5, let a(j) denote the
m-dimensional vector whose ith component is Ai ,j for i = 1, 2.
Then

a(j) =
2∑

i=1

ti ,ja
(ji ) and b =

2∑
i=1

sia
(ji ),

where ti ,j = (M−1
B A)i ,j and si = (M−1

B b)i for j = 1, 2, 3, 4, 5 and
i = 1, 2.



4. The Simplex Method (continued)

Calculating M−1
B A we find that

M−1
B A =

(
1 0 5

7
17
7

9
7

0 1 1
7 −12

7 −8
7

)
.

Also

M−1
B b =

(
1
2

)
.

The coefficients of these matrices determine the values of ti ,j and
si to be entered into the appropriate cells of the simplex tableau.



4. The Simplex Method (continued)

The basis rows of the simplex tableau corresponding to the basis
{1, 2} are thus as follows:—

a(1) a(2) a(3) a(4) a(5) b

a(1) 1 0 5
7

17
7

9
7 1

a(2) 0 1 1
7 −12

7 −8
7 2

· · · · · ·



4. The Simplex Method (continued)

Now the cost C of the current feasible solution satisfies the
equation

C =
2∑

i=1

cji si = c1s1 + c2s2,

where c1 = 3, c2 = 4, s1 = 1 and s2 = 2. It follows that C = 11.

To complete the simplex tableau, we need to compute −qj for
j = 1, 2, 3, 4, 5, where

−qj =
2∑

i=1

cji ti ,j − cj .

Let cB denote the 2-dimensional vector whose ith component is
(cji ). Then cB = (3, 4). Let q denote the 5-dimensional vector
whose jth component is qj for j = 1, 2, 3, 4, 5. Then

−qT = cTBM
−1
B A− cT .



4. The Simplex Method (continued)

It follows that

−qT =
(

3 4
)( 1 0 5

7
17
7

9
7

0 1 1
7 −12

7 −8
7

)
−
(

3 4 2 9 5
)

=
(

0 0 5
7 −60

7 −40
7

)
.

The simplex tableau corresponding to basis {1, 2} is therefore
completed as follows:—

a(1) a(2) a(3) a(4) a(5) b

a(1) 1 0 5
7

17
7

9
7 1

a(2) 0 1 1
7 −12

7 −8
7 2

0 0 5
7 −60

7 −40
7 11



4. The Simplex Method (continued)

The values of −qj for j = 1, 2, 3, 4, 5 are not all non-positive
ensures that the initial basic feasible solution is not optimal.
Indeed the cost of a feasible solution (x1, x2, x3, x4, x5) is

11− 5
7x3 + 60

7 x4 + 40
7 x5.

Thus a feasible solution with x3 > 0 and x4 = x5 = 0 will have
lower cost than the initial feasible basic solution. We therefore
implement a change of basis whose pivot column is that labelled by
the vector a(3).



4. The Simplex Method (continued)

We must determine which row to use as the pivot row. We need to

determine the value of i that minimizes the ratio
si
ti ,3

, subject to

the requirement that ti ,3 > 0. This ratio has the value 7
5 when

i = 1 and 14 when i = 2. Therefore the pivot row is the row
labelled by a(1). The pivot element t1,3 then has the value 5

7 .

The simplex tableau corresponding to basis {2, 3} is then obtained
by subtracting the pivot row multiplied by 1

5 from the row labelled

by a(2), subtracting the pivot row from the criterion row, and
finally dividing all values in the pivot row by the pivot element 5

7 .



4. The Simplex Method (continued)

The simplex tableau for the basis {2, 3} is thus the following:—

a(1) a(2) a(3) a(4) a(5) b

a(3) 7
5 0 1 17

5
9
5

7
5

a(2) −1
5 1 0 −11

5 −7
5

9
5

−1 0 0 −11 −7 10

All the values in the criterion row to the left of the new cost are
non-positive. It follows that we have found a basic optimal solution
to the linear programming problem. The values recorded in the
column labelled by b show that this basic optimal solution is

(0, 95 ,
7
5 , 0, 0).



4. The Simplex Method (continued)

4.9. The Revised Simplex Algorithm

The Simplex Tableau Algorithm restricts attention to the columns
to the left of the extended simplex tableau. The Revised Simplex
Algorithm proceeds by maintaining the columns to the right of the
extended simplex tableau, calculating values in the columns to the
left of that tableau only as required.

We show how the Revised Simplex Algorithm is implemented by
applying it to the example used to demonstrate the
implementation of the Simplex Algorithm.



4. The Simplex Method (continued)

Example
We apply the Revised Simplex Algorithm to determine a basic
optimal solution to the the following linear programming
problem:—

minimize
3x1 + 4x2 + 2x3 + 9x4 + 5x5

subject to the following constraints:
5x1 + 3x2 + 4x3 + 7x4 + 3x5 = 11;
4x1 + x2 + 3x3 + 8x4 + 4x5 = 6;
xj ≥ 0 for j = 1, 2, 3, 4, 5.

We are given the following initial basic feasible solution
(1, 2, 0, 0, 0). We need to determine whether this initial basic
feasible solution is optimal and, if not, how to improve it till we
obtain an optimal solution.



4. The Simplex Method (continued)

The constraints require that x1, x2, x3, x4, x5 be non-negative real
numbers satisfying the matrix equation

(
5 3 4 7 3
4 1 3 8 4

)
x1
x2
x3
x4
x5

 =

(
11
6

)
.

Thus we are required to find a (column) vector x with components
x1, x2, x3, x4 and x5 that maximizes cTx subject to the constraints
Ax = b and x ≥ 0, where

A =

(
5 3 4 7 3
4 1 3 8 4

)
, b =

(
11
6

)
,

and
cT =

(
3 4 2 9 5

)
.



4. The Simplex Method (continued)

Our initial basis B satisfies B = {j1, j2}, where j1 = 1 and j2 = 2.
The first two columns of the matrix A provide the corresponding
invertible 2× 2 matrix MB . Thus

MB =

(
5 3
4 1

)
.

Inverting this matrix, we find that

M−1
B = −1

7

(
1 −3
−4 5

)
.

For each integer j between 1 and 5, let a((j) denote the
m-dimensional vector whose ith component is Ai ,j for i = 1, 2.
Then

a(j) =
2∑

i=1

ti ,ja
(ji ) and b =

2∑
i=1

sia
(ji ),

where ti ,j = (M−1
B A)i ,j and si = (M−1

B b)i for j = 1, 2, 3, 4, 5 and
i = 1, 2.



4. The Simplex Method (continued)

Let ri ,k = (M−1
B )i ,k for i = 1, 2 and k = 1, 2, and let

C = cj1s1 + cj2s2 = c1s1 + c2s2 = 11

p1 = cj1r1,1 + cj2r2,1 = c1r1,1 + c2r2,1 = 13
7

p2 = cj1r1,2 + cj2r2,2 = c1r1,2 + c2r2,2 = −11
7

The values of si , ri ,k , C and pk are inserted into the following
tableau, which consists of the columns to the right of the extended
simplex tableau:—

b e(1) e(2)

a(1) 1 −1
7

3
7

a(2) 2 4
7 −5

7

11 13
7 −11

7



4. The Simplex Method (continued)

To proceed with the algorithm, one computes values −qj for j 6∈ B
using the formula

−qj = p1A1,j + p2A2,j − cj ,

seeking a value of j for which −qj > 0. Were all the values −qj are
non-positive (i.e., if all the qj are non-negative), then the initial
solution would be optimal. Computing −qj for j = 5, 4, 3, we find
that

−q5 = 13
7 × 3− 11

7 × 4− 5 = −40
7

−q4 = = 13
7 × 7− 11

7 × 8− 9 = −60
7

−q3 = = 13
7 × 4− 11

7 × 3− 2 = 5
7



4. The Simplex Method (continued)

The inequality q3 > 0 shows that the initial basic feasible solution
is not optimal, and we should seek to change basis so as to include
the vector a(3). Let

t1,3 = r1,1A1,3 + r1,2A2,3 = −1
7 × 4 + 3

7 × 3 = 5
7

t2,3 = r2,1A1,3 + r2,2A2,3 = 4
7 × 4− 5

7 × 3 = 1
7

Then
a(3) = t1,3a

(j1) + t2,3a
(j2) = 5

7a
(1) + 1

7a
(2).



4. The Simplex Method (continued)

We introduce a column representing the vector a(3) into the
tableau to serve as a pivot column. The resultant tableau is as
follows:—

a(3) b e(1) e(2)

a(1) 5
7 1 −1

7
3
7

a(2) 1
7 2 4

7 −5
7

5
7 11 13

7 −11
7



4. The Simplex Method (continued)

To determine a pivot row we must pick the row index i so as to

minimize the ratio
si
ti ,3

, subject to the requirement that ti ,3 > 0. In

the context of this example, we should pick i = 1. Accordingly the
row labelled by the vector a(1) is the pivot row. To implement the
change of basis we must subtract from the second row the values
above them in the pivot row, multiplied by 1

5 ; we must subtract
the values in the pivot row from the values below them in the
criterion row, and we must divide the values in the pivot row itself
by the pivot element 5

7 .



4. The Simplex Method (continued)

The resultant tableau corresponding to the basis 2, 3 is then as
follows:—

a(3) b e(1) e(2)

a(3) 1 7
5 −1

5
3
5

a(2) 0 9
5

3
5 −4

7

0 10 2 −2

A straightforward computation then shows that if

pT =
(

2 −2
)

then
pTA− cT =

(
−1 0 0 −11 −7

)
.

The components of this row vector are all non-positive. It follows
that the basis {2, 3} determines a basic optimal solution

(0, 95 ,
7
5 , 0, 0).



4. The Simplex Method (continued)

4.10. Finding Initial Basic Solutions

Suppose that we are given a linear programming problem in
Dantzig standard form, specified by positive integers m and n, an
m× n matrix A of rank m, an m-dimensional target vector b ∈ Rm

and an n-dimensional cost vector c ∈ Rn. The problem requires us
to find an n-dimensional vector x that minimizes the objective
function cTx subject to the constraints Ax = b and x ≥ 0.

Now, in the event that the column vector b has negative
coefficients, the relevant rows of the constraint matrix A and target
vector b can be multiplied by −1 to yield an equivalent problem in
which the coefficients of the target vector are all non-negative.
Therefore we may assume, without loss of generality, that b ≥ 0.



4. The Simplex Method (continued)

The Simplex Tableau Algorithm and the Revised Simplex
Algorithm provided methods for passing from an initial basic
feasible solution to a basic optimal solution, provided that such a
basic optimal solution exists. However, we need first to find an
initial basic feasible solution for this linear programming problem.



4. The Simplex Method (continued)

One can find such an initial basic feasible solution by solving an
auxiliary linear programming problem. This auxiliary problem
requires us to find n-dimensional vectors x and z that minimize the

objective function
n∑

j=1
(z)j subject to the constraints Ax + z = b,

x ≥ 0 and z ≥ 0.

This auxiliary linear programming problem is itself in Dantzig
standard form. Moreover it has an initial basic feasible solution
specified by the simultaneous equations x = 0 and z = b. The
objective function of a feasible solution is always non-negative.
Applications of algorithms based on the Simplex Method should
identify a basic optimal solution (x, z) for this problem. If the cost
n∑

j=1
(z)j of this basic optimal solution is equal to zero then Ax = b

and x ≥ 0. If the cost of the basic optimal solution is positive then
the problem does not have any basic feasible solutions.



4. The Simplex Method (continued)

The process of solving a linear programming problem in Dantzig
standard form thus typically consists of two phases. The Phase I
calculation aims to solve the auxiliary linear programming problem

of seeking n-dimensional vectors x and z that minimize
n∑

i=1
(z)j

subject to the constraints Ax + z = b, x ≥ 0 and z ≥ 0. If the
optimal solution (x, z) of the auxiliary problem satisfies z 6= 0 then
there is no initial basic solution of the original linear programming
problem. But if z = 0 then Ax = b and x ≥ 0, and thus the Phase
I calculation has identified an initial basic feasible solution of the
original linear programmming problem. The Phase II calculation is
the process of successively changing bases to lower the cost of the
corresponding basic feasible solutions until either a basic optimal
solution has been found or else it has been demonstated that no
such basic optimal solution exists.
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