MA3484—Methods of Mathematical Economics School of Mathematics, Trinity College Hilary Term 2017 Lecture 16 (February 23, 2017)

David R. Wilkins

4.7. The Extended Simplex Tableau

We now consider the construction of a tableau for a linear programming problem in Dantzig standard form. Such a problem is specified by an $m \times n$ matrix A, an m-dimensional target vector $\mathbf{b} \in \mathbb{R}^m$ and an n-dimensional cost vector $\mathbf{c} \in \mathbb{R}^n$. We suppose moreover that the matrix A is of rank m. We consider procedures for solving the following linear program in Danzig standard form.

Determine $\mathbf{x} \in \mathbb{R}^n$ so as to minimize $\mathbf{c}^T \mathbf{x}$ subject to the constraints $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$.

We denote by $A_{i,j}$ the component of the matrix A in the *i*th row and *j*th column, we denote by b_i the *i*th component of the target vector **b** for i = 1, 2, ..., m, and we denote by c_j the *j*th component of the cost vector **c** for j = 1, 2, ..., n.

We recall that a feasible solution to this problem consists of an *n*-dimensional vector **x** that satisfies the constraints $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$ (see Subsection 2). A feasible solution of the linear programming problem then consists of non-negative real numbers x_1, x_2, \ldots, x_n for which

$$\sum_{j=1}^{n} x_j \mathbf{a}^{(j)} = \mathbf{b}.$$

A feasible solution determined by x_1, x_2, \ldots, x_n is optimal if it minimizes cost $\sum_{j=1}^{n} c_j x_j$ amongst all feasible solutions to the linear programming problem.

Let j_1, j_2, \ldots, j_m be distinct integers between 1 and *n* that are the elements of a basis *B* for the linear programming problem. Then the vectors $\mathbf{a}^{(j)}$ for $j \in B$ constitute a basis of the real vector space \mathbb{R}^m . (see Subsection 4).

We denote by M_B the invertible $m \times m$ matrix whose component $(M)_{i,k}$ in the *i*th row and *j*th column satisfies $(M_B)_{i,k} = (A)_{i,j_k}$ for i, k = 1, 2, ..., m. Then the *k*th column of the matrix M_B is specified by the column vector $\mathbf{a}^{(j_k)}$ for k = 1, 2, ..., m, and thus the columns of the matrix M_B coincide with those columns of the matrix A that are determined by elements of the basis B.

Proposition 4.3

Let A be an $m \times n$ matrix with real coefficients that is of rank m whose columns are represented by the column vectors $\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, \dots, \mathbf{a}^{(n)}$, let **b** be an m-dimensional column vector, and let $B = \{j_1, j_2, \dots, j_m\}$, where j_1, j_2, \dots, j_m are integers between 1 and n for which the corresponding columns $\mathbf{a}^{(j_1)}, \mathbf{a}^{(j_2)}, \dots, \mathbf{a}^{(j_m)}$ of the matrix A are linearly independent. Let M_B be the invertible $m \times m$ matrix defined so that $(M_B)_{i,k} = A_{i,j_k}$ for $i, k = 1, 2, \dots, m$. Then there are uniquely determined real numbers $t_{i,j}$ and s_i for $i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$ for which

$$\mathbf{a}^{(j)} = \sum_{i=1}^m t_{i,j} \mathbf{a}^{(j_i)}$$
 and $\mathbf{b} = \sum_{i=1}^m s_i \mathbf{a}^{(j_i)}$.

Moreover

$$t_{i,j} = \sum_{k=1}^{m} r_{i,k} A_{k,j}$$

for $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$, and

$$s_i = \sum_{k=1}^m r_{i,k} b_k$$

for j = 1, 2, ..., n, where $r_{i,k} = (M_B^{-1})_{i,k}$ for i, k = 1, 2, ..., m.

Proof

Every vector in \mathbb{R}^m can be expressed as a linear combination of the basis vectors $\mathbf{a}^{(j_1)}, \mathbf{a}^{(j_2)}, \ldots, \mathbf{a}^{(j_m)}$. It follows that there exist uniquely determined real numbers $t_{i,j}$ and s_i for $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$ such that

$$\mathbf{a}^{(j)} = \sum_{i=1}^m t_{i,j} \mathbf{a}^{(j_i)}$$
 and $\mathbf{b} = \sum_{i=1}^m s_i \mathbf{a}^{(j_i)}$.

Then

$$A_{i,j} = \sum_{k=1}^{n} t_{k,j} A_{i,j_k} = \sum_{k=1}^{n} (M_B)_{i,k} t_{k,j}$$

and

$$b_i = \sum_{k=1}^m s_k A_{i,j_k} = \sum_{k=1}^n (M_B)_{i,k} s_k.$$

Thus $\mathbf{a}^{(j)} = M_B \mathbf{t}^{(j)}$ and $\mathbf{b} = M_B \mathbf{s}$ for j = 1, 2, ..., n, where $\mathbf{t}^{(j)}$ and \mathbf{s} denote the column vectors that satisfy $(\mathbf{t}^{(j)})_i = t_{i,j}$ and $(\mathbf{s})_i = s_i$ for i = 1, 2, ..., m. It follows that

$$\mathbf{t}^{(j)} = M_B^{-1} \mathbf{a}^{(j)}$$
 and $\mathbf{s} = M_B^{-1} \mathbf{b}$

for j = 1, 2, ..., n. Thus

$$t_{i,j} = (M_B^{-1} \mathbf{a}^{(j)})_i = \sum_{k=1}^m r_{i,k} A_{k,j}$$

for i = 1, 2, ..., m and j = 1, 2, ..., n, and

$$s_i = (M_B^{-1}\mathbf{b})_i = \sum_{k=1}^m r_{i,k}b_k$$

for i = 1, 2, ..., m, where $r_{i,k} = (M_B^{-1})_{i,k}$ for i, k = 1, 2, ..., m. This completes the proof. Let A be an $m \times n$ matrix with real coefficients that is of rank m whose columns are represented by the column vectors $\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, \ldots, \mathbf{a}^{(n)}$, and let $B = \{j_1, j_2, \ldots, j_m\}$, where j_1, j_2, \ldots, j_m are integers between 1 and n for which the corresponding columns $\mathbf{a}^{(j_1)}, \mathbf{a}^{(j_2)}, \ldots, \mathbf{a}^{(j_m)}$ of the matrix A are linearly independent. Let M_B be the invertible $m \times m$ matrix defined so that $(M_B)_{i,k} = A_{i,j_k}$ for $i, k = 1, 2, \ldots, m$.

The standard basis $\mathbf{e}^{(1)}, \mathbf{e}^{(2)}, \dots, \mathbf{e}^{(m)}$ of \mathbb{R}^m is defined such that $(\mathbf{e}^{(k)})_i = \delta_{i,k}$ for $i, k = 1, 2, \dots, m$, where $\delta_{i,k}$ is the Kronecker delta, defined such that

$$\delta_{i,k} = \begin{cases} 1 & \text{if } k = i; \\ 0 & \text{if } k \neq i. \end{cases}$$

It follows from Proposition 4.3 (with the column vector **b** of that proposition set equal to $\mathbf{e}^{(k)}$) that

$$\mathbf{e}^{(k)} = \sum_{i=1}^{m} \sum_{h=1}^{m} r_{i,h}(\mathbf{e}^{(k)})_h \mathbf{a}^{(i)} = \sum_{i=1}^{m} r_{i,k} \mathbf{a}^{(i)},$$

where $r_{i,k}$ is the coefficient $(M_B^{-1})_{i,k}$ in the *i*th row and *k*th column of the inverse M_B^{-1} of the matrix M_B .

Let A be an $m \times n$ matrix of rank m with real coefficients, and let **b** be an m-dimensional vector, and let $\{j_1, j_2, \ldots, j_m\}$ be a subset of $\{1, 2, \ldots, n\}$ for which the corresponding columns $\mathbf{a}^{(j_1)}, \mathbf{a}^{(j_2)}, \ldots, \mathbf{a}^{(j_m)}$ of the matrix A are linearly independent. We can then record the coefficients of the m-dimensional vectors

$$\mathbf{a}^{(1)}, \ \mathbf{a}^{(2)}, \dots, \ \mathbf{a}^{(n)}, \ \mathbf{b}, \ \mathbf{e}^{(1)}, \ \mathbf{e}^{(2)}, \dots, \ \mathbf{e}^{(m)}$$

with respect to the basis $\mathbf{a}^{(j_1)}, \mathbf{a}^{(j_2)}, \dots, \mathbf{a}^{(j_m)}$, of \mathbb{R}^m in a tableau of the following form:—

	a ⁽¹⁾	a ⁽²⁾		a ⁽ⁿ⁾	b	e ⁽¹⁾	e ⁽²⁾		e ^(m)
$a^{(j_1)}$	t _{1,1}	<i>t</i> _{1,2}		t _{1,n}	<i>s</i> 1	<i>r</i> _{1,1}	<i>r</i> _{1,2}	• • •	<i>r</i> _{1,<i>m</i>}
$a^{(j_2)}$	t _{2,1}	<i>t</i> _{2,2}	• • •	t _{2,n}	<i>s</i> ₂	<i>r</i> _{2,1}	<i>r</i> _{2,2}	•••	<i>r</i> _{2,<i>m</i>}
:	:	÷	·	÷	÷	:	÷	·	÷
$\mathbf{a}^{(j_m)}$	<i>t</i> _{<i>m</i>,1}	$t_{m,2}$	•••	t _{m,n}	s _m	<i>r</i> _{<i>m</i>,1}	<i>r</i> _{<i>m</i>,2}	•••	r _{m,m}
									•

The definition of the quantities $t_{i,j}$ ensures that $t_{i,j_k} = \delta_{i,k}$ for i = 1, 2, ..., m, where

$$\delta_{i,k} = \begin{cases} 1 & \text{if } i = k; \\ 0 & \text{if } i \neq k. \end{cases}$$

Also it follows from Proposition 4.3 that

$$t_{i,j} = \sum_{k=1}^{m} r_{i,k} A_{i,j}$$

for $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$, and

$$s_i = \sum_{k=1}^m r_{i,k} b_k$$

for i = 1, 2, ..., m.

If the quantities s_1, s_2, \ldots, s_m are all non-negative then they determine a basic feasible solution **x** of the linear programming problem associated with the basis *B* with components x_1, x_2, \ldots, x_n , where $x_{j_i} = s_i$ for $i = 1, 2, \ldots, m$ and $x_j = 0$ for all integers *j* between 1 and *n* that do not belong to the basis *B*. Indeed

$$\sum_{j=1}^{n} x_j \mathbf{a}^{(j)} = \sum_{i=1}^{m} x_{j_i} \mathbf{a}^{(j_i)} = \sum_{i=1}^{m} s_i \mathbf{a}^{(j_i)}$$

The cost C of the basic feasible solution **x** is defined to be the value $\overline{c}^T \mathbf{x}$ of the objective function. The definition of the quantities s_1, s_2, \ldots, s_m ensures that

$$C=\sum_{j=1}^n c_j x_j=\sum_{i=1}^m c_{j_i} s_i.$$

If the quantities s_1, s_2, \ldots, s_n are not all non-negative then there is no basic feasible solution associated with the basis B.

The criterion row at the bottom of the tableau has cells to record quantities p_1, p_2, \ldots, p_m associated with the vectors that constitute the standard basis $\mathbf{e}^{(1)}, \mathbf{e}^{(2)}, \ldots, \mathbf{e}^{(m)}$ of \mathbb{R}^m . These quantities are defined so that

$$\mathbf{v}_k = \sum_{i=1}^m c_{j_i} r_{i,k}$$

for k = 1, 2, ..., m, where c_{j_i} is the cost associated with the basis vector $\mathbf{a}^{(j_i)}$ for i = 1, 2, ..., k, Now the quantities $r_{i,k}$ are the components of the inverse of the matrix M_B , and therefore

$$\sum_{k=1}^{m} r_{h,k} A_{k,j_i} = \delta_{h,i}$$

for h, i = 1, 2, ..., m, where

$$\delta_{h,i} = \begin{cases} 1 & \text{if } h = i; \\ 0 & \text{if } h \neq i. \end{cases}$$

It follows that

$$\sum_{k=1}^{m} p_k A_{k,j_i} = \sum_{k=1}^{m} \sum_{h=1}^{m} c_{j_h} r_{h,k} A_{k,j_i} = \sum_{h=1}^{m} c_{j_h} \left(\sum_{k=1}^{m} r_{h,k} A_{k,j_i} \right) = c_{j_i}$$

On combining the identities

$$s_i = \sum_{k=1}^m r_{i,k} b_k$$
, $p_k = \sum_{i=1}^m c_{j_i} r_{i,k}$ and $C = \sum_{i=1}^m c_{j_i} s_i$

derived above, we find that

$$C = \sum_{i=1}^{m} c_{j_i} s_i = \sum_{i=1}^{m} \sum_{k=1}^{m} c_{j_i} r_{i,k} b_k = \sum_{k=1}^{m} p_k b_k.$$

The tableau also has cells in the criterion row to record quantities

$$-q_1, -q_2, \ldots, -q_n,$$

where q_1, q_2, \ldots, q_n are the components of the unique *n*-dimensional vector **q** characterized by the following properties:

•
$$q_{j_i} = 0$$
 for $i = 1, 2, ..., m$;

• $\mathbf{c}^T \overline{\mathbf{x}} = C + \mathbf{q}^T \overline{\mathbf{x}}$ for all $\overline{\mathbf{x}} \in \mathbb{R}^m$ satisfying the matrix equation $A\overline{\mathbf{x}} = \mathbf{b}$.

First we show that if $\mathbf{q} \in \mathbb{R}^n$ is defined such that $\mathbf{q}^T = \mathbf{c}^T - \mathbf{p}^T A$ then the vector \mathbf{q} has the required properties.

The definition of p_1, p_2, \ldots, p_k ensures (as noted above) that

$$\sum_{k=1}^m p_k A_{k,j_i} = c_{j_i}$$

for $i = 1, 2, \ldots, k$. It follows that

$$q_{j_i} = c_{j_i} - (\mathbf{p}^T A)_{j_i} = c_{j_i} - \sum_{k=1}^m p_k A_{k,j_i} = 0$$

for i = 1, 2, ..., n.

Also $\mathbf{p}^T \mathbf{b} = C$. It follows that if $\overline{\mathbf{x}} \in \mathbb{R}^n$ satisfies $A\overline{\mathbf{x}} = \mathbf{b}$ then

$$\mathbf{c}^T \overline{\mathbf{x}} = \mathbf{p}^T A \overline{\mathbf{x}} + \mathbf{q}^T \overline{\mathbf{x}} = \mathbf{p}^T \mathbf{b} + \mathbf{q}^T \overline{\mathbf{x}} = C + \mathbf{q}^T \overline{\mathbf{x}}.$$

Thus if $\mathbf{q}^T = \mathbf{c}^T - \mathbf{p}^T A$ then the vector \mathbf{q} satisfies the properties specified above.

We next show that

$$(\mathbf{p}^T A)_j = \sum_{i=1}^m c_{j_i} t_{i,j}$$

for j = 1, 2, ..., n.

Now

$$t_{i,j} = \sum_{k=1}^m r_{i,k} A_{k,j}$$

for i = 1, 2, ..., m and j = 1, 2, ..., n. (see Proposition 4.3). Also the definition of p_k ensures that

$$p_k = \sum_{i=1}^m c_{j_i} r_{i,k}$$

for $k = 1, 2, \ldots, m$. These results ensure that

$$\sum_{i=1}^{m} c_{j_i} t_{i,j} = \sum_{i=1}^{m} \sum_{k=1}^{m} c_{j_i} r_{i,k} A_{k,j} = \sum_{k=1}^{m} p_k A_{k,j} = (\mathbf{p}^{\mathsf{T}} A)_j.$$

It follows that

$$-q_j = \sum_{k=1}^m p_k A_{k,j} - c_j = \sum_{i=1}^m c_{j_i} t_{i,j} - c_j$$

for j = 1, 2, ..., n.

The extended simplex tableau associated with the basis B is obtained by entering the values of the quantities $-q_j$ (for j = 1, 2, ..., n), C and p_k (for k = 1, 2, ..., m) into the bottom row to complete the tableau described previously. The extended simplex tableau has the following structure:—

	$a^{(1)}$	a ⁽²⁾		a ⁽ⁿ⁾	b	$e^{(1)}$	e ⁽²⁾		$\mathbf{e}^{(m)}$
$a^{(j_1)}$	<i>t</i> _{1,1}	<i>t</i> _{1,2}	•••	<i>t</i> _{1,<i>n</i>}	<i>s</i> ₁	<i>r</i> _{1,1}	<i>r</i> _{1,2}	•••	<i>r</i> _{1,<i>m</i>}
$\mathbf{a}^{(j_2)}$	<i>t</i> _{2,1}	<i>t</i> _{2,2}	•••	$t_{2,n}$	<i>s</i> ₂	<i>r</i> _{2,1}	<i>r</i> _{2,2}	•••	<i>r</i> _{2,<i>m</i>}
:	÷	÷	·	÷	:	÷	÷	۰.	÷
$\mathbf{a}^{(j_m)}$	$t_{m,1}$	t _{m,2}		t _{m,n}	s _m	<i>r</i> _{<i>m</i>,1}	<i>r</i> _{m,2}		<i>r_{m,m}</i>
	$-q_1$	$-q_{2}$		$-q_n$	С	p_1	<i>p</i> ₂		p_m

The extended simplex tableau can be represented in block form as follows:—

	$\mathbf{a}^{(1)} \cdots \mathbf{a}^{(n)}$	b	$\mathbf{e}^{(1)}$ ··· $\mathbf{e}^{(m)}$
$a^{(j_1)}$			
:	$M_B^{-1}A$	$M_B^{-1}\mathbf{b}$	M_B^{-1}
a ^(jm)			
	$\mathbf{p}^T A - \mathbf{c}^T$	p [⊤] b	р ^т

Let \mathbf{c}_B denote the *m*-dimensional vector defined so that

$$\mathbf{c}_B^T = \left(\begin{array}{ccc} c_{j_1} & c_{j_2} & \cdots & c_{j_m} \end{array}\right).$$

The identities we have verified ensure that the extended simplex tableau can therefore also be represented in block form as follows:—

	$\mathbf{a}^{(1)} \cdots \mathbf{a}^{(n)}$	b	$\mathbf{e}^{(1)}$ ··· $\mathbf{e}^{(m)}$
$a^{(j_1)}$			
÷	$M_B^{-1}A$	$M_B^{-1}\mathbf{b}$	M_B^{-1}
$\mathbf{a}^{(j_m)}$			
	$\mathbf{c}_B^T M_B^{-1} A - \mathbf{c}^T$	$\mathbf{c}_B^T M_B^{-1} \mathbf{b}$	$\mathbf{c}_B^T M_B^{-1}$