
MA3484—Methods of Mathematical
Economics

School of Mathematics, Trinity College
Hilary Term 2017

Lecture 16 (February 23, 2017)

David R. Wilkins



4. The Simplex Method (continued)

4.7. The Extended Simplex Tableau

We now consider the construction of a tableau for a linear
programming problem in Dantzig standard form. Such a problem is
specified by an m × n matrix A, an m-dimensional target vector
b ∈ Rm and an n-dimensional cost vector c ∈ Rn. We suppose
moreover that the matrix A is of rank m. We consider procedures
for solving the following linear program in Danzig standard form.

Determine x ∈ Rn so as to minimize cTx subject to the
constraints Ax = b and x ≥ 0.

We denote by Ai ,j the component of the matrix A in the ith row
and jth column, we denote by bi the ith component of the target
vector b for i = 1, 2, . . . ,m, and we denote by cj the jth
component of the cost vector c for j = 1, 2, . . . , n.



4. The Simplex Method (continued)

We recall that a feasible solution to this problem consists of an
n-dimensional vector x that satisfies the constraints Ax = b and
x ≥ 0 (see Subsection 2). A feasible solution of the linear
programming problem then consists of non-negative real numbers
x1, x2, . . . , xn for which

n∑
j=1

xja
(j) = b.

A feasible solution determined by x1, x2, . . . , xn is optimal if it

minimizes cost
n∑

j=1
cjxj amongst all feasible solutions to the linear

programming problem.



4. The Simplex Method (continued)

Let j1, j2, . . . , jm be distinct integers between 1 and n that are the
elements of a basis B for the linear programming problem. Then
the vectors a(j) for j ∈ B constitute a basis of the real vector space
Rm. (see Subsection 4).

We denote by MB the invertible m ×m matrix whose component
(M)i ,k in the ith row and jth column satisfies (MB)i ,k = (A)i ,jk for
i , k = 1, 2, . . . ,m. Then the kth column of the matrix MB is
specified by the column vector a(jk ) for k = 1, 2, . . . ,m, and thus
the columns of the matrix MB coincide with those columns of the
matrix A that are determined by elements of the basis B.
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Proposition 4.3

Let A be an m × n matrix with real coefficients that is of rank m
whose columns are represented by the column vectors
a(1), a(2), . . . , a(n), let b be an m-dimensional column vector, and
let B = {j1, j2, . . . , jm}, where j1, j2, . . . , jm are integers between 1
and n for which the corresponding columns a(j1), a(j2), . . . , a(jm) of
the matrix A are linearly independent. Let MB be the invertible
m ×m matrix defined so that (MB)i ,k = Ai ,jk for
i , k = 1, 2, . . . ,m. Then there are uniquely determined real
numbers ti ,j and si for i = 1, 2, . . . ,m and j = 1, 2, . . . , n for which

a(j) =
m∑
i=1

ti ,ja
(ji ) and b =

m∑
i=1

sia
(ji ).
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Moreover

ti ,j =
m∑

k=1

ri ,kAk,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and

si =
m∑

k=1

ri ,kbk

for j = 1, 2, . . . , n, where ri ,k = (M−1
B )i ,k for i , k = 1, 2, . . . ,m.
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Proof
Every vector in Rm can be expressed as a linear combination of the
basis vectors a(j1), a(j2), . . . , a(jm). It follows that there exist
uniquely determined real numbers ti ,j and si for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n such that

a(j) =
m∑
i=1

ti ,ja
(ji ) and b =

m∑
i=1

sia
(ji ).

Then

Ai ,j =
n∑

k=1

tk,jAi ,jk =
n∑

k=1

(MB)i ,ktk,j

and

bi =
m∑

k=1

skAi ,jk =
n∑

k=1

(MB)i ,ksk .
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Thus a(j) = MBt
(j) and b = MBs for j = 1, 2, . . . , n, where t(j)

and s denote the column vectors that satisfy (t(j))i = ti ,j and
(s)i = si for i = 1, 2, . . . ,m. It follows that

t(j) = M−1
B a(j) and s = M−1

B b

for j = 1, 2, . . . , n. Thus

ti ,j = (M−1
B a(j))i =

m∑
k=1

ri ,kAk,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and

si = (M−1
B b)i =

m∑
k=1

ri ,kbk

for i = 1, 2, . . . ,m, where ri ,k = (M−1
B )i ,k for i , k = 1, 2, . . . ,m.

This completes the proof.
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Let A be an m × n matrix with real coefficients that is of rank m
whose columns are represented by the column vectors
a(1), a(2), . . . , a(n), and let B = {j1, j2, . . . , jm}, where j1, j2, . . . , jm
are integers between 1 and n for which the corresponding columns
a(j1), a(j2), . . . , a(jm) of the matrix A are linearly independent. Let
MB be the invertible m ×m matrix defined so that (MB)i ,k = Ai ,jk

for i , k = 1, 2, . . . ,m.

The standard basis e(1), e(2), . . . , e(m) of Rm is defined such that
(e(k))i = δi ,k for i , k = 1, 2, . . . ,m, where δi ,k is the Kronecker
delta, defined such that

δi ,k =

{
1 if k = i ;
0 if k 6= i .
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It follows from Proposition 4.3 (with the column vector b of that
proposition set equal to e(k)) that

e(k) =
m∑
i=1

m∑
h=1

ri ,h(e(k))ha
(i) =

m∑
i=1

ri ,ka
(i),

where ri ,k is the coefficient (M−1
B )i ,k in the ith row and kth

column of the inverse M−1
B of the matrix MB .
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Let A be an m × n matrix of rank m with real coefficients, and let
b be an m-dimensional vector, and let {j1, j2, . . . , jm} be a subset
of {1, 2, . . . , n} for which the corresponding columns
a(j1), a(j2), . . . , a(jm) of the matrix A are linearly independent. We
can then record the coefficients of the m-dimensional vectors

a(1), a(2), . . . , a(n), b, e(1), e(2), . . . , e(m)

with respect to the basis a(j1), a(j2), . . . , a(jm), of Rm in a tableau of
the following form:—

a(1) a(2) · · · a(n) b e(1) e(2) · · · e(m)

a(j1) t1,1 t1,2 · · · t1,n s1 r1,1 r1,2 · · · r1,m
a(j2) t2,1 t2,2 · · · t2,n s2 r2,1 r2,2 · · · r2,m

...
...

...
. . .

...
...

...
...

. . .
...

a(jm) tm,1 tm,2 · · · tm,n sm rm,1 rm,2 · · · rm,m

· · · · · · · · · · · · ·
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The definition of the quantities ti ,j ensures that ti ,jk = δi ,k for
i = 1, 2, . . . ,m, where

δi ,k =

{
1 if i = k ;
0 if i 6= k .

Also it follows from Proposition 4.3 that

ti ,j =
m∑

k=1

ri ,kAi ,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and

si =
m∑

k=1

ri ,kbk

for i = 1, 2, . . . ,m.
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If the quantities s1, s2, . . . , sm are all non-negative then they
determine a basic feasible solution x of the linear programming
problem associated with the basis B with components
x1, x2, . . . , xn, where xji = si for i = 1, 2, . . . ,m and xj = 0 for all
integers j between 1 and n that do not belong to the basis B.
Indeed

n∑
j=1

xja
(j) =

m∑
i=1

xjia
(ji ) =

m∑
i=1

sia
(ji ).



4. The Simplex Method (continued)

The cost C of the basic feasible solution x is defined to be the
value cTx of the objective function. The definition of the
quantities s1, s2, . . . , sm ensures that

C =
n∑

j=1

cjxj =
m∑
i=1

cji si .

If the quantities s1, s2, . . . , sn are not all non-negative then there is
no basic feasible solution associated with the basis B.
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The criterion row at the bottom of the tableau has cells to record
quantities p1, p2, . . . , pm associated with the vectors that
constitute the standard basis e(1), e(2), . . . , e(m) of Rm. These
quantities are defined so that

pk =
m∑
i=1

cji ri ,k

for k = 1, 2, . . . ,m, where cji is the cost associated with the basis
vector a(ji ) for i = 1, 2, . . . , k, Now the quantities ri ,k are the
components of the inverse of the matrix MB , and therefore

m∑
k=1

rh,kAk,ji = δh,i

for h, i = 1, 2, . . . ,m, where

δh,i =

{
1 if h = i ;
0 if h 6= i .
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It follows that

m∑
k=1

pkAk,ji =
m∑

k=1

m∑
h=1

cjhrh,kAk,ji =
m∑

h=1

cjh

(
m∑

k=1

rh,kAk,ji

)
= cji

On combining the identities

si =
m∑

k=1

ri ,kbk , pk =
m∑
i=1

cji ri ,k and C =
m∑
i=1

cji si

derived above, we find that

C =
m∑
i=1

cji si =
m∑
i=1

m∑
k=1

cji ri ,kbk =
m∑

k=1

pkbk .
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The tableau also has cells in the criterion row to record quantities

−q1,−q2, . . . ,−qn,

where q1, q2, . . . , qn are the components of the unique
n-dimensional vector q characterized by the following properties:

qji = 0 for i = 1, 2, . . . ,m;

cTx = C + qTx for all x ∈ Rm satisfying the matrix equation
Ax = b.
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First we show that if q ∈ Rn is defined such that qT = cT − pTA
then the vector q has the required properties.

The definition of p1, p2, . . . , pk ensures (as noted above) that

m∑
k=1

pkAk,ji = cji

for i = 1, 2, . . . , k . It follows that

qji = cji − (pTA)ji = cji −
m∑

k=1

pkAk,ji = 0

for i = 1, 2, . . . , n.



4. The Simplex Method (continued)

Also pTb = C . It follows that if x ∈ Rn satisfies Ax = b then

cTx = pTAx + qTx = pTb + qTx = C + qTx.

Thus if qT = cT − pTA then the vector q satisfies the properties
specified above.

We next show that

(pTA)j =
m∑
i=1

cji ti ,j

for j = 1, 2, . . . , n.



4. The Simplex Method (continued)

Now

ti ,j =
m∑

k=1

ri ,kAk,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. (see Proposition 4.3). Also
the definition of pk ensures that

pk =
m∑
i=1

cji ri ,k

for k = 1, 2, . . . ,m. These results ensure that

m∑
i=1

cji ti ,j =
m∑
i=1

m∑
k=1

cji ri ,kAk,j =
m∑

k=1

pkAk,j = (pTA)j .

It follows that

−qj =
m∑

k=1

pkAk,j − cj =
m∑
i=1

cji ti ,j − cj

for j = 1, 2, . . . , n.
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The extended simplex tableau associated with the basis B is
obtained by entering the values of the quantities −qj (for
j = 1, 2, . . . , n), C and pk (for k = 1, 2, . . . ,m) into the bottom
row to complete the tableau described previously. The extended
simplex tableau has the following structure:—

a(1) a(2) · · · a(n) b e(1) e(2) · · · e(m)

a(j1) t1,1 t1,2 · · · t1,n s1 r1,1 r1,2 · · · r1,m
a(j2) t2,1 t2,2 · · · t2,n s2 r2,1 r2,2 · · · r2,m

...
...

...
. . .

...
...

...
...

. . .
...

a(jm) tm,1 tm,2 · · · tm,n sm rm,1 rm,2 · · · rm,m

−q1 −q2 · · · −qn C p1 p2 · · · pm
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The extended simplex tableau can be represented in block form as
follows:—

a(1) · · · a(n) b e(1) · · · e(m)

a(j1)

... M−1
B A M−1

B b M−1
B

a(jm)

pTA− cT pTb pT
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Let cB denote the m-dimensional vector defined so that

cTB =
(
cj1 cj2 · · · cjm

)
.

The identities we have verified ensure that the extended simplex
tableau can therefore also be represented in block form as
follows:—

a(1) · · · a(n) b e(1) · · · e(m)

a(j1)

... M−1
B A M−1

B b M−1
B

a(jm)

cTBM
−1
B A− cT cTBM

−1
B b cTBM

−1
B
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