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4. The Simplex Method (continued)

4.7. The Extended Simplex Tableau

We now consider the construction of a tableau for a linear
programming problem in Dantzig standard form. Such a problem is
specified by an m x n matrix A, an m-dimensional target vector

b € R™ and an n-dimensional cost vector ¢ € R"”. We suppose
moreover that the matrix A is of rank m. We consider procedures
for solving the following linear program in Danzig standard form.

Determine x € R" so as to minimize ¢” x subject to the
constraints Ax =b and x > 0.

We denote by A;; the component of the matrix A in the ith row
and jth column, we denote by b; the ith component of the target
vector b for i =1,2,..., m, and we denote by ¢; the jth
component of the cost vector ¢ for j =1,2,...,n.



4. The Simplex Method (continued)

We recall that a feasible solution to this problem consists of an
n-dimensional vector x that satisfies the constraints Ax = b and
x > 0 (see Subsection 2). A feasible solution of the linear
programming problem then consists of non-negative real numbers
X1, X2, . - ., Xp for which

3 xal) — b,
j=1

A feasible solution determined by xi, x2, ..., x, is optimal if it
n

minimizes cost ) ¢jx; amongst all feasible solutions to the linear
J=1
programming problem.



4. The Simplex Method (continued)

Let j1,Jo,...,Jjm be distinct integers between 1 and n that are the
elements of a basis B for the linear programming problem. Then
the vectors al) for j € B constitute a basis of the real vector space
R™. (see Subsection 4).

We denote by Mg the invertible m x m matrix whose component
(M) k in the ith row and jth column satisfies (Mg); x = (A);, for
i,k =1,2,...,m. Then the kth column of the matrix Mg is
specified by the column vector alk) for k = 1,2,..., m, and thus
the columns of the matrix Mg coincide with those columns of the
matrix A that are determined by elements of the basis B.



4. The Simplex Method (continued)

Proposition 4.3

Let A be an m x n matrix with real coefficients that is of rank m
whose columns are represented by the column vectors

a® a®@ .. al let b be an m-dimensional column vector, and
let B = {j1,/2,.-.,jm}, where ji,jo,...,jm are integers between 1
and n for which the corresponding columns al) al2) . . aUm) of
the matrix A are linearly independent. Let Mg be the invertible

m X m matrix defined so that (Mg); x = Aij, for
i,k=1,2,...,m. Then there are uniquely determined real
numbers t; j and s; fori =1,2,...,mand j=1,2,...,n for which

20) =3 1000 and b= sald.
i=1

i=1




4. The Simplex Method (continued)

Moreover
m
tij = E ri KAk j
k=1

fori=1,2,...,mand j=1,2,...,n, and

m
si = E ri kb
k=1

for j=1,2,...,n, where r; = (MEI),-,k fori,k=1,2,...,m.




4. The Simplex Method (continued)

Proof

Every vector in R™ can be expressed as a linear combination of the
basis vectors att), al2) ... alm) It follows that there exist
uniquely determined real numbers t;j and s; for i =1,2,..., m
and j =1,2,...,n such that

al) = Z t;JaU’) and b= Zs;a(j’).
i=1 i=1

Then

n

Aij= Z te jALj, = Z(MB)i,kth
k=1

k=1

and

b; = ZSkAi,jk = Z(MB)i,kSk-
k=1 k=1



4. The Simplex Method (continued)

Thus al) = MgtY) and b = Mpgs for j = 1,2, ..., n, where tU)
and s denote the column vectors that satisfy (t)); = t;; and
(s)i =sjfori=1,2,...,m. It follows that

tV) = mgtal) and s=Mg'b

forj=1,2,...,n. Thus
tij = (I\/I;la(j)),- = Z r,-,kAkJ
k=1

fori=1,2,...,mandj=1,2,...,n, and

m
si = (Mglb); = Z r,-7kbk
k=1
for i =1,2,...,m, where r;j = (Mg1); for i,k =1,2,....m.

This completes the proof. |}



4. The Simplex Method (continued)

Let A be an m x n matrix with real coefficients that is of rank m
whose columns are represented by the column vectors

a® a® . al" andlet B = {ji,/o,....jm}, Where j1,j2, ... Jjm
are integers between 1 and n for which the corresponding columns
al) al2) . aUm) of the matrix A are linearly independent. Let
Mg be the invertible m x m matrix defined so that (Mg); x = Aj,
fori,k=1,2,...,m.

The standard basis e, e, ... el™ of R™ is defined such that
(e(k)),- =0j for i,k =1,2,...,m, where §; « is the Kronecker
delta, defined such that

5.1 ifk=i
BT 0 if k£



4. The Simplex Method (continued)

It follows from Proposition 4.3 (with the column vector b of that
proposition set equal to e(k)) that

m

elk) — Em: zm: rin(e®)pa® =3 1 al®,

i=1 h=1 i=1

where r;  is the coefficient (l\/lgl),-vk in the ith row and kth
column of the inverse Mgl of the matrix Mp.



4. The Simplex Method (continued)

Let A be an m X n matrix of rank m with real coefficients, and let

b be an m-dimensional vector, and let {j1,j2,...,jm} be a subset
of {1,2,..., n} for which the corresponding columns
al1) al2) . alm) of the matrix A are linearly independent. We

can then record the coefficients of the m-dimensional vectors

al) a@ . aln b e e elm

with respect to the basis al),al2) ... alm) of R™ in a tableau of
the following form:—

a(l) a(z) e a(”) b e(l) e(2) . e(m)
a(’:l) t11 tip o0 tip| St | NH1 N2 o Mm

al?) |ty oy - tba | S| nR1 nR2 o fm

a(‘lm) tm1i tm2 - tmn|Sm|fml fm2 “** Imm




4. The Simplex Method (continued)

The definition of the quantities t; ; ensures that t; j, = d; ) for
i=1,2,..., m, where

5o {1 ifi=k
BT 0 ifi#£ k.

Also it follows from Proposition 4.3 that

m
tj= Y rikAij
k=1

fori=1,2,...,mandj=1,2,...,n, and

m
si = E ri i bic
k=1

fori=1,2,...,m.



4. The Simplex Method (continued)

If the quantities s1, s, ..., Sy, are all non-negative then they
determine a basic feasible solution x of the linear programming
problem associated with the basis B with components
X1,X2,...,Xn, Where x; = s; for i =1,2,...,m and x; = 0 for all
integers j between 1 and n that do not belong to the basis B.

Indeed . . o
ija(j) — ijr_a(ji) — Z Sia(ji)‘
j=1 i=1 i=1



4. The Simplex Method (continued)

The cost C of the basic feasible solution x is defined to be the
value ¢7x of the objective function. The definition of the
quantities s1, Sp, ..., Sy, ensures that

n m
C= E Cixj = E Gj.Si-
j=1 i=1

If the quantities s1, S, ..., S, are not all non-negative then there is
no basic feasible solution associated with the basis B.



4. The Simplex Method (continued)

The criterion row at the bottom of the tableau has cells to record
quantities pi, p2, ..., pm associated with the vectors that
constitute the standard basis e(1), e(® ... el™ of R™. These
quantities are defined so that

m
Pk = E Cji 1k
i=1

for k=1,2,...,m, where ¢j is the cost associated with the basis
vector aUi) for i = 1,2, ..., k, Now the quantities rik are the
components of the inverse of the matrix Mg, and therefore

m
E rhkAkj = On,i
k=1

for h,i=1,2,..., m, where

5o 1 ifh=i
B0 iR



4. The Simplex Method (continued)

It follows that

m m m m m
> PrAG = DD GuhkAkg = D Gy | D hkAki | = 6
k=1

k=1 h=1 h=1 k=1

On combining the identities

m m m
si = § rikbk, pk = E Girik and C= E CjiSi
k=1 i—1 i—1

derived above, we find that

C= Z Cj.si = ZZ Cjilikbk = Zpkbk-

m m
i=1 i=1 k=1 k=1



4. The Simplex Method (continued)

The tableau also has cells in the criterion row to record quantities

—dq1,—q2,...,—(qn,

where g1, g2, ..., g, are the components of the unique

n-dimensional vector q characterized by the following properties:
@ qg;=0fri=12,....m;

e c’'x= C+q'x for all x € R™ satisfying the matrix equation
AX = b.



4. The Simplex Method (continued)

First we show that if q € R” is defined such that q” =c” —pT A
then the vector q has the required properties.

The definition of p1, pa, ..., px ensures (as noted above) that

m
> PrAk = G
k=1

fori=1,2,..., k. It follows that
m
g, =G — (PTA) =6 — Y _ PrAkj, =0
k=1

fori=1,2,...,n.



4. The Simplex Method (continued)

Also p"b = C. It follows that if X € R” satisfies AX = b then
c'x=p’Ax+q'x=p’b+q’x=C+q'x

Thus if @7 = ¢’ — pT A then the vector q satisfies the properties
specified above.

We next show that .
(pTA) = citi
i=1

forj=1,2,...,n.



4. The Simplex Method (continued)

Now
m
tij = E ri kAkj
k=1

fori=1,2,...,mand j=1,2,...,n. (see Proposition 4.3). Also
the definition of py ensures that

m
Pk = § Cji i k
i=1

for k=1,2,..., m. These results ensure that
m m m m
-
Do Gitii =)D GilikAri = ) PiAki = (pTA);.
i=1 i=1 k=1 k=1

It follows that

m m
—G =D kAR TG =D Gitij — G
k=1 i=1

forj=1,2,...,n.



4. The Simplex Method (continued)

The extended simplex tableau associated with the basis B is
obtained by entering the values of the quantities —g; (for
j=1,2,...,n), C and px (for k =1,2,..., m) into the bottom
row to complete the tableau described previously. The extended
simplex tableau has the following structure:—

a(l) 3(2) c. a(”) b e(l) e(2) Ce e(m)
a(J:l) t11 tip - tia | S1| N1 N2 o Mm
al?) b1 thp - ba| S| nR1 P2 o hm
a(’jm) tm,l tm,2 T tm,n Sm | 'm1 'I'm2 -*- 'm,m
1 —q@ - —4n | C | p P2 Pm




4. The Simplex Method (continued)

The extended simplex tableau can be represented in block form as

follows:—
a® .. A [ p [e® ... em
al)
a(}m) MgtA Mg'b Mg*
pTA—cT p’b p’




4. The Simplex Method (continued)

Let cg denote the m-dimensional vector defined so that

CE:(CJ& Cp ij)'

The identities we have verified ensure that the extended simplex
tableau can therefore also be represented in block form as

follows:—
a® ... a0 b e ... elm
al)
: MgtA Mg'b Mg*
alim)
ctMg'A—cT | ¢fMg'b cL Mgt
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