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4. The Simplex Method (continued)

4.5. A Simplex Method Example

Example
We consider the following linear programming problem:—

minimize
3x1 + 4x2 + 2x3 + 9x4 + 5x5

subject to the following constraints:
5x1 + 3x2 + 4x3 + 7x4 + 3x5 = 11;
4x1 + x2 + 3x3 + 8x4 + 4x5 = 6;
xj ≥ 0 for j = 1, 2, 3, 4, 5.



4. The Simplex Method (continued)

The constraints require that x1, x2, x3, x4, x5 be non-negative real
numbers satisfying the matrix equation

(
5 3 4 7 3
4 1 3 8 4

)
x1
x2
x3
x4
x5

 =

(
11
6

)
.

Thus we are required to find a (column) vector x with components
x1, x2, x3, x4 and x5 satisfying the equation Ax = b, where

A =

(
5 3 4 7 3
4 1 3 8 4

)
, b =

(
11
6

)
.



4. The Simplex Method (continued)

Let

a(1) =

(
5
4

)
, a(2) =

(
3
1

)
, a(3) =

(
4
3

)
,

a(4) =

(
7
8

)
and a(5) =

(
3
4

)
.

For a feasible solution to the problem we must find non-negative
real numbers x1, x2, x3, x4, x5 such that

x1a
(1) + x2a

(2) + x3a
(3) + x4a

(4) + x5a
(5) = b.

An optimal solution to the problem is a feasible solution that
minimizes

c1x1 + c2x2 + c3x3 + c4x4 + c5x5

amongst all feasible solutions to the problem, where c1 = 3,
c2 = 4, c3 = 2, c4 = 9 and c5 = 5.



4. The Simplex Method (continued)

Let c denote the column vector whose ith component is ci
respectively. Then

cT =
(

3 4 2 9 5
)
,

and an optimal solution is a feasible solution that minimizes cTx
amongst all feasible solutions to the problem. We refer to the
quantity cTx as the cost of the feasible solution x.



4. The Simplex Method (continued)

Let I = {1, 2, 3, 4, 5}. A basis for this optimization problem is a
subset {j1, j2} of I , where j1 6= j2, for which the corresponding
vectors a(j1), a(j2) constitute a basis of R2. By inspection we see
that each pair of vectors taken from the list
a(1), a(2), a(3), a(4), a(5) consists of linearly independent vectors,
and therefore each pair of vectors from this list constitutes a basis
of R2. It follows that every subset of I with exactly two elements is
a basis for the optimization problem.

A feasible solution (x1, x2, x3, x4, x5) to this optimization problem is
a basic feasible solution if there exists a basis B for the
optimization problem such that xj = 0 when j 6= B.

In the case of the present problem, all subsets of {1, 2, 3, 4, 5} with
exactly two elements are bases for the problem. It follows that a
feasible solution to the problem is a basic feasible solution if and
only if the number of non-zero components of the solution does
not exceed 2.



4. The Simplex Method (continued)

We take as given the following initial basic feasible solution x1 = 1,
x2 = 2, x3 = x4 = x5 = 0. One can readily verify that
a(1) + 2a(2) = b. This initial basic feasible solution is associated
with the basis {1, 2}. The cost of this solution is 11.

We apply the procedures of the simplex method to test whether or
not this basic feasible solution is optimal, and, if not, determine
how to improve it.



4. The Simplex Method (continued)

The basis {1, 2} determines a 2× 2 minor MB of A consisting of
the first two columns of A. Thus

MB =

(
5 3
4 1

)
.

We now determine the components of the vector p ∈ R2 whose
transpose

(
p1 p2

)
satisfies the matrix equation(

c1 c2
)

=
(
p1 p2

)
MB .

Now

M−1B = −1

7

(
1 −3
−4 5

)
.

It follows that

pT =
(
p1 p2

)
=
(
c1 c2

)
M−1B

= −1

7

(
3 4

)( 1 −3
−4 5

)
=

(
13
7 −11

7

)
.



4. The Simplex Method (continued)

We next compute a vector q ∈ R5, where qT = cT − pTA.
Solving the equivalent matrix equation for the transpose qT of the
column vector q, we find that

qT = cT − pTA

=
(

3 4 2 9 5
)
−
(

13
7 −11

7

)( 5 3 4 7 3
4 1 3 8 4

)
=

(
3 4 2 9 5

)
−
(

3 4 19
7

3
7 −5

7

)
=

(
0 0 −5

7
60
7

40
7

)
.

We denote the jth component of the vector j by qj .

Now q3 < 0. We show that this implies that the initial basic
feasible solution is not optimal, and that it can be improved by
bringing 3 (the index of the third column of A) into the basis.



4. The Simplex Method (continued)

Suppose that x is a feasible solution of this optimization problem.
Then Ax = b, and therefore

cTx = pTAx + qTx = pTb + qTx.

The initial basic feasible solution x satisfies

qTx =
5∑

j=1

qjxj = 0,

because q1 = q2 = 0 and x3 = x4 = x5 = 0. This comes about
because the manner in which we determined first p then q ensures
that qj = 0 for all j ∈ B, whereas the components of the basic
feasible solution x associated with the basis B satisfy xj = 0 for
j 6∈ B. We find therefore that pTb is the cost of the initial basic
feasible solution.



4. The Simplex Method (continued)

The cost of the initial basic feasible solution is 11, and this is equal
to the value of pTb. The cost cTx of any other basic feasible
solution satisfies

cTx = 11− 5
7x3 + 60

7 x4 + 40
7 x5,

where x j denotes the jth component of x.

We seek to determine a new basic feasible solution x for which
x3 > 0, x4 = 0 and x5 = 0. The cost of such a basic feasible
solution will then be less than that of our initial basic feasible
solution.



4. The Simplex Method (continued)

In order to find our new basic feasible solution we determine the
relationships between the coefficients of a feasible solution x for
which x4 = 0 and x5 = 0. Now such a feasible solution must
satisfy

x1a
(1) + x2a

(2) + x3a
(3) = b = x1a

(1) + x2a
(2),

where x1 and x2 are the non-zero coefficients of the initial basic
feasible solution. Now the vectors a(1) and a(2) constitute a basis
of the real vector space R2. It follows that there exist real numbers
t1,3 and t2,3 such that a(3) = t1,3a(1) + t2,3a(2). It follows that

(x1 + t1,3x3)a(1) + (x2 + t2,3x3)a(2) = x1a
(1) + x2a

(2).



4. The Simplex Method (continued)

The linear independence of a(1) and a(2) then ensures that
x1 + t1,3x3 = x1 and x2 + t2,3x3 = x2. Thus if x3 = λ, where
λ ≥ 0 then

x1 = x1 − λt1,3, x2 = x2 − λt2,3.

Thus, once t1,3 and t2,3 have been determined, we can determine
the range of values of λ that ensure that x1 ≥ 0 and x2 ≥ 0.



4. The Simplex Method (continued)

In order to determine the values of t1,3 and t2,3 we note that

a(1) =

(
5
4

)
=

(
5 3
4 1

)(
1
0

)
a(2) =

(
3
1

)
=

(
5 3
4 1

)(
0
1

)

and therefore

a(3) = t3,1a
(1) + t3,2a

(2) =

(
5 3
4 1

)(
t3,1
t3,2

)
= MB

(
t3,1
t3,2

)
,

where

MB =

(
5 3
4 1

)
.



4. The Simplex Method (continued)

It follows that(
t3,1
t3,2

)
= M−1B a(3) = −1

7

(
1 −3
−4 5

)(
4
3

)
=

(
5
7
1
7

)
.

Thus t3,1 = 5
7 and t3,2 = 1

7 .



4. The Simplex Method (continued)

We now determine the feasible solutions x of this optimization
problem that satisfy x3 = λ and x4 = x5 = 0. we have already
shown that

x1 = x1 − λt1,3, x2 = x2 − λt2,3.

Now x1 = 1, x2 = 2, t1,3 = 5
7 and t2,3 = 1

7 . It follows that
x1 = 1− 5

7λ and x2 = 2− 1
7λ. Now the components of a feasible

solution must satisfy x1 ≥ 0 and x2 ≥ 0. it follows that
0 ≤ λ ≤ 7

5 . Moreover on setting λ = 7
5 we find that x1 = 0 and

x2 = 9
5 . We thus obtain a new basic feasible solution x associated

to the basis {2, 3}, where

xT =
(

0 9
5

7
5 0 0

)
.

The cost of this new basic feasible solution is 10.



4. The Simplex Method (continued)

We now let B ′ and x′ denote the new basic and new associated
basic feasible solution respectively, so that B ′ = {2, 3} and

x′T =
(

0 9
5

7
5 0 0

)
.

We also let MB′ be the 2× 2 minor of the matrix A with columns
indexed by the new basis B, so that

MB′ =

(
3 4
1 3

)
and M−1B′ =

1

5

(
3 −4
−1 3

)
.



4. The Simplex Method (continued)

We now determine the components of the vector p′ ∈ R2 whose
transpose

(
p′1 p′2

)
satisfies the matrix equation(

c2 c3
)

=
(
p′1 p′2

)
MB′ .

We find that(
p′1 p′2

)
=

(
c2 c3

)
M−1B′

=
1

5

(
4 2

)( 3 −4
−1 3

)
=

(
2 −2

)
.



4. The Simplex Method (continued)

We next compute the components of the vector q′ ∈ R5 so as to
ensure that

q′T = cT − p′TA

=
(

3 4 2 9 5
)
−
(

2 −2
)( 5 3 4 7 3

4 1 3 8 4

)
=

(
3 4 2 9 5

)
−
(

2 4 2 −2 −2
)

=
(

1 0 0 11 7
)
.

The components of the vector q′ determined using the new basis
{2, 3} are all non-negative. This ensures that the new basic
feasible solution is an optimal solution.



4. The Simplex Method (continued)

Indeed let x be a feasible solution of this optimization problem.
Then Ax′ = b, and therefore

cTx = p′TAx + q′Tx′ = p′Tb + q′Tx.

Moreover p′Tb = 10. It follows that

cTx = 10 + x1 + 11x4 + 7x5 ≥ 10,

and thus the new basic feasible solution x′ is optimal.



4. The Simplex Method (continued)

We summarize the result we have obtained. The optimization
problem was the following:—

minimize
3x1 + 4x2 + 2x3 + 9x4 + 5x5

subject to the following constraints:
5x1 + 3x2 + 4x3 + 7x4 + 3x5 = 11;
4x1 + x2 + 3x3 + 8x4 + 4x5 = 6;
xj ≥ 0 for j = 1, 2, 3, 4, 5.

We have found the following basic optimal solution to the problem:

x1 = 0, x2 =
9

5
, x3 =

7

5
, x4 = 0, x5 = 0.



4. The Simplex Method (continued)

We now investigate all bases for this linear programming problem
in order to determine which bases are associated with basic feasible
solutions.

The problem is to find x ∈ R5 that minimizes cTx subject to the
constraints Ax = b and x ≥ 0, where

A =

(
5 3 4 7 3
4 1 3 8 4

)
, b =

(
11
6

)
and

cT =
(

3 4 2 9 5
)
.

For each two-element subset B of {1, 2, 3, 4, 5} we compute MB ,
M−1B and M−1B b, where MB is the 2× 2 minor of the matrix A
whose columns are indexed by the elements of B. We find the
following:—



4. The Simplex Method (continued)

B MB M−1B M−1B b cTM−1B b

{1, 2}
(

5 3
4 1

)
−1

7

(
1 −3
−4 5

) (
1
2

)
11

{1, 3}
(

5 4
4 3

)
−
(

3 −4
−4 5

) (
−9
14

)
1

{1, 4}
(

5 7
4 8

)
1
12

(
8 −7
−4 5

) (
23
6

−7
6

)
1

{1, 5}
(

5 3
4 4

)
1
8

(
4 −3
−4 5

) (
13
4

−7
4

)
1

{2, 3}
(

3 4
1 3

)
1
5

(
3 −4
−1 3

) (
9
5
7
5

)
10



4. The Simplex Method (continued)

B MB M−1B M−1B b cTM−1B b

{2, 4}
(

3 7
1 8

)
1
17

(
8 −7
−1 3

) (
46
17
7
17

)
247
17

{2, 5}
(

3 3
1 4

)
1
9

(
4 −3
−1 3

) (
26
9
7
9

)
139
9

{3, 4}
(

4 7
3 8

)
1
11

(
8 −7
−3 4

) (
46
11

− 9
11

)
1

{3, 5}
(

4 3
3 4

)
1
7

(
4 −3
−3 4

) (
26
7

−9
7

)
1

{4, 5}
(

7 3
8 4

)
1
4

(
4 −3
−8 7

) (
13
2

−23
2

)
1



4. The Simplex Method (continued)

From this data, we see that there are four basic feasible solutions
to the problem. We tabulate them below:—

B x Cost

{1, 2} (1, 2, 0, 0, 0) 11

{2, 3} (0, 95 ,
7
5 , 0, 0) 10

{2, 4} (0, 4617 , 0,
7
17 , 0) 247

17 = 14.529 . . .

{2, 5} (0, 269 , 0, 0,
7
9) 139

9 = 15.444 . . .
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