MA3484—Methods of Mathematical Economics School of Mathematics, Trinity College Hilary Term 2017 Lecture 11 (February 10, 2017)

David R. Wilkins

4. The Simplex Method

4.1. Vector Inequalities and Notational Conventions

Let **v** be an element of the real vector space \mathbb{R}^n . We denote by $(\mathbf{v})_j$ the *j*th component of the vector **v**. The vector **v** can be represented in the usual fashion as an *n*-tuple (v_1, v_2, \ldots, v_n) , where $v_j = (\mathbf{v})_j$ for $j = 1, 2, \ldots, n$. However where an *n*-dimensional vector appears in matrix equations it will usually be considered to be an $n \times 1$ column vector. The row vector corresponding to an element **v** of \mathbb{R}^n will be denoted by \mathbf{v}^T because, considered as a matrix, it is the transpose of the column vector representing **v**. We denote the zero vector (in the appropriate dimension) by **0**.

Let **x** and **y** be vectors belonging to the real vector space \mathbb{R}^n for some positive integer *n*. We write $\mathbf{x} \leq \mathbf{y}$ (and $\mathbf{y} \geq \mathbf{x}$) when $(\mathbf{x})_j \leq (\mathbf{y})_j$ for j = 1, 2, ..., n. Also we write $\mathbf{x} \ll \mathbf{y}$ (and $\mathbf{y} \gg \mathbf{x}$) when $(\mathbf{x})_j < (\mathbf{y})_j$ for j = 1, 2, ..., n.

These notational conventions ensure that $\mathbf{x} \ge \mathbf{0}$ if and only if $(\mathbf{x})_j \ge 0$ for j = 1, 2, ..., n.

The scalar product of two *n*-dimensional vectors \mathbf{u} and \mathbf{v} can be represented as the matrix product $\mathbf{u}^T \mathbf{v}$. Thus

$$\mathbf{u}^T\mathbf{v}=u_1v_1+u_2v_2+\cdots+u_nv_n$$

for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, where $u_j = (\mathbf{u})_j$ and $v_j = (\mathbf{v})_j$ for j = 1, 2, ..., n.

Given an $m \times n$ matrix A, where m and n are positive integers, we denote by $(A)_{i,j}$ the coefficient in the *i*th row and *j*th column of the matrix A.

4.2. Feasible and Optimal Solutions

A general linear programming problem is one that seeks values of real variables x_1, x_2, \ldots, x_n that maximize or minimize some *objective function*

 $c_1x_1 + c_2x_2 + \cdots + c_nx_n$

that is a linear functional of x_1, x_2, \ldots, x_n determined by real constants c_1, c_2, \ldots, c_n , where the variables x_1, x_2, \ldots, x_n are subject to a finite number of *constraints* that each place bounds on the value of some linear functional of the variables.

These constraints can then be numbered from 1 to m, for an appropriate value of m, such that, for each value of i between 1 and m, the *i*th constraint takes the form of an equation or inequality that can be expressed in one of the following three forms:—

$$\begin{aligned} a_{i,1}x_1 + a_{i,2}x_2 + \cdots + a_{i,n}x_n &= b_i, \\ a_{i,1}x_1 + a_{i,2}x_2 + \cdots + a_{i,n}x_n &\ge b_i, \\ a_{i,1}x_1 + a_{i,2}x_2 + \cdots + a_{i,n}x_n &\le b_i \end{aligned}$$

for appropriate values of the real constants $a_{i,1}, a_{i,2}, \ldots, a_{i,n}$ and b_i . In addition some, but not necessarily all, of the variables x_1, x_2, \ldots, x_n may be required to be non-negative. (Of course a constraint requiring a variable to be non-negative can be expressed by an inequality that conforms to one of the three forms described above. Nevertheless constraints that simply require some of the variables to be non-negative are usually listed separately from the other constraints.)

Definition

Consider a general linear programming problem with n real variables x_1, x_2, \ldots, x_n whose objective is to maximize or minimize some objective function subject to appropriate constraints. A *feasible solution* of this linear programming problem is specified by an n-dimensional vector \mathbf{x} whose components satisfy the constraints but do not necessarily maximize or minimize the objective function.

Definition

Consider a general linear programming problem with n real variables x_1, x_2, \ldots, x_n whose objective is to maximize or minimize some objective function subject to appropriate constraints. A *optimal solution* of this linear programming problem is specified by an n-dimensional vector \mathbf{x} that is a feasible solution that optimizes the value of the objective function amongst all feasible solutions to the linear programming problem.

4.3. Programming Problems in Dantzig Standard Form

Let A be an $m \times n$ matrix of rank m with real coefficients, where $m \le n$, and let $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{c} \in \mathbb{R}^n$ be vectors of dimensions m and n respectively. We consider the following linear programming problem:—

Determine an n-dimensional vector \mathbf{x} so as to minimize $\mathbf{c}^T \mathbf{x}$ subject to the constraints $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$.

We refer to linear programming problems presented in this form as being in *Dantzig standard form*. We refer to the $m \times n$ matrix A, the *m*-dimensional vector **b** and the *n*-dimensional vector **c** as the *constraint matrix, target vector* and *cost vector* for the linear programming problem.

Remark

Nomenclature in Linear Programming textbooks varies. Problems presented in the above form are those to which the basic algorithms of George B. Dantzig's *Simplex Method* are applicable. In the series of textbooks by George B. Dantzig and Mukund N. Thapa entitled *Linear Programming*, such problems are said to be in standard form. In the textbook Introduction to Linear Programming by Richard B. Darst, such problems are said to be standard-form LP. On the other hand, in the textbook Methods of Mathematical Economics by Joel N. Franklin, such problems are said to be in *canonical form*, and the term *standard form* is used for problems which match the form above, except that the vector equality $A\mathbf{x} = \mathbf{b}$ is replaced by a vector inequality $A\mathbf{x} > \mathbf{b}$.

Accordingly the term *Danztig standard form* is used in these notes both to indicate that such problems are in *standard form* at that term is used by textbooks of which Dantzig is the author, and also to emphasize the connection with the contribution of Dantzig in creating and popularizing the *Simplex Method* for the solution of linear programming problems.

4. The Simplex Method (continued)

A linear programming problem in Dantzig standard form specified by an $m \times n$ constraint matrix A of rank m, an m-dimensional target vector **b** and an n-dimensional cost vector **c** has the objective of finding values of real variables x_1, x_2, \ldots, x_n that minimize the value of the *cost*

$$c_1x_1+c_2x_2+\cdots+c_nx_n$$

subject to constraints

$$A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,n}x_n = b_1,$$

$$A_{2,1}x_1 + A_{2,2}x_2 + \dots + A_{2,n}x_n = b_2,$$

$$\vdots$$

$$A_{m,1}x_1 + A_{m,2}x_2 + \dots + A_{m,n}x_n = b_m$$

and

$$x_1 \geq 0, \quad x_2 \geq 0, \ldots, \quad x_n \geq 0.$$

In the above programming problem, the function sending the *n*-dimensional vector **x** to the corresponding cost $\mathbf{c}^T \mathbf{x}$ is the objective function for the problem. A feasible solution to the problem consists of an *n*-dimensional vector (x_1, x_2, \ldots, x_n) whose components satisfy the above constraints but do not necessarily minimize cost. An optimal solution is a feasible solution whose cost does not exceed that of any other feasible solution.

4.4. Basic Feasible Solutions

We define the notion of a *basis* for a linear programming problem in Dantzig standard form.

Definition

Let A be an $m \times n$ matrix of rank m with real coefficients, where $m \leq n$, let $\mathbf{b} \in \mathbb{R}^m$ be an m-dimensional column vector, let $\mathbf{c} \in \mathbb{R}^n$ be an n-dimensional column vector. Consider the following programming problem in Dantzig standard form:

find $\mathbf{x} \in \mathbb{R}^n$ so as to minimize $\mathbf{c}^T \mathbf{x}$ subject to constraints $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$.

For each integer j between 1 and n, let $\mathbf{a}^{(j)}$ denote the *m*-dimensional vector determined by the *j*th column of the matrix A, so that $(\mathbf{a}^{(j)})_i = (A)_{i,j}$ for i = 1, 2, ..., m and j = 1, 2, ..., n. A basis for this linear programming problem is a set consisting of *m* distinct integers $j_1, j_2, ..., j_m$ between 1 and *n* for which the corresponding vectors

$$\mathbf{a}^{(j_1)}, \mathbf{a}^{(j_2)}, \dots, \mathbf{a}^{(j_m)}$$

constitute a basis of the vector space \mathbb{R}^m .

We next define what is meant by saying that a feasible solution of a programming problem Dantzig standard form is a *basic feasible solution* for the programming problem.

Definition

Let A be an $m \times n$ matrix of rank m with real coefficients, where $m \leq n$, let $\mathbf{b} \in \mathbb{R}^m$ be an m-dimensional column vector, let $\mathbf{c} \in \mathbb{R}^n$ be an n-dimensional column vector. Consider the following programming problem in Dantzig standard form:—

find $\mathbf{x} \in \mathbb{R}^n$ so as to minimize $\mathbf{c}^T \mathbf{x}$ subject to constraints $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$.

A feasible solution **x** for this programming problem is said to be *basic* if there exists a basis *B* for the linear programming problem such that $(\mathbf{x})_j = 0$ when $j \notin B$.

Lemma 4.1

Let A be an $m \times n$ matrix of rank m with real coefficients, where $m \leq n$, let $\mathbf{b} \in \mathbb{R}^m$ be an m-dimensional column vector, let $\mathbf{c} \in \mathbb{R}^n$ be an n-dimensional column vector. Consider the following programming problem in Dantzig standard form:

find $\mathbf{x} \in \mathbb{R}^n$ so as to minimize $\mathbf{c}^T \mathbf{x}$ subject to constraints $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$.

Let $\mathbf{a}^{(j)}$ denote the vector specified by the *j*th column of the matrix A for j = 1, 2, ..., n. Let \mathbf{x} be a feasible solution of the linear programming problem. Suppose that the m-dimensional vectors $\mathbf{a}^{(j)}$ for which $(\mathbf{x})_j > 0$ are linearly independent. Then \mathbf{x} is a basic feasible solution of the linear programming problem.

Proof

Let \mathbf{x} be a feasible solution to the programming problem, let $x_i = (\mathbf{x})_i$ for all $i \in J$, where $J = \{1, 2, \dots, n\}$, and let $K = \{i \in J : x_i > 0\}$. If the vectors $\mathbf{a}^{(j)}$ for which $i \in K$ are linearly independent then basic linear algebra ensures that further vectors $\mathbf{a}^{(j)}$ can be added to the linearly independent set $\{\mathbf{a}^{(j)}: j \in K\}$ so as to obtain a finite subset of \mathbb{R}^m whose elements constitute a basis of that vector space (see Proposition 2.2). Thus exists a subset B of J satisfying $K \subset B \subset J$ such that the *m*-dimensional vectors $\mathbf{a}^{(j)}$ for which $i \in B$ constitute a basis of the real vector space \mathbb{R}^m . Moreover $(\mathbf{x})_i = 0$ for all $i \in J \setminus B$. It follows that \mathbf{x} is a basic feasible solution to the linear programming problem, as required.

Theorem 4.2

Let A be an $m \times n$ matrix of rank m with real coefficients, where $m \leq n$, let $\mathbf{b} \in \mathbb{R}^m$ be an m-dimensional column vector, let $\mathbf{c} \in \mathbb{R}^n$ be an n-dimensional column vector. Consider the following programming problem in Dantzig standard form:

find $\mathbf{x} \in \mathbb{R}^n$ so as to minimize $\mathbf{c}^T \mathbf{x}$ subject to constraints $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$.

If there exists a feasible solution to this programming problem then there exists a basic feasible solution to the problem. Moreover if there exists an optimal solution to the programming problem then there exists a basic optimal solution to the problem.

Proof

Let $J = \{1, 2, ..., n\}$, and let $\mathbf{a}^{(j)}$ denote the vector specified by the *j*th column of the matrix A for all $j \in J$.

Let **x** be a feasible solution to the programming problem, let $x_j = (\mathbf{x})_j$ for all $j \in J$, and let $K = \{j \in J : x_j > 0\}$. Suppose that **x** is not basic. Then the vectors $\mathbf{a}^{(j)}$ for which $j \in K$ must be linearly dependent. We show that there then exists a feasible solution with fewer non-zero components than the given feasible solution **x**.

Now there exist real numbers y_j for $j \in K$, not all zero, such that $\sum_{j \in K} y_j \mathbf{a}^{(j)} = \mathbf{0}$, because the vectors $\mathbf{a}^{(j)}$ for $j \in K$ are linearly dependent. Let $y_j = 0$ for all $j \in J \setminus K$, and let $\mathbf{y} \in \mathbb{R}^n$ be the *n*-dimensional vector satisfying $(\mathbf{y})_j = y_j$ for j = 1, 2, ..., n. Then

$$A\mathbf{y} = \sum_{j \in J} y_j \mathbf{a}^{(j)} = \sum_{j \in K} y_j \mathbf{a}^{(j)} = \mathbf{0}.$$

It follows that $A(\mathbf{x} - \lambda \mathbf{y}) = \mathbf{b}$ for all real numbers λ , and thus $\mathbf{x} - \lambda \mathbf{y}$ is a feasible solution to the programming problem for all real numbers λ for which $\mathbf{x} - \lambda \mathbf{y} \ge \mathbf{0}$.

Now **y** is a non-zero vector. Replacing **y** by -**y**, if necessary, we can assume, without loss of generality, that at least one component of the vector **y** is positive. Let

$$\lambda_0 = \min \left(rac{x_j}{y_j} : j \in K \text{ and } y_j > 0
ight),$$

and let j_0 be an element of K for which $\lambda_0 = x_{j_0}/y_{j_0}$. Then $\frac{x_j}{y_j} \ge \lambda_0$ for all $j \in J$ for which $y_j > 0$. Multiplying by the positive number y_j , we find that $x_j \ge \lambda_0 y_j$ and thus $x_j - \lambda_0 y_j \ge 0$ when $y_j > 0$. Also $\lambda_0 > 0$ and $x_j \ge 0$, and therefore $x_j - \lambda_0 y_j \ge 0$ when $y_j \le 0$. Thus $x_j - \lambda_0 y_j \ge 0$ for all $j \in J$. Also $x_{j_0} - \lambda_0 y_{j_0} = 0$, and $x_j - \lambda_0 y_j = 0$ for all $j \in J \setminus K$. Let $\mathbf{x}' = \mathbf{x} - \lambda_0 \mathbf{y}$. Then $\mathbf{x}' \ge \mathbf{0}$ and $A\mathbf{x}' = \mathbf{b}$, and thus \mathbf{x}' is a feasible solution to the linear programming problem with fewer non-zero components than the given feasible solution. Suppose in particular that the feasible solution \mathbf{x} is optimal. Now there exist both positive and negative values of λ for which $\mathbf{x} - \lambda \mathbf{y} \ge \mathbf{0}$. If it were the case that $\mathbf{c}^T \mathbf{y} \ne \mathbf{0}$ then there would exist values of λ for which both $\mathbf{x} - \lambda \mathbf{y} \ge \mathbf{0}$ and $\lambda \mathbf{c}^T \mathbf{y} > \mathbf{0}$. But then $\mathbf{c}^T (\mathbf{x} - \lambda \mathbf{y}) < \mathbf{c}^T \mathbf{x}$, contradicting the optimality of \mathbf{x} . It follows that $\mathbf{c}^T \mathbf{y} = \mathbf{0}$, and therefore $\mathbf{x} - \lambda \mathbf{y}$ is an optimal solution of the linear programming problem for all values of λ for which $\mathbf{x} - \lambda \mathbf{y} \ge \mathbf{0}$. The previous argument then shows that there exists a real number λ_0 for which $\mathbf{x} - \lambda_0 \mathbf{y}$ is an optimal solution with fewer non-zero components than the given optimal solution \mathbf{x} . We have shown that if there exists a feasible solution \mathbf{x} which is not basic then there exists a feasible solution with fewer non-zero components than \mathbf{x} . It follows that if a feasible solution \mathbf{x} is chosen such that it has the smallest possible number of non-zero components then it is a basic feasible solution of the linear programming problem.

Similarly we have shown that if there exists an optimal solution \mathbf{x} which is not basic then there exists an optimal solution with fewer non-zero components than \mathbf{x} . It follows that if an optimal solution \mathbf{x} is chosen such that it has the smallest possible number of non-zero components then it is a basic optimal solution of the linear programming problem.