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4. The Simplex Method

4. The Simplex Method

4.1. Vector Inequalities and Notational Conventions

Let v be an element of the real vector space Rn. We denote by
(v)j the jth component of the vector v. The vector v can be
represented in the usual fashion as an n-tuple (v1, v2, . . . , vn),
where vj = (v)j for j = 1, 2, . . . , n. However where an
n-dimensional vector appears in matrix equations it will usually be
considered to be an n × 1 column vector. The row vector
corresponding to an element v of Rn will be denoted by vT

because, considered as a matrix, it is the transpose of the column
vector representing v. We denote the zero vector (in the
appropriate dimension) by 0.



4. The Simplex Method (continued)

Let x and y be vectors belonging to the real vector space Rn for
some positive integer n. We write x ≤ y (and y ≥ x) when
(x)j ≤ (y)j for j = 1, 2, . . . , n. Also we write x� y (and y� x)
when (x)j < (y)j for j = 1, 2, . . . , n.

These notational conventions ensure that x ≥ 0 if and only if
(x)j ≥ 0 for j = 1, 2, . . . , n.

The scalar product of two n-dimensional vectors u and v can be
represented as the matrix product uTv. Thus

uTv = u1v1 + u2v2 + · · ·+ unvn

for all u, v ∈ Rn, where uj = (u)j and vj = (v)j for j = 1, 2, . . . , n.

Given an m × n matrix A, where m and n are positive integers, we
denote by (A)i ,j the coefficient in the ith row and jth column of
the matrix A.



4. The Simplex Method (continued)

4.2. Feasible and Optimal Solutions

A general linear programming problem is one that seeks values of
real variables x1, x2, . . . , xn that maximize or minimize some
objective function

c1x1 + c2x2 + · · · cnxn
that is a linear functional of x1, x2, . . . , xn determined by real
constants c1, c2, . . . , cn, where the variables x1, x2, . . . , xn are
subject to a finite number of constraints that each place bounds on
the value of some linear functional of the variables.
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These constraints can then be numbered from 1 to m, for an
appropriate value of m, such that, for each value of i between 1
and m, the ith constraint takes the form of an equation or
inequality that can be expressed in one of the following three
forms:—

ai ,1x1 + ai ,2x2 + · · ·+ ai ,nxn = bi ,

ai ,1x1 + ai ,2x2 + · · ·+ ai ,nxn ≥ bi ,

ai ,1x1 + ai ,2x2 + · · ·+ ai ,nxn ≤ bi

for appropriate values of the real constants ai ,1, ai ,2, . . . , ai ,n and
bi . In addition some, but not necessarily all, of the variables
x1, x2, . . . , xn may be required to be non-negative. (Of course a
constraint requiring a variable to be non-negative can be expressed
by an inequality that conforms to one of the three forms described
above. Nevertheless constraints that simply require some of the
variables to be non-negative are usually listed separately from the
other constraints.)
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Definition

Consider a general linear programming problem with n real
variables x1, x2, . . . , xn whose objective is to maximize or minimize
some objective function subject to appropriate constraints. A
feasible solution of this linear programming problem is specified by
an n-dimensional vector x whose components satisfy the
constraints but do not necessarily maximize or minimize the
objective function.

Definition

Consider a general linear programming problem with n real
variables x1, x2, . . . , xn whose objective is to maximize or minimize
some objective function subject to appropriate constraints. A
optimal solution of this linear programming problem is specified by
an n-dimensional vector x that is a feasible solution that optimizes
the value of the objective function amongst all feasible solutions to
the linear programming problem.



4. The Simplex Method (continued)

4.3. Programming Problems in Dantzig Standard Form

Let A be an m × n matrix of rank m with real coefficients, where
m ≤ n, and let b ∈ Rm and c ∈ Rn be vectors of dimensions m
and n respectively. We consider the following linear programming
problem:—

Determine an n-dimensional vector x so as to minimize
cTx subject to the constraints Ax = b and x ≥ 0.

We refer to linear programming problems presented in this form as
being in Dantzig standard form. We refer to the m × n matrix A,
the m-dimensional vector b and the n-dimensional vector c as the
constraint matrix, target vector and cost vector for the linear
programming problem.



4. The Simplex Method (continued)

Remark
Nomenclature in Linear Programming textbooks varies. Problems
presented in the above form are those to which the basic
algorithms of George B. Dantzig’s Simplex Method are applicable.
In the series of textbooks by George B. Dantzig and Mukund N.
Thapa entitled Linear Programming, such problems are said to be
in standard form. In the textbook Introduction to Linear
Programming by Richard B. Darst, such problems are said to be
standard-form LP. On the other hand, in the textbook Methods of
Mathematical Economics by Joel N. Franklin, such problems are
said to be in canonical form, and the term standard form is used
for problems which match the form above, except that the vector
equality Ax = b is replaced by a vector inequality Ax ≥ b.
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Accordingly the term Danztig standard form is used in these notes
both to indicate that such problems are in standard form at that
term is used by textbooks of which Dantzig is the author, and also
to emphasize the connection with the contribution of Dantzig in
creating and popularizing the Simplex Method for the solution of
linear programming problems.
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A linear programming problem in Dantzig standard form specified
by an m × n constraint matrix A of rank m, an m-dimensional
target vector b and an n-dimensional cost vector c has the
objective of finding values of real variables x1, x2, . . . , xn that
minimize the value of the cost

c1x1 + c2x2 + · · ·+ cnxn

subject to constraints

A1,1x1 + A1,2x2 + · · ·+ A1,nxn = b1,

A2,1x1 + A2,2x2 + · · ·+ A2,nxn = b2,

...

Am,1x1 + Am,2x2 + · · ·+ Am,nxn = bm

and
x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.
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In the above programming problem, the function sending the
n-dimensional vector x to the corresponding cost cTx is the
objective function for the problem. A feasible solution to the
problem consists of an n-dimensional vector (x1, x2, . . . , xn) whose
components satisfy the above constraints but do not necessarily
minimize cost. An optimal solution is a feasible solution whose
cost does not exceed that of any other feasible solution.
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4.4. Basic Feasible Solutions

We define the notion of a basis for a linear programming problem
in Dantzig standard form.
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Definition

Let A be an m × n matrix of rank m with real coefficients, where
m ≤ n, let b ∈ Rm be an m-dimensional column vector, let c ∈ Rn

be an n-dimensional column vector. Consider the following
programming problem in Dantzig standard form:

find x ∈ Rn so as to minimize cTx subject to constraints
Ax = b and x ≥ 0.

For each integer j between 1 and n, let a(j) denote the
m-dimensional vector determined by the jth column of the
matrix A, so that (a(j))i = (A)i ,j for i = 1, 2, . . . ,m and
j = 1, 2, . . . , n. A basis for this linear programming problem is a
set consisting of m distinct integers j1, j2, . . . , jm between 1 and n
for which the corresponding vectors

a(j1), a(j2), . . . , a(jm)

constitute a basis of the vector space Rm.



4. The Simplex Method (continued)

We next define what is meant by saying that a feasible solution of
a programming problem Dantzig standard form is a basic feasible
solution for the programming problem.

Definition

Let A be an m × n matrix of rank m with real coefficients, where
m ≤ n, let b ∈ Rm be an m-dimensional column vector, let c ∈ Rn

be an n-dimensional column vector. Consider the following
programming problem in Dantzig standard form:—

find x ∈ Rn so as to minimize cTx subject to constraints
Ax = b and x ≥ 0.

A feasible solution x for this programming problem is said to be
basic if there exists a basis B for the linear programming problem
such that (x)j = 0 when j 6∈ B.
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Lemma 4.1

Let A be an m × n matrix of rank m with real coefficients, where
m ≤ n, let b ∈ Rm be an m-dimensional column vector, let c ∈ Rn

be an n-dimensional column vector. Consider the following
programming problem in Dantzig standard form:

find x ∈ Rn so as to minimize cTx subject to constraints
Ax = b and x ≥ 0.

Let a(j) denote the vector specified by the jth column of the
matrix A for j = 1, 2, . . . , n. Let x be a feasible solution of the
linear programming problem. Suppose that the m-dimensional
vectors a(j) for which (x)j > 0 are linearly independent. Then x is
a basic feasible solution of the linear programming problem.
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Proof
Let x be a feasible solution to the programming problem, let
xj = (x)j for all j ∈ J, where J = {1, 2, . . . , n}, and let
K = {j ∈ J : xj > 0}. If the vectors a(j) for which j ∈ K are
linearly independent then basic linear algebra ensures that further
vectors a(j) can be added to the linearly independent set
{a(j) : j ∈ K} so as to obtain a finite subset of Rm whose elements
constitute a basis of that vector space (see Proposition 2.2). Thus
exists a subset B of J satisfying K ⊂ B ⊂ J such that the
m-dimensional vectors a(j) for which j ∈ B constitute a basis of
the real vector space Rm. Moreover (x)j = 0 for all j ∈ J \ B. It
follows that x is a basic feasible solution to the linear programming
problem, as required.
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Theorem 4.2

Let A be an m × n matrix of rank m with real coefficients, where
m ≤ n, let b ∈ Rm be an m-dimensional column vector, let c ∈ Rn

be an n-dimensional column vector. Consider the following
programming problem in Dantzig standard form:

find x ∈ Rn so as to minimize cTx subject to constraints
Ax = b and x ≥ 0.

If there exists a feasible solution to this programming problem then
there exists a basic feasible solution to the problem. Moreover if
there exists an optimal solution to the programming problem then
there exists a basic optimal solution to the problem.
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Proof
Let J = {1, 2, . . . , n}, and let a(j) denote the vector specified by
the jth column of the matrix A for all j ∈ J.

Let x be a feasible solution to the programming problem, let
xj = (x)j for all j ∈ J, and let K = {j ∈ J : xj > 0}. Suppose that
x is not basic. Then the vectors a(j) for which j ∈ K must be
linearly dependent. We show that there then exists a feasible
solution with fewer non-zero components than the given feasible
solution x.
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Now there exist real numbers yj for j ∈ K , not all zero, such that∑
j∈K

yja
(j) = 0, because the vectors a(j) for j ∈ K are linearly

dependent. Let yj = 0 for all j ∈ J \ K , and let y ∈ Rn be the
n-dimensional vector satisfying (y)j = yj for j = 1, 2, . . . , n. Then

Ay =
∑
j∈J

yja
(j) =

∑
j∈K

yja
(j) = 0.

It follows that A(x− λy) = b for all real numbers λ, and thus
x− λy is a feasible solution to the programming problem for all
real numbers λ for which x− λy ≥ 0.
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Now y is a non-zero vector. Replacing y by −y, if necessary, we
can assume, without loss of generality, that at least one
component of the vector y is positive. Let

λ0 = minimum

(
xj
yj

: j ∈ K and yj > 0

)
,

and let j0 be an element of K for which λ0 = xj0/yj0 . Then
xj
yj
≥ λ0 for all j ∈ J for which yj > 0. Multiplying by the positive

number yj , we find that xj ≥ λ0yj and thus xj − λ0yj ≥ 0 when
yj > 0. Also λ0 > 0 and xj ≥ 0, and therefore xj − λ0yj ≥ 0 when
yj ≤ 0. Thus xj − λ0yj ≥ 0 for all j ∈ J. Also xj0 − λ0yj0 = 0, and
xj − λ0yj = 0 for all j ∈ J \ K . Let x′ = x− λ0y. Then x′ ≥ 0 and
Ax′ = b, and thus x′ is a feasible solution to the linear
programming problem with fewer non-zero components than the
given feasible solution.
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Suppose in particular that the feasible solution x is optimal. Now
there exist both positive and negative values of λ for which
x− λy ≥ 0. If it were the case that cTy 6= 0 then there would
exist values of λ for which both x− λy ≥ 0 and λcTy > 0. But
then cT (x − λy) < cTx, contradicting the optimality of x. It
follows that cTy = 0, and therefore x− λy is an optimal solution
of the linear programming problem for all values of λ for which
x− λy ≥ 0. The previous argument then shows that there exists a
real number λ0 for which x− λ0y is an optimal solution with fewer
non-zero components than the given optimal solution x.
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We have shown that if there exists a feasible solution x which is
not basic then there exists a feasible solution with fewer non-zero
components than x. It follows that if a feasible solution x is chosen
such that it has the smallest possible number of non-zero
components then it is a basic feasible solution of the linear
programming problem.

Similarly we have shown that if there exists an optimal solution x
which is not basic then there exists an optimal solution with fewer
non-zero components than x. It follows that if an optimal solution
x is chosen such that it has the smallest possible number of
non-zero components then it is a basic optimal solution of the
linear programming problem.
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