
MA3484—Methods of Mathematical
Economics

School of Mathematics, Trinity College
Hilary Term 2017

Lecture 10 (February 9, 2017)

David R. Wilkins



3. The Transportation Problem (continued)

3.11. Formal Analysis of the Solution of the Transportation Problem

We now describe in general terms the method for solving a
transportation problem in which total supply equals total demand.

We suppose that an initial basic feasible solution has been
obtained. We apply an iterative method (based on the general
Simplex Method for the solution of linear programming problems)
that will test a basic feasible solution for optimality and, in the
event that the feasible solution is shown not to be optimal,
establishes information that (with the exception of certain
‘degenerate’ cases of the transportation problem) enables one to
find a basic feasible solution with lower cost. Iterating this
procedure a finite number of times, one should arrive at a basic
feasible solution that is optimal for the given transportation
problem.



3. The Transportation Problem (continued)

We suppose that the given instance of the Transportation Problem
involves m suppliers and n recipients. The required supplies are
specified by non-negative real numbers s1, s2, . . . , sm, and the
required demands are specified by non-negative real numbers

d1, d2, . . . , dn. We further suppose that
m∑
i=1

si =
n∑

j=1
dj . A feasible

solution is represented by non-negative real numbers xi ,j for

i = 1, 2, . . . ,m and j = 1, 2, . . . , n, where
n∑

j=1
xi ,j = si for

i = 1, 2, . . . ,m and
m∑
i=1

xi ,j = dj for j = 1, 2, . . . , n.



3. The Transportation Problem (continued)

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}. A subset B of I × J is
a basis for the transportation problem if and only if, given any real

numbers y1, y2, . . . , ym and z1, z2, . . . , zn, where
m∑
i=1

yi =
n∑

j=1
zj ,

there exist uniquely determined real numbers x i ,j for i ∈ I and

j ∈ J such that
n∑

j=1
x i ,j = yi for i ∈ I ,

m∑
i=1

x i ,j = zj for j ∈ J, where

x i ,j = 0 whenever (i , j) 6∈ B.

A feasible solution (xi ,j) is said to be a basic feasible solution
associated with the basis B if and only if xi ,j = 0 for all i ∈ I and
j ∈ J for which (i , j) 6∈ B.

Let xi ,j be a non-negative real number for each i ∈ I and j ∈ J.
Suppose that (xi ,j) is a basic feasible solution to the transportation
problem associated with basis B, where B ⊂ I × J.



3. The Transportation Problem (continued)

The cost associated with a feasible solution (xi ,j is given by
m∑
i=1

n∑
j=1

ci ,jxi ,j , where the constants ci ,j are real numbers for all i ∈ I

and j ∈ J. A feasible solution for a transportation problem is an
optimal solution if and only if it minimizes cost amongst all
feasible solutions to the problem.



3. The Transportation Problem (continued)

In order to test for optimality of a basic feasible solution (xi ,j)
associated with a basis B, we determine real numbers
u1, u2, . . . , um and v1, v2, . . . , vn with the property that
ci ,j = vj − ui for all (i , j) ∈ B. (Proposition 3.10 below guarantees
that, given any basis B, it is always possible to find the required
quantities ui and vj .) Having calculated these quantities ui and vj
we determine the values of qi ,j , where qi ,j = ci ,j − vj + ui for all
i ∈ I and j ∈ J. Then qi ,j = 0 whenever (i , j) ∈ B.

We claim that a basic feasible solution (xi ,j) associated with the
basis B is optimal if and only if qi ,j ≥ 0 for all i ∈ I and j ∈ J.
This is a consequence of the identity established in the following
proposition.



3. The Transportation Problem (continued)

Proposition 3.8

Let xi ,j , ci ,j and qi ,j be real numbers defined for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n, and let u1, u2, . . . , um and v1, v2, . . . , vn be real
numbers. Suppose that

ci ,j = vj − ui + qi ,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Then

m∑
i=1

n∑
j=1

ci ,jxi ,j =
n∑

j=1

vjdj −
m∑
i=1

ui si +
m∑
i=1

n∑
j=1

qi ,jxi ,j ,

where si =
n∑

j=1
xi ,j for i = 1, 2, . . . ,m and dj =

m∑
i=1

xi ,j for

j = 1, 2, . . . , n.



3. The Transportation Problem (continued)

Proof
The definitions of the relevant quantities ensure that

m∑
i=1

n∑
j=1

ci ,jxi ,j =
m∑
i=1

n∑
j=1

(vj − ui + qi ,j)xi ,j

=
n∑

j=1

(
vj

m∑
i=1

xi ,j

)
−

m∑
i=1

ui

n∑
j=1

xi ,j


+

m∑
i=1

n∑
j=1

qi ,jxi ,j

=
n∑

j=1

vjdj −
m∑
i=1

ui si +
m∑
i=1

n∑
j=1

qi ,jxi ,j ,

as required.



3. The Transportation Problem (continued)

Corollary 3.9

Let m and n be integers, and let I = {1, 2, . . . ,m} and
J = {1, 2, . . . , n}. Let xi ,j and ci ,j be real numbers defined for all
i ∈ I and j ∈ I , and let u1, u2, . . . , um and v1, v2, . . . , vn be real
numbers. Suppose that ci ,j = vj − ui for all (i , j) ∈ I × J for which
xi ,j 6= 0. Then

m∑
i=1

n∑
j=1

ci ,jxi ,j =
m∑
i=1

djvj −
n∑

j=1

siui ,

where si =
n∑

j=1
xi ,j for i = 1, 2, . . . ,m and dj =

m∑
i=1

xi ,j for

j = 1, 2, . . . , n.



3. The Transportation Problem (continued)

Proof
Let qi ,j = ci ,j + ui − vj for all i ∈ I and j ∈ J. Then qi ,j = 0
whenever xi ,j 6= 0. It follows from this that

m∑
i=1

n∑
j=1

qi ,jxi ,j = 0.

It then follows from Proposition 3.8 that

m∑
i=1

n∑
j=1

ci ,jxi ,j =
m∑
i=1

n∑
j=1

(vj − ui + qi ,j)xi ,j =
m∑
i=1

djvj −
n∑

j=1

siui ,

as required.



3. The Transportation Problem (continued)

Let m and n be positive integers, let I = {1, 2, . . . ,m} and
J = {1, 2, . . . , n}, and let the subset B of I × J be a basis for a
transportation problem with m suppliers and n recipients. Let the

cost of a feasible solution (x i ,j) be
m∑
i=1

n∑
j=1

ci ,jx i ,j . Now
n∑

j=1
x i ,j = si

and
m∑
i=1

x i ,j = dj , where the quantities si and dj are determined by

the specification of the problem and are the same for all feasible
solutions of the problem. Let quantities ui for i ∈ I and vj for
j ∈ J be determined such that ci ,j = vj − ui for all (i , j) ∈ B, and
let qi ,j = ci ,j + ui − vj for all i ∈ I and j ∈ J. Then qi ,j = 0 for all
(i , j) ∈ B.

It follows from Proposition 3.8 that

m∑
i=1

n∑
j=1

ci ,jx i ,j =
n∑

j=1

vjdj −
m∑
i=1

ui si +
m∑
i=1

n∑
j=1

qi ,jx i ,j .



3. The Transportation Problem (continued)

Now if the quantities xi ,j for i ∈ I and j ∈ J constitute a basic
feasible solution associated with the basis B then xi ,j = 0 whenever

(i , j) 6∈ B. It follows that
m∑
i=1

n∑
j=1

qi ,jxi ,j = 0, and therefore

n∑
j=1

vjdj −
m∑
i=1

ui si = C ,

where

C =
m∑
i=1

n∑
j=1

ci ,jxi ,j .

The cost C of the feasible solution (x i ,j) then satisfies the equation

C =
m∑
i=1

n∑
j=1

ci ,jx i ,j = C +
m∑
i=1

n∑
j=1

qi ,jx i ,j .



3. The Transportation Problem (continued)

If qi ,j ≥ 0 for all i ∈ I and j ∈ J, then the cost C of any feasible
solution (x i ,j) is bounded below by the cost of the basic feasible
solution (xi ,j). It follows that, in this case, the basic feasible
solution (xi ,j) is optimal.

Suppose that (i0, j0) is an element of I × J for which qi0,j0 < 0.
Then (i0, j0) 6∈ B. There is no basis for the transportation problem
that includes the set B ∪ {(i0, j0)}. A straightforward application
of Proposition 3.6 establishes the existence of quantities yi ,j for
i ∈ I and j ∈ J such that yi0,j0 = 1 and yi ,j = 0 for all i ∈ I and
j ∈ J for which (i , j) 6∈ B ∪ {(i0, j0)}.



3. The Transportation Problem (continued)

Let the m × n matrices X and Y be defined so that (X )i ,j = xi ,j
and (Y )i ,j = yi ,j for all i ∈ I and j ∈ J. Suppose that xi ,j > 0 for
all (i , j) ∈ B. Then the components of X in the basis positions are
strictly positive. It follows that, if λ is positive but sufficiently
small, then the components of the matrix X + λY in the basis
positions are also strictly positive, and therefore the components of
the matrix X + λY are non-negative for all sufficiently small
non-negative values of λ. There will then exist a maximum
value λ0 that is an upper bound on the values of λ for which all
components of the matrix X + λY are non-negative. It is then a
straightforward exercise in linear algebra to verify that X + λ0Y is
another basic feasible solution associated with a basis that includes
(i0, j0) together with all but one of the elements of the basis B.



3. The Transportation Problem (continued)

Moreover the cost of this new basic feasible solution is C + λ0qi0,j0 ,
where C is the cost of the basic feasible solution represented by
the matrix X . Thus if qi0,j0 < 0 then the cost of the new basic
feasible solution is lower than that of the basic feasible solution X
from which it was derived.

Suppose that, for all basic feasible solutions of the given
Transportation problem, the coefficients of the matrix specifying
the basic feasible solution are strictly positive at the basis positions.
Then a finite number of iterations of the procedure discussed above
with result in an basic optimal solution of the given transportation
problem. Such problems are said to be non-degenerate.



3. The Transportation Problem (continued)

However if it turns out that a basic feasible solution (xi ,j)
associated with a basis B satisfies xi ,j = 0 for some (i , j) ∈ B, then
we are in a degenerate case of the transportation problem. The
theory of degenerate cases of linear programming problems is
discussed in detail in textbooks that discuss the details of linear
programming algorithms.

We now establish the proposition that guarantees that, given any
basis B, there exist quantities u1, u2, . . . , um and v1, v2, . . . , vn
such that the costs ci ,j associated with the given transportation
problem satisfy ci ,j = vj − ui for all (i , j) ∈ B. This result is an
essential component of the method described here for testing basic
feasible solutions to determine whether or not they are optimal.



3. The Transportation Problem (continued)

Proposition 3.10

Let m and n be integers, let I = {1, 2, . . . ,m} and
J = {1, 2, . . . , n}, and let B be a subset of I × J that is a basis for
the transportation problem with m suppliers and n recipients. For
each (i , j) ∈ B let ci ,j be a corresponding real number. Then there
exist real numbers ui for i ∈ I and vj for j ∈ J such that
ci ,j = vj − ui for all (i , j) ∈ B. Moreover if ui and v j are real
numbers for i ∈ I and j ∈ J that satisfy the equations ci ,j = v j − ui
for all (i , j) ∈ B, then there exists some real number k such that
ui = ui + k for all i ∈ I and v j = vj + k for all j ∈ J.



3. The Transportation Problem (continued)

Proof
Let

MB = {X ∈ Mm,n(R) : (X )i ,j = 0 unless (i , j) ∈ B}.

It follows from the definition of bases for transportation problems
that there exist unique m × n matrices S1, S2, . . . ,Sm belonging to
MB , where S1 is the zero matrix, and where, for each integer i
satisfying 1 < i ≤ m, the matrix Sk has the properties that

n∑
`=1

(Si )k,` =


1 if k = 1,
−1 if k = i ,
0 if k ∈ I \ {1, i},

and
m∑

k=1

(Si )k,` = 0 for all ` ∈ J.



3. The Transportation Problem (continued)

Also there exist unique m × n matrices T1,T2, . . . ,Tm belonging
to MB where, for each integer j satisfying 1 ≤ j ≤ n, the matrix Tj

has the properties that

n∑
j=1

(Tj)k,l =

{
1 if k = 1,
0 if k ∈ I \ {1},

and
m∑
i=1

(Tj)k,` =

{
1 if ` = j ,
0 if ` ∈ J \ {j},



3. The Transportation Problem (continued)

Let

ui =
n∑

k=1

n∑
`=1

ck,`(Si )k,`

for i = 1, 2, . . . ,m and

vj =
m∑

k=1

n∑
`=1

ck,`(Tj)k,`.

for j = 1, 2, . . . , n. We claim the that numbers u1, u2, . . . , um and
v1, v2, . . . , vn have the required properties.



3. The Transportation Problem (continued)

Let X be an m × n matrix belonging to MB , and let

yi =
n∑

j=1

(X )i ,j for all i ∈ I

and

zj =
m∑
i=1

(X )i ,j for all j ∈ J,

and let

X =
n∑

`=1

z`T` −
m∑

k=1

ykSk .

Then
m∑
i=1

(X )i ,j = zj for all j ∈ J.

and
n∑

j=1

(X )i ,j = yi for all i ∈ I \ {1},



3. The Transportation Problem (continued)

Moreover
n∑

j=1

(X )1,j =
n∑

`=1

z` −
m∑

k=2

yk = y1,

because
m∑
i=1

yi =
n∑

j=1
zj .

But the definition of bases for transportation problems ensures that
X is the unique m × n matrix belonging to MB with the properties

that
n∑

j=1
(X )i ,j = yi for all i ∈ I and

m∑
i=1

(X )i ,j = zj for all j ∈ J. It

follows that

X = X =
n∑

j=1

zjTj −
m∑
i=1

yiSi ,

and therefore

m∑
k=1

n∑
`=1

ck,`(X )k,` =
n∑

j=1

zjvj −
m∑
i=1

yiui .



3. The Transportation Problem (continued)

Let (i , j) ∈ B. Then E (i ,j) ∈ MB , where

(E (i ,j))k,` =

{
1 if k = i and j = `;
0 if k 6= i or j 6= `.

It follows from the result just obtained that

ci ,j =
m∑

k=1

n∑
`=1

ck,`(E
(i ,j))k,` = vj − ui .

We have thus shown that, given any basis B for the transportation
problem with m suppliers and n recipients, there exist real numbers
u1, u2, . . . , um and v1, v2, . . . , vn with the required property that

ci ,j = vj − ui for all (i , j) ∈ B..



3. The Transportation Problem (continued)

Now let u1, u2, . . . , um and u1, u2, . . . , un be real numbers with the
property that

ci ,j = v j − ui for all (i , j) ∈ B..

Then bj − ai = 0 for all (i , j) ∈ B, where ai = ui − ui for
i = 1, 2, . . . ,m and bj = v j − vj for j = 1, 2, . . . , n, and therefore

m∑
k=1

n∑
`=1

(b` − ak)(E i ,j)k,` = 0

for all (i , j) ∈ B. Now the m × n matrices E (i ,j) for which
(i , j) ∈ B constitute a basis of the vector space MB . It follows that

m∑
k=1

n∑
`=1

(b` − ak)(X )k,` = 0

for all X ∈ MB .



3. The Transportation Problem (continued)

In particular
m∑

k=1

n∑
`=1

(b` − ak)(Si )k,` = 0

for i = 2, 3, . . . ,m, and

m∑
k=1

n∑
`=1

(b` − ak)(Tj)k,` = 0

for j = 1, 2, . . . , n.



3. The Transportation Problem (continued)

But it follows from the definitions of the matrices S1, S2, . . . ,Sm
and T1,T2, . . . ,Tn that

m∑
k=1

n∑
`=1

b`(Si )k,` =
n∑

`=1

(
b`

m∑
k=1

(Si )k,`

)
= 0,

m∑
k=1

n∑
`=1

ak(Si )k,` =
m∑

k=1

(
ak

n∑
`=1

(Si )k,`

)
= a1 − ai

for i = 2, 3, . . . ,m, and

m∑
k=1

n∑
`=1

b`(Tj)k,` =
n∑

`=1

(
b`

m∑
k=1

(Tj)k,`

)
= bj ,

m∑
k=1

n∑
`=1

ak(Si )k,` =
m∑

k=1

(
ak

n∑
`=1

(Si )k,`

)
= a1

for j = 1, 2, . . . , n.



3. The Transportation Problem (continued)

It follows that ai − a1 = 0 for i = 2, . . . , n and bj − a1 = 0 for
j = 1, 2, . . . , n. Thus if k = a1 then ui = ui + ai = ui + k for
i = 1, 2, . . . ,m and v j = vj + bj = vj + k for j = 1, 2, . . . , n, as
required.


	Mathematical Programming Problems
	Finite-Dimensional Vector Spaces
	The Transportation Problem
	Formal Analysis of the Solution of the Transportation Problem


