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3. The Transportation Problem (continued)

Proposition 3.5

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, where m and n are
positive integers, and let K be a subset of I × J. Suppose that,

given any vectors y ∈ Rm and z ∈ Rn satisfying
m∑
i=1

(y)i =
n∑

j=1
(z)j ,

there exists an m × n matrix X with real coefficients belonging to
MK with the following properties:

(i)
n∑

j=1
(X )i ,j = yi for i = 1, 2, . . . ,m;

(ii)
m∑
i=1

(X )i ,j = zj for j = 1, 2, . . . , n;

(iii) (X )i ,j = 0 unless (i , j) ∈ K .

Then there exists a basis B for the transportation problem
satisfying B ⊂ K .



3. The Transportation Problem (continued)

Proof
First we define bases for the vector spaces involved in the proof.
For each integer i between 1 and m, let e(i) ∈ Rm be defined such
that

(e(i))k =

{
1 if i = k;
0 if i 6= k.

For each integer j between 1 and n, let ê(j) ∈ Rn be defined such
that

(ê(j))` =

{
1 if j = `;
0 if j 6= `.

For each ordered pair (i , j) of integers with 1 ≤ i ≤ m and
1 ≤ j ≤ n, let E (i ,j) ∈ Mn(R) be defined such that

(E (i ,j))k,` =

{
1 if k = i and j = `;
0 if k 6= i or j 6= `.



3. The Transportation Problem (continued)

Let MK denote the vector subspace of the space Mm,n(R) of m× n
matrices with real coefficients defined such that

MK = {X ∈ Mm.n(R) : (X )i ,j = 0 unless (i , j) ∈ K},

let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑

j=1
(z)j

}
,

and let θK : MK →W be the linear transformation defined so that
θK (X ) = (ρ(X ), σ(X )) for all X ∈ Mm,n(R), where

ρ(X )i =
n∑

j=1
(X )i ,j for i = 1, 2, . . . ,m and σ(X )j =

m∑
i=1

(X )i ,j for

j = 1, 2, . . . , n.



3. The Transportation Problem (continued)

Then
X =

∑
(i ,j)∈K

(X )i ,jE
(i ,j)

for all X ∈ MK , and therefore

θK (X ) =
∑

(i ,j)∈K

(X )i ,jθ(E (i ,j)) =
∑

(i ,j)∈K

(X )i ,j(e(i), ê(j))

for all X ∈ MK . The conditions of the proposition ensure that that
the ordered pairs (e(i), ê(j)) of basis vectors for which (i , j) belongs
to K span the vector space W . It then follows from standard linear
algebra that there exists a subset B of K such that those ordered
pairs (e(i), ê(j)) for which (i , j) belongs to B constitute a basis for
the vector space W (see Corollary 2.3).



3. The Transportation Problem (continued)

Thus, given any ordered pair (y, z) of vectors belonging to W ,
there exist uniquely determined real numbers xi ,j for all (i , j) ∈ B
such that

(y, z) =
∑

(i ,j)∈B

xi ,j(e(i), ê(j)).

Let X ∈ MB be the m × n matrix defined such that (X )i ,j = xi ,j
for all (i , j) ∈ B and (X )i ,j = 0 for all (i , j) ∈ (I × J) \ B. Then X
is the unique m × n matrix with the properties that ρ(X ) = y,
σ(X ) = z and X(i ,j) = 0 unless (i , j) ∈ B. It follows that the
subset B of K is the required basis for the transportation
problem.



3. The Transportation Problem (continued)

Proposition 3.6

Let m and n be positive integers, let I = {1, 2, . . . ,m} and
J = {1, 2, . . . , n}, and let K be a subset of I × J. Suppose that
there is no basis B of the transportation problem for which K ⊂ B.
Then there exists a non-zero m × n matrix Y with real coefficients
which satisfies the following conditions:

n∑
j=1

(Y )i ,j = 0 for i = 1, 2, . . . ,m;

m∑
i=1

(Y )i ,j = 0 for j = 1, 2, . . . , n;

(Y )i ,j = 0 when (i , j) 6∈ K .



3. The Transportation Problem (continued)

Proof
For each integer i between 1 and m, let e(i) ∈ Rm be defined such
that

(e(i))k =

{
1 if i = k;
0 if i 6= k.

For each integer j between 1 and n, let ê(j) ∈ Rn be defined such
that

(ê(j))` =

{
1 if j = `;
0 if j 6= `.

,

and let

W =

(y, z) ∈ Rm × Rn :
m∑
i=1

(y)i =
n∑

j=1

(z)j

 .



3. The Transportation Problem (continued)

Now follows from Proposition 2.2 that if the elements (e(i), ê(j))
for which (i , j) ∈ K were linearly independent then there would
exist a subset B of I × J satisfying K ⊂ B such that the elements
(e(i), ê(j)) for which (i , j) ∈ B would constitute a basis of W . It
would then follow that, given any ordered pair (y, z) of vectors
belonging to W , there would exist a unique m × n matrix X with
real coefficients with the properties that

∑m
j=1(X )i ,j = (y)i for

i = 1, 2, . . . ,m,
∑n

i=1(X )i ,j = (z)i for j = 1, 2, . . . , n, and
(X )i ,j = 0 unless (i , j) ∈ B. The subset B of I × J would thus be a
basis for the transportation problem. But the subset K is not
contained in any basis for the Transportation Problem. It follows
that the elements (e(i), ê(j)) for which (i , j) ∈ K must be linearly
dependent. Therefore there exists a non-zero m × n matrix Y with
real coefficients such that (Y )i ,j = 0 when (i , j) 6∈ K and

m∑
i=1

n∑
j=1

(Y )i ,j(e(i), ê(j)) = (0, 0).



3. The Transportation Problem (continued)

But then

m∑
i=1

n∑
j=1

(Y )i ,je
(i) = 0 and

m∑
i=1

n∑
j=1

(Y )i ,j ê
(j) = 0,

and therefore

n∑
j=1

(Y )i ,j = 0 for i = 1, 2, . . . ,m

and
m∑
i=1

(Y )i ,j = 0 for j = 1, 2, . . . , n.

Also (Y )i ,j = 0 unless (i , j) ∈ K . The result follows.



3. The Transportation Problem (continued)

3.4. Basic Feasible Solutions of Transportation Problems

Consider the transportation problem with m suppliers and n
recipients, where the ith supplier can provide at most si units of
some given commodity, where si ≥ 0, and the jth recipient requires
at least dj units of that commodity, where dj ≥ 0. We suppose
also that total supply equals total demand, so that

m∑
i=1

si =
n∑

j=1

dj ,

The cost of transporting the commodity from the ith supplier to
the jth recipient is ci ,j .

Definition

A feasible solution (xi ,j) of a transportation problem is said to be
basic if there exists a basis B for that transportation problem such
that xi ,j = 0 whenever (i , j) 6∈ B.



3. The Transportation Problem (continued)

Example
Consider a transportation problem where m = n = 2, s1 = 8,
s2 = 3, d1 = 2, d2 = 9, c1,1 = 2, c1,2 = 3, c2,1 = 4 and c2,2 = 1.
A feasible solution takes the form of a 2× 2 matrix(

x1,1 x1,2
x2,1 x2,2

)
with non-negative components which satisfies the two matrix
equations (

x1,1 x1,2
x2,1 x2,2

)(
1
1

)
=

(
8
3

)
and (

1 1
)( x1,1 x1,2

x2,1 x2,2

)
=
(

2 9
)
.



3. The Transportation Problem (continued)

A basic feasible solution will have at least one component equal to
zero. There are four matrices with at least one zero component
which satisfy the required equations. They are the following:—(

0 8
2 1

)
,

(
8 0
−6 9

)
,

(
2 6
0 3

)
,

(
−1 9
3 0

)
.

The first and third of these matrices have non-negative
components. These two matrices represent basic feasible solutions
to the problem, and moreover they are the only basic feasible
solutions.



3. The Transportation Problem (continued)

The costs associated with the components of the matrices are
c1,1 = 2, c1,2 = 3, c2,1 = 4 and c2,2 = 1.

The cost of the basic feasible solution

(
0 8
2 1

)
is

8c1,2 + 2c2,1 + c2,2 = 24 + 8 + 1 = 33.

The cost of the basic feasible solution

(
2 6
0 3

)
is

2c1,1 + 6c1,2 + 3c2,2 = 4 + 18 + 3 = 25.



3. The Transportation Problem (continued)

Now any 2× 2 matrix

(
x1,1 x1,2
x2,1 x2,2

)
satisfying the two matrix

equations (
x1,1 x1,2
x2,1 x2,2

)(
1
1

)
=

(
8
3

)
,

(
1 1

)( x1,1 x1,2
x2,1 x2,2

)
=
(

2 9
)

must be of the form(
x1,1 x1,2
x2,1 x2,2

)
=

(
λ 8− λ

2− λ 1 + λ

)
for some real number λ.



3. The Transportation Problem (continued)

But the matrix

(
λ 8− λ

2− λ 1 + λ

)
has non-negative components if

and only if 0 ≤ λ ≤ 2. It follows that the set of feasible solutions
of this instance of the transportation problem is{(

λ 8− λ
2− λ 1 + λ

)
: λ ∈ R and 0 ≤ λ ≤ 2

}
.



3. The Transportation Problem (continued)

The costs associated with the components of the matrices are
c1,1 = 2, c1,2 = 3, c2,1 = 4 and c2,2 = 1. Therefore, for each real
number λ satisfying 0 ≤ λ ≤ 2, the cost f (λ) of the feasible

solution

(
λ 8− λ

2− λ 1 + λ

)
is given by

f (λ) = 2λ+ 3(8− λ) + 4(2− λ) + (1 + λ) = 33− 4λ.

Cost is minimized when λ = 2, and thus

(
2 6
0 3

)
is the optimal

solution of this transportation problem. The cost of this optimal
solution is 25.
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