MA3484—Methods of Mathematical Economics School of Mathematics, Trinity College Hilary Term 2017 Lecture 4 (January 26, 2017)

David R. Wilkins

3. The Transportation Problem

3.1. The General Transportation Problem

The Transportation Problem can be expressed in the following form. Some commodity is supplied by m suppliers and is transported from those suppliers to n recipients. The *i*th supplier can supply at most s_i units of the commodity, and the *j*th recipient requires at least d_j units of the commodity. The cost of transporting a unit of the commodity from the *i*th supplier to the *j*th recipient is $c_{i,j}$.

The total transport cost is then

$$\sum_{i=1}^m \sum_{j=1}^n c_{i,j} x_{i,j}.$$

where $x_{i,j}$ denote the number of units of the commodity transported from the *i*th supplier to the *j*th recipient.

The Transportation Problem can then be presented as follows: determine $x_{i,j}$ for i = 1, 2, ..., m and j = 1, 2, ..., n so as minimize $\sum_{i,j} c_{i,j}x_{i,j}$ subject to the constraints $x_{i,j} \ge 0$ for all i and j, $\sum_{j=1}^{n} x_{i,j} \le s_i$ and $\sum_{i=1}^{m} x_{i,j} \ge d_j$, where $s_i \ge 0$ for all i, $d_j \ge 0$ for all i, and $\sum_{i=1}^{m} s_i \ge \sum_{j=1}^{n} d_j$. The quantities (s_1, s_2, \ldots, s_m) representing the quantities of the transported commodity supplied by the suppliers are the components of an *m*-dimensional vector (s_1, s_2, \ldots, s_m) . We refer to this vector as the *supply vector* for the transportation problem.

The quantities (d_1, d_2, \ldots, d_m) representing the quantities of the transported commodity demanded by the recipients are the components of an *n*-dimensional vector (d_1, d_2, \ldots, d_n) . We refer to this vector as the *demand vector* for the transportation problem.

The quantities $c_{i,j}$ that represent the cost of transporting the commodity from the *i*th supplier to the *j*th recipient are the components of an $m \times n$ matrix. We refer to this matrix as the *cost matrix* for the transportation problem.

3.2. Transportation Problems where Supply equals Demand

Consider a transportation problem with m suppliers and n recipients. The following proposition shows that a solution to the transportation problem can only exist if total supply of the relevant commodity exceeds total demand for that commodity.

Proposition 3.1

Let $s_1, s_2, ..., s_m$ and $d_1, d_2, ..., d_n$ be non-negative real numbers. Suppose that there exist non-negative real numbers $x_{i,j}$ for i = 1, 2, ..., m and j = 1, 2, ..., n that satisfy the inequalities

$$\sum_{j=1}^n x_{i,j} \leq s_i$$
 and $\sum_{i=1}^m x_{i,j} \geq d_j$.

3. The Transportation Problem (continued)

Then

$$\sum_{j=1}^n d_j \leq \sum_{i=1}^m s_i.$$

Moreover if it is the case that

$$\sum_{j=1}^n d_j = \sum_{i=1}^m s_i.$$

then

$$\sum_{j=1}^{n} x_{i,j} = s_i \text{ for } i = 1, 2, \dots, m$$

 and

$$\sum_{i=1}^{m} x_{i,j} = d_j \text{ for } j = 1, 2, \dots, n.$$

Proof

The inequalities satisfied by the non-negative real numbers $x_{i,j}$ ensure that

$$\sum_{j=1}^n d_j \le \sum_{i=1}^m \sum_{j=1}^n x_{i,j} \le \sum_{i=1}^m s_i.$$

Thus the total supply must equal or exceed the total demand.

Now
$$s_i - \sum_{j=1}^n x_{i,j} \ge 0$$
 for $i = 1, 2, ..., m$. It follows that if
 $s_i > \sum_{j=1}^n x_{i,j}$ for at least one value of i then $\sum_{i=1}^m s_i > \sum_{i=1}^m \sum_{j=1}^n x_{i,j}$.
Similarly $\sum_{i=1}^m x_{i,j} - d_j \ge 0$ for $j = 1, 2, ..., n$. It follows that if it is
the case that $\sum_{i=1}^m x_{i,j} > d_j$ for at least one value of j then
 $\sum_{i=1}^m \sum_{j=1}^n x_{i,j} > \sum_{j=1}^n d_j$.

It follows that if total supply equals total demand, so that

$$\sum_{i=1}^m s_i = \sum_{j=1}^n d_j,$$

then

$$\sum_{j=1}^{n} x_{i,j} = s_i$$
 for $i = 1, 2, ..., m$

and

$$\sum_{i=1}^m x_{i,j} = d_j \quad \text{for } j = 1, 2, \dots, n,$$
 uired.

as required.

We analyse the Transportation Problem in the case where total supply equals total demand. The optimization problem in this case can then be stated as follows:—

determine $x_{i,j}$ for i = 1, 2, ..., m and j = 1, 2, ..., n so as minimize $\sum_{i,j} c_{i,j}x_{i,j}$ subject to the constraints $x_{i,j} \ge 0$ for all i and j, $\sum_{j=1}^{n} x_{i,j} = s_i$ and $\sum_{i=1}^{m} x_{i,j} = d_j$, where $s_i \ge 0$ and $d_j \ge 0$ for all i and j, and $\sum_{i=1}^{m} s_i = \sum_{j=1}^{n} d_j$.

Definition

A *feasible* solution to a transportation problem (with equality of total supply and total demand) is represented by real numbers $x_{i,j}$, where

•
$$x_{i,j} \ge 0$$
 for $i = 1, 2, ..., m$ and $j = 1, 2, ..., n$;
• $\sum_{j=1}^{n} x_{i,j} = s_i$ for $= 1, 2, ..., m$;
• $\sum_{i=1}^{m} x_{i,j} = d_j$ for $j = 1, 2, ..., n$.

Definition

A feasible solution $(x_{i,j})$ of a transportation problem is said to be *optimal* if it minimizes cost amongst all feasible solutions of that transportation problem.

3.3. Bases for the Transportation Problem

Definition

Let $I = \{1, 2, ..., m\}$ and $J = \{1, 2, ..., n\}$, where *m* and *n* are positive integers. Then a subset *B* of $I \times J$ is said to be a *basis* for the transportation problem with *m* suppliers and *n* recipients if, given any vectors $\mathbf{y} \in \mathbb{R}^m$ and $\mathbf{z} \in \mathbb{R}^n$ satisfying $\sum_{i=1}^m (\mathbf{y})_i = \sum_{j=1}^n (\mathbf{z})_j$, there exists a unique $m \times n$ matrix *X* with real coefficients satisfying the following properties:—

(i)
$$\sum_{j=1}^{n} (X)_{i,j} = (\mathbf{y})_i$$
 for $i = 1, 2, ..., m$;

(ii)
$$\sum_{i=1}^{m} (X)_{i,j} = (\mathbf{z})_j$$
 for $j = 1, 2, ..., n$;

(iii) $(X)_{i,j} = 0$ unless $(i,j) \in B$.

Lemma 3.2

Let $I = \{1, 2, ..., m\}$ and $J = \{1, 2, ..., n\}$, where m and n are positive integers. and let

$$B = \{(i,j) \in I \times J : i = m \text{ or } j = n\}.$$

Then B is a basis for a transportation problem with m suppliers and n recipients.

Proof

The result can readily be verified when m = 1 or n = 1. We therefore restrict attention to cases where m > 1 and n > 1.

Let

$$B = \{(i,j) \in I \times J : i = m \text{ or } j = n\},\$$

where m > 1 and n > 1.

Then, given any vectors $\mathbf{y} \in \mathbb{R}^m$ and $\mathbf{z} \in \mathbb{R}^n$ that satisfy $\sum_{i=1}^m y_i = \sum_{j=1}^n z_j$, there exists a unique $m \times n$ matrix X with real coefficients with all the following properties:

(i)
$$\sum_{j=1}^{n} (X)_{i,j} = y_i$$
 for $i = 1, 2, ..., m$;

(ii)
$$\sum_{i=1}^{m} (X)_{i,j} = z_j$$
 for $j = 1, 2, ..., n$;

(iii) $(X)_{i,j} = 0$ unless $(i,j) \in B$.

m

This matrix X has coefficients as follows: $X_{i,j} = 0$ if i < m and j < n; $X_{i,n} = y_i$ for i < m; $X_{m,j} = z_j$ for j < n; $X_{m,n} = w$, where

$$w = y_m - \sum_{j=1}^{n-1} z_j = z_n - \sum_{i=1}^{m-1} y_i.$$

This matrix X is thus of the form

$$X = \begin{pmatrix} 0 & 0 & \dots & 0 & y_1 \\ 0 & 0 & \dots & 0 & y_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & y_{m-1} \\ z_1 & z_2 & \dots & z_{n-1} & w \end{pmatrix},$$

where

$$w = y_m - \sum_{j=1}^{n-1} z_j = z_n - \sum_{i=1}^{m-1} y_i.$$

It follows from the definition of bases for transportation problems that the subset B of $I \times J$ is a basis for a transportation problem with m suppliers and n recipients. This completes the proof.

We now introduce some notation for use in discussion of the theory of transportation problems.

For each integer *i* between 1 and *m*, let $\mathbf{e}^{(i)}$ denote the *m*-dimensional vector whose *i*th component is equal to 1 and whose other components are zero. For each integer *j* between 1 and *n*, let $\hat{\mathbf{e}}^{(j)}$ denote the *n*-dimensional vector whose *j*th component is equal to 1 and whose other components are zero. Thus

$$(\mathbf{e}^{(i)})_k = \begin{cases} 1 & \text{if } i = k, \\ 0 & \text{if } i \neq k, \end{cases} \text{ and } (\hat{\mathbf{e}}^{(j)})_\ell = \begin{cases} 1 & \text{if } j = \ell; \\ 0 & \text{if } j \neq \ell. \end{cases}$$

Moreover $\mathbf{y} = \sum_{i=1}^{m} (\mathbf{y})_i \mathbf{e}^{(i)}$ for all $\mathbf{y} \in \mathbb{R}^m$ and $\mathbf{z} = \sum_{j=1}^{n} (\mathbf{y})_j \mathbf{e}^{(i)}$ for all $\mathbf{z} \in \mathbb{R}^n$.

Also, for each ordered pair (i, j) of integers with $1 \le i \le m$ and $1 \le j \le n$, let $E^{(i,j)}$ denote the $m \times n$ matrix that has a single non-zero coefficient equal to 1 located in the *i*th row and *j*th column of the matrix. Thus

$$(E^{(i,j)})_{k,\ell} = \begin{cases} 1 & \text{if } k = i \text{ and } j = \ell; \\ 0 & \text{if } k \neq i \text{ or } j \neq \ell. \end{cases}$$

Moreover

$$X = \sum_{i=1}^{m} \sum_{j=1}^{n} (X)_{i,j} E^{(i,j)}$$

for all $m \times n$ matrices X with real coefficients.

We let $\rho: M_{m,n}(\mathbb{R}) \to \mathbb{R}^m$ and $\sigma: M_{m,n}(\mathbb{R}) \to \mathbb{R}^n$ be the linear transformations defined such that $(\rho(X))_i = \sum_{j=1}^n (X)_{i,j}$ for

$$i = 1, 2, ..., m$$
 and $(\sigma(X))_j = \sum_{i=1}^m (X)_{i,j}$ for $j = 1, 2, ..., n$. Then
 $\rho(E^{(i,j)}) = \mathbf{e}^{(i)}$ for $i = 1, 2, ..., m$ and $\sigma(E^{(i,j)}) = \hat{\mathbf{e}}^{(j)}$ for
 $j = 1, 2, ..., n$.

A feasible solution of the transportation problem with given supply vector **s**, demand vector **d** and cost matrix *C* is represented by an $m \times n$ matrix *X* satisfying the following three conditions:—

• The coefficients of X are all non-negative;

•
$$\rho(X) = \mathbf{s};$$

•
$$\sigma(X) = \mathbf{d}$$
.

The cost functional $f: M_{m,n}(\mathbb{R}) \to \mathbb{R}$ is defined so that

$$f(X) = \sum_{i=0}^{m} \sum_{j=0}^{n} c_{i,j}(X)_{i,j} = \operatorname{trace}(C^{T}X)$$

for all $X \in M_{m,n}(\mathbb{R})$, where C is the cost matrix and $c_{i,j} = (C)_{i,j}$ for i = 1, 2, ..., m and j = 1, 2, ..., n.

A feasible solution \hat{X} of the Transportation problem is optimal if and only if $f(\hat{X}) \leq f(X)$ for all feasible solutions X of that problem.

Lemma 3.3

Let X be an
$$m \times n$$
 matrix, let $\rho(X) \in \mathbb{R}^m$ and $\sigma(X) \in \mathbb{R}^n$ be
defined so that $(\rho(X))_i = \sum_{j=1}^n (X)_{i,j}$ for $i = 1, 2, ..., m$ and
 $(\sigma(X))_j = \sum_{i=1}^m (X)_{i,j}$ for $j = 1, 2, ..., n$, and let
 $W = \left\{ (\mathbf{y}, \mathbf{z}) \in \mathbb{R}^m \times \mathbb{R}^n : \sum_{i=1}^m (\mathbf{y})_i = \sum_{j=1}^n (\mathbf{z})_j \right\}.$

Then $(\rho(X), \sigma(X)) \in W$.

Proof

Summing the components of the vectors $\rho(X)$ and $\sigma(X)$, we find that

$$\sum_{i=1}^{m} (\rho(X))_i = \sum_{i=1}^{m} \sum_{j=1}^{n} (X)_{i,j} = \sum_{j=1}^{n} (\sigma(X))_j.$$

Thus $(\rho(X), \sigma(X)) \in W$, as required.

Given a subset K of $I \times J$, where $I = \{1, 2, ..., m\}$ and $J = \{1, 2, ..., n\}$, we denote by M_K the vector subspace of the space $M_{m,n}(\mathbb{R})$ of $m \times n$ matrices with real coefficients defined such that

$$M_{\mathcal{K}} = \{ X \in M_{m,n}(\mathbb{R}) : (X)_{i,j} = 0 \text{ unless } (i,j) \in \mathcal{K} \}.$$

The definition of bases for transportation problems then ensures that a subset B of $I \times J$ is a basis for a transportation problem with m suppliers and n-recipients if and only if the linear transformation $\theta_B \colon M_B \to W$ is an isomorphism of vector spaces, where

$$W = \left\{ (\mathbf{y}, \mathbf{z}) \in \mathbb{R}^m imes \mathbb{R}^n : \sum_{i=1}^m (\mathbf{y})_i = \sum_{j=1}^n (\mathbf{z})_j
ight\},$$

and
$$\theta_B(X) = (\rho(X), \sigma(X))$$
 for all $X \in M_B$, where
 $(\rho(X))_i = \sum_{j=1}^n (X)_{i,j}$ for $i = 1, 2, ..., m$ and $(\sigma(X))_j = \sum_{i=1}^m (X)_{i,j}$ for $j = 1, 2, ..., n$.

Proposition 3.4

A basis for a transportation problem with m suppliers and n recipients has m + n - 1 elements.

Proof

Let $I = \{1, 2, ..., m\}$ and $J = \{1, 2, ..., n\}$ and, for all $(i, j) \in I \times J$, let $E^{(i, j)}$ denote the $m \times n$ matrix defined so that

$$(E^{(i,j)})_{k,\ell} = \begin{cases} 1 & \text{if } k = i \text{ and } j = \ell; \\ 0 & \text{if } k \neq i \text{ or } j \neq \ell. \end{cases}$$

Let *B* be a basis for the transportation problem with *m* suppliers and *n* recipients. Then the $m \times n$ matrices $E^{(i,j)}$ for which $(i,j) \in B$ constitute a basis of the vector space M_B where

$$M_B = \{X \in M_{m,n}(\mathbb{R}) : (X)_{i,j} = 0 \text{ unless } (i,j) \in B\}.$$

It follows that the dimension of the vector space M_B is equal to the number of elements in the basis B.

3. The Transportation Problem (continued)

Let

$$W = \left\{ (\mathbf{y}, \mathbf{z}) \in \mathbb{R}^m imes \mathbb{R}^n : \sum_{i=1}^m (\mathbf{y})_i = \sum_{j=1}^n (\mathbf{z})_j
ight\},$$

and let $\theta_B \colon M_B \to W$ be defined so that $\theta_B(X) = (\rho(X), \sigma(X))$ for all $X \in M_B$, where $\rho(X)_i = \sum_{j=1}^n (X)_{i,j}$ for i = 1, 2, ..., m, and

 $\sigma(X)_j = \sum_{i=1}^m (X)_{i,j}$ for j = 1, 2, ..., n. Now the definition of bases for transportation problems ensures that $\theta \colon M_B \to W$ is an isomorphism of vector spaces. Therefore dim $M_B = \dim W$. It follows that any two bases for a transportation problem with msuppliers and n recipients have the same number of elements. Lemma 3.2 showed that

$$\{(i,j) \in I \times J : i = m \text{ or } j = n\}$$

is a basis for a transportation problem with m suppliers and n recipients. This basis has m + n - 1 elements. It follows that dim W = m + n - 1, and therefore every basis for a transportation problem with m suppliers and n recipients has m + n - 1 elements, as required.