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3. The Transportation Problem

3. The Transportation Problem

3.1. The General Transportation Problem

The Transportation Problem can be expressed in the following
form. Some commodity is supplied by m suppliers and is
transported from those suppliers to n recipients. The ith supplier
can supply at most si units of the commodity, and the jth recipient
requires at least dj units of the commodity. The cost of
transporting a unit of the commodity from the ith supplier to the
jth recipient is ci ,j .

The total transport cost is then

m∑
i=1

n∑
j=1

ci ,jxi ,j .

where xi ,j denote the number of units of the commodity
transported from the ith supplier to the jth recipient.



3. The Transportation Problem (continued)

The Transportation Problem can then be presented as follows:

determine xi ,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n so as
minimize

∑
i ,j

ci ,jxi ,j subject to the constraints xi ,j ≥ 0 for

all i and j ,
n∑

j=1
xi ,j ≤ si and

m∑
i=1

xi ,j ≥ dj , where si ≥ 0 for

all i , dj ≥ 0 for all i , and
m∑
i=1

si ≥
n∑

j=1
dj .



3. The Transportation Problem (continued)

The quantities (s1, s2, . . . , sm) representing the quantities of the
transported commodity supplied by the suppliers are the
components of an m-dimensional vector (s1, s2, . . . , sm). We refer
to this vector as the supply vector for the transportation problem.

The quantities (d1, d2, . . . , dm) representing the quantities of the
transported commodity demanded by the recipients are the
components of an n-dimensional vector (d1, d2, . . . , dn). We refer
to this vector as the demand vector for the transportation problem.

The quantities ci ,j that represent the cost of transporting the
commodity from the ith supplier to the jth recipient are the
components of an m × n matrix. We refer to this matrix as the
cost matrix for the transportation problem.



3. The Transportation Problem (continued)

3.2. Transportation Problems where Supply equals Demand

Consider a transportation problem with m suppliers and n
recipients. The following proposition shows that a solution to the
transportation problem can only exist if total supply of the relevant
commodity exceeds total demand for that commodity.

Proposition 3.1

Let s1, s2, . . . , sm and d1, d2, . . . , dn be non-negative real numbers.
Suppose that there exist non-negative real numbers xi ,j for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n that satisfy the inequalities

n∑
j=1

xi ,j ≤ si and
m∑
i=1

xi ,j ≥ dj .



3. The Transportation Problem (continued)

Then
n∑

j=1

dj ≤
m∑
i=1

si .

Moreover if it is the case that

n∑
j=1

dj =
m∑
i=1

si .

then
n∑

j=1

xi ,j = si for i = 1, 2, . . . ,m

and
m∑
i=1

xi ,j = dj for j = 1, 2, . . . , n.



3. The Transportation Problem (continued)

Proof
The inequalities satisfied by the non-negative real numbers xi ,j
ensure that

n∑
j=1

dj ≤
m∑
i=1

n∑
j=1

xi ,j ≤
m∑
i=1

si .

Thus the total supply must equal or exceed the total demand.

Now si −
n∑

j=1
xi ,j ≥ 0 for i = 1, 2, . . . ,m. It follows that if

si >
∑n

j=1 xi ,j for at least one value of i then
m∑
i=1

si >
m∑
i=1

n∑
j=1

xi ,j .

Similarly
m∑
i=1

xi ,j − dj ≥ 0 for j = 1, 2, . . . , n. It follows that if it is

the case that
m∑
i=1

xi ,j > dj for at least one value of j then

m∑
i=1

n∑
j=1

xi ,j >
n∑

j=1
dj .



3. The Transportation Problem (continued)

It follows that if total supply equals total demand, so that

m∑
i=1

si =
n∑

j=1

dj ,

then
n∑

j=1

xi ,j = si for i = 1, 2, . . . ,m

and
m∑
i=1

xi ,j = dj for j = 1, 2, . . . , n,

as required.



3. The Transportation Problem (continued)

We analyse the Transportation Problem in the case where total
supply equals total demand. The optimization problem in this case
can then be stated as follows:—

determine xi ,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n so as
minimize

∑
i ,j

ci ,jxi ,j subject to the constraints xi ,j ≥ 0 for

all i and j ,
n∑

j=1
xi ,j = si and

m∑
i=1

xi ,j = dj , where si ≥ 0

and dj ≥ 0 for all i and j , and
m∑
i=1

si =
n∑

j=1
dj .



3. The Transportation Problem (continued)

Definition

A feasible solution to a transportation problem (with equality of
total supply and total demand) is represented by real numbers xi ,j ,
where

xi ,j ≥ 0 for i = 1, 2, . . . ,m and j = 1, 2, . . . , n;
n∑

j=1
xi ,j = si for = 1, 2, . . . ,m;

m∑
i=1

xi ,j = dj for j = 1, 2, . . . , n.

Definition

A feasible solution (xi ,j) of a transportation problem is said to be
optimal if it minimizes cost amongst all feasible solutions of that
transportation problem.



3. The Transportation Problem (continued)

3.3. Bases for the Transportation Problem

Definition

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, where m and n are
positive integers. Then a subset B of I × J is said to be a basis for
the transportation problem with m suppliers and n recipients if,

given any vectors y ∈ Rm and z ∈ Rn satisfying
m∑
i=1

(y)i =
n∑

j=1
(z)j ,

there exists a unique m × n matrix X with real coefficients
satisfying the following properties:—

(i)
n∑

j=1
(X )i ,j = (y)i for i = 1, 2, . . . ,m;

(ii)
m∑
i=1

(X )i ,j = (z)j for j = 1, 2, . . . , n;

(iii) (X )i ,j = 0 unless (i , j) ∈ B.



3. The Transportation Problem (continued)

Lemma 3.2

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, where m and n are
positive integers. and let

B = {(i , j) ∈ I × J : i = m or j = n}.

Then B is a basis for a transportation problem with m suppliers
and n recipients.

Proof
The result can readily be verified when m = 1 or n = 1. We
therefore restrict attention to cases where m > 1 and n > 1.

Let
B = {(i , j) ∈ I × J : i = m or j = n},

where m > 1 and n > 1.
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Then, given any vectors y ∈ Rm and z ∈ Rn that satisfy
m∑
i=1

yi =
n∑

j=1
zj , there exists a unique m × n matrix X with real

coefficients with all the following properties:

(i)
n∑

j=1
(X )i ,j = yi for i = 1, 2, . . . ,m;

(ii)
m∑
i=1

(X )i ,j = zj for j = 1, 2, . . . , n;

(iii) (X )i ,j = 0 unless (i , j) ∈ B.

This matrix X has coefficients as follows: Xi ,j = 0 if i < m and
j < n; Xi ,n = yi for i < m; Xm,j = zj for j < n; Xm,n = w , where

w = ym −
n−1∑
j=1

zj = zn −
m−1∑
i=1

yi .



3. The Transportation Problem (continued)

This matrix X is thus of the form

X =


0 0 . . . 0 y1
0 0 . . . 0 y2
...

...
. . .

...
...

0 0 . . . 0 ym−1

z1 z2 . . . zn−1 w

 ,

where

w = ym −
n−1∑
j=1

zj = zn −
m−1∑
i=1

yi .

It follows from the definition of bases for transportation problems
that the subset B of I × J is a basis for a transportation problem
with m suppliers and n recipients. This completes the proof.



3. The Transportation Problem (continued)

We now introduce some notation for use in discussion of the theory
of transportation problems.

For each integer i between 1 and m, let e(i) denote the
m-dimensional vector whose ith component is equal to 1 and whose
other components are zero. For each integer j between 1 and n, let
ê(j) denote the n-dimensional vector whose jth component is equal
to 1 and whose other components are zero. Thus

(e(i))k =

{
1 if i = k,
0 if i 6= k,

and (ê(j))` =

{
1 if j = `;
0 if j 6= `.

Moreover y =
m∑
i=1

(y)ie
(i) for all y ∈ Rm and z =

n∑
j=1

(y)ie
(i) for all

z ∈ Rn.



3. The Transportation Problem (continued)

Also, for each ordered pair (i , j) of integers with 1 ≤ i ≤ m and
1 ≤ j ≤ n, let E (i ,j) denote the m × n matrix that has a single
non-zero coefficient equal to 1 located in the ith row and jth
column of the matrix. Thus

(E (i ,j))k,` =

{
1 if k = i and j = `;
0 if k 6= i or j 6= `.

Moreover

X =
m∑
i=1

n∑
j=1

(X )i ,jE
(i ,j)

for all m × n matrices X with real coefficients.



3. The Transportation Problem (continued)

We let ρ : Mm,n(R)→ Rm and σ : Mm,n(R)→ Rn be the linear

transformations defined such that (ρ(X ))i =
n∑

j=1
(X )i ,j for

i = 1, 2, . . . ,m and (σ(X ))j =
m∑
i=1

(X )i ,j for j = 1, 2, . . . , n. Then

ρ(E (i ,j)) = e(i) for i = 1, 2, . . . ,m and σ(E (i ,j)) = ê(j) for
j = 1, 2, . . . , n.

A feasible solution of the transportation problem with given supply
vector s, demand vector d and cost matrix C is represented by an
m × n matrix X satisfying the following three conditions:—

The coefficients of X are all non-negative;

ρ(X ) = s;

σ(X ) = d.



3. The Transportation Problem (continued)

The cost functional f : Mm,n(R)→ R is defined so that

f (X ) =
m∑
i=0

n∑
j=0

ci ,j(X )i ,j = trace(CTX )

for all X ∈ Mm,n(R), where C is the cost matrix and ci ,j = (C )i ,j
for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

A feasible solution X̂ of the Transportation problem is optimal if
and only if f (X̂ ) ≤ f (X ) for all feasible solutions X of that
problem.



3. The Transportation Problem (continued)

Lemma 3.3

Let X be an m × n matrix, let ρ(X ) ∈ Rm and σ(X ) ∈ Rn be

defined so that (ρ(X ))i =
n∑

j=1
(X )i ,j for i = 1, 2, . . . ,m and

(σ(X ))j =
m∑
i=1

(X )i ,j for j = 1, 2, . . . , n, and let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑

j=1
(z)j

}
.

Then (ρ(X ), σ(X )) ∈W .



3. The Transportation Problem (continued)

Proof
Summing the components of the vectors ρ(X ) and σ(X ), we find
that

m∑
i=1

(ρ(X ))i =
m∑
i=1

n∑
j=1

(X )i ,j =
n∑

j=1

(σ(X ))j .

Thus (ρ(X ), σ(X )) ∈W , as required.

Given a subset K of I × J, where I = {1, 2, . . . ,m} and
J = {1, 2, . . . , n}, we denote by MK the vector subspace of the
space Mm,n(R) of m × n matrices with real coefficients defined
such that

MK = {X ∈ Mm,n(R) : (X )i ,j = 0 unless (i , j) ∈ K}.



3. The Transportation Problem (continued)

The definition of bases for transportation problems then ensures
that a subset B of I × J is a basis for a transportation problem with
m suppliers and n-recipients if and only if the linear transformation
θB : MB →W is an isomorphism of vector spaces, where

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑

j=1
(z)j

}
,

and θB(X ) = (ρ(X ), σ(X )) for all X ∈ MB , where

(ρ(X ))i =
n∑

j=1
(X )i ,j for i = 1, 2, . . . ,m and (σ(X ))j =

m∑
i=1

(X )i ,j for

j = 1, 2, . . . , n.



3. The Transportation Problem (continued)

Proposition 3.4

A basis for a transportation problem with m suppliers and n
recipients has m + n − 1 elements.

Proof
Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n} and, for all
(i , j) ∈ I × J, let E (i ,j) denote the m × n matrix defined so that

(E (i ,j))k,` =

{
1 if k = i and j = `;
0 if k 6= i or j 6= `.

Let B be a basis for the transportation problem with m suppliers
and n recipients. Then the m × n matrices E (i ,j) for which
(i , j) ∈ B constitute a basis of the vector space MB where

MB = {X ∈ Mm,n(R) : (X )i ,j = 0 unless (i , j) ∈ B}.

It follows that the dimension of the vector space MB is equal to
the number of elements in the basis B.



3. The Transportation Problem (continued)

Let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑

j=1
(z)j

}
,

and let θB : MB →W be defined so that θB(X ) = (ρ(X ), σ(X ))

for all X ∈ MB , where ρ(X )i =
n∑

j=1
(X )i ,j for i = 1, 2, . . . ,m, and

σ(X )j =
m∑
i=1

(X )i ,j for j = 1, 2, . . . , n. Now the definition of bases

for transportation problems ensures that θ : MB →W is an
isomorphism of vector spaces. Therefore dimMB = dimW . It
follows that any two bases for a transportation problem with m
suppliers and n recipients have the same number of elements.



3. The Transportation Problem (continued)

Lemma 3.2 showed that

{(i , j) ∈ I × J : i = m or j = n}

is a basis for a transportation problem with m suppliers and n
recipients. This basis has m + n − 1 elements. It follows that
dimW = m + n − 1, and therefore every basis for a transportation
problem with m suppliers and n recipients has m + n − 1 elements,
as required.
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