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2. Finite-Dimensional Vector Spaces

2. Finite-Dimensional Vector Spaces

2.1. Real Vector Spaces
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Definition

A real vector space consists of a set V on which there is defined an
operation of vector addition, yielding an element v + w of V for
each pair v,w of elements of V , and an operation of
multiplication-by-scalars that yields an element λv of V for each
v ∈ V and for each real number λ. The operation of vector
addition is required to be commutative and associative. There
must exist a zero element 0V of V that satisfies v + 0V = v for all
v ∈ V , and, for each v ∈ V there must exist an element −v of V
for which v + (−v) = 0V . The following identities must also be
satisfied for all v,w ∈ V and for all real numbers λ and µ:

(λ+ µ)v = λv + µv, λ(v + w) = λv + λw,

λ(µv) = (λµ)v, 1v = v.
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Let n be a positive integer. The set Rn consisting of all n-tuples of
real numbers is then a real vector space, with addition and
multiplication-by-scalars defined such that

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . xn + yn)

and
λ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn)

for all (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ R and for all real
numbers λ.

The set Mm,n(R) of all m × n matrices is a real vector space with
respect to the usual operations of matrix addition and
multiplication of matrices by real numbers.
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2.2. Linear Dependence and Bases

Elements u1,u2, . . . ,um of a real vector space V are said to be
linearly dependent if there exist real numbers λ1, λ2, . . . , λm, not
all zero, such that

λ1u1 + λ2u2 + · · ·+ λmum = 0V .

If elements u1,u2, . . . ,um of real vector space V are not linearly
dependent, then they are said to be linearly independent.

Elements u1,u2, . . . ,un of a real vector space V are said to span
V if, given any element v of V , there exist real numbers
λ1, λ2, . . . , λn such that v = λ1u1 + λ2u2 + · · ·+ λnun.

A vector space is said to be finite-dimensional if there exists a
finite subset of V whose members span V .
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Elements u1,u2, . . . ,un of a finite-dimensional real vector space V
are said to constitute a basis of V if they are linearly independent
and span V .

Lemma 2.1

Elements u1,u2, . . . ,un of a real vector space V constitute a basis
of V if and only if, given any element v of V , there exist
uniquely-determined real numbers λ1, λ2, . . . , λn such that

v = λ1u1 + λ2u2 + · · ·+ λnun.
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Proof
Suppose that u1,u2, . . . ,un is a basis of V . Let v be an
element V . The requirement that u1,u2, . . . ,un span V ensures
that there exist real numbers λ1, λ2, . . . , λn such that

v = λ1u1 + λ2u2 + · · ·+ λnun.

If µ1, µ2, . . . , µn are real numbers for which

v = µ1u1 + µ2u2 + · · ·+ µnun,

then

(µ1 − λ1)u1 + (µ2 − λ2)u2 + · · ·+ (µn − λn)un = 0V .

It then follows from the linear independence of u1,u2, . . . ,un that
µi − λi = 0 for i = 1, 2, . . . , n, and thus µi = λi for i = 1, 2, . . . , n.
This proves that the coefficients λ1, λ2, . . . , λn are
uniquely-determined.
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Conversely suppose that u1,u2, . . . ,un is a list of elements of V
with the property that, given any element v of V , there exist
uniquely-determined real numbers λ1, λ2, . . . , λn such that

v = λ1u1 + λ2u2 + · · ·+ λnun.

Then u1,u2, . . . ,un span V . Moreover we can apply this criterion
when v = 0. The uniqueness of the coefficients λ1, λ2, . . . , λn then
ensures that if

λ1u1 + λ2u2 + · · ·+ λnun = 0V

then λi = 0 for i = 1, 2, . . . , n. Thus u1,u2, . . . ,un are linearly
independent. This proves that u1,u2, . . . ,un is a basis of V , as
required.
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Proposition 2.2

Let V be a finite-dimensional real vector space, let

u1,u2, . . . ,un

be elements of V that span V , and let K be a subset of
{1, 2, . . . , n}. Suppose either that K = ∅ or else that those
elements ui for which i ∈ K are linearly independent. Then there
exists a basis of V whose members belong to the list u1,u2, . . . ,un

which includes all the vectors ui for which i ∈ K.

Proof
We prove the result by induction on the number of elements in the
list u1,u2, . . . ,un of vectors that span V . The result is clearly true
when n = 1. Thus suppose, as the induction hypothesis, that the
result is true for all lists of elements of V that span V and that
have fewer than n members.
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If the elements u1,u2, . . . ,un are linearly independent, then they
constitute the required basis. If not, then there exist real numbers
λ1, λ2, . . . , λn, not all zero, such that

λ1u1 + λ2u2 + · · ·+ λnun = 0V .

Now there cannot exist real numbers λ1, λ2, . . . , λn, not all zero,

such that both
n∑

i=1
λiui = 0V and also λi = 0 whenever i 6= K .

Indeed, in the case where K = ∅, this conclusion follows from the
requirement that the real numbers λi cannot all be zero, and, in
the case where K 6= ∅, the conclusion follows from the linear
independence of those ui for which i ∈ K . Therefore there must
exist some integer i satisfying 1 ≤ i ≤ n for which λi 6= 0 and
i 6∈ K .
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Without loss of generality, we may suppose that u1,u2, . . . ,un are
ordered so that n 6∈ K and λn 6= 0. Then

un = −
n−1∑
i=1

λi
λn

ui .

Let v be an element of V . Then there exist real numbers

µ1, µ2, . . . , µn such that v =
n∑

i=1
µiui , because u1,u2, . . . ,un

span V . But then

v =
n−1∑
i=1

(
µi −

µnλi
λn

)
ui .

We conclude that u1,u2, . . . ,un−1 span the vector space V . The
induction hypothesis then ensures that there exists a basis of V
consisting of members of this list that includes the linearly
independent elements u1,u2, . . . ,um, as required.
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Corollary 2.3

Let V be a finite-dimensional real vector space, and let

u1,u2, . . . ,un

be elements of V that span the vector space V . Then there exists
a basis of V whose elements are members of the list u1,u2, . . . ,un.

Proof
This result is a restatement of Proposition 2.2 in the special case
where the set K in the statement of that proposition is the empty
set.
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2.3. Dual Spaces

Definition

Let V be a real vector space. A linear functional ϕ : V → R on V
is a linear transformation from the vector space V to the field R of
real numbers.

Given linear functionals ϕ : V → R and ψ : V → R on a real vector
space V , and given any real number λ, we define ϕ+ ψ and λϕ to
be the linear functionals on V defined such that
(ϕ+ ψ)(v) = ϕ(v) + ψ(v) and (λϕ)(v) = λϕ(v) for all v ∈ V .
The set V ∗ of linear functionals on a real vector space V is itself a
real vector space with respect to the algebraic operations of
addition and multiplication-by-scalars defined above.
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Definition

Let V be a real vector space. The dual space V ∗ of V is the
vector space whose elements are the linear functionals on the
vector space V .

Now suppose that the real vector space V is finite-dimensional.
Let u1,u2, . . . ,un be a basis of V , where n = dimV . Given any
v ∈ V there exist uniquely-determined real numbers λ1, λ2, . . . , λn

such that v =
n∑

j=1
λjuj . It follows that there are well-defined

functions ε1, ε2, . . . , εn from V to the field R defined such that

εi

 n∑
j=1

λjuj

 = λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn. These
functions are linear transformations, and are thus linear functionals
on V .
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Lemma 2.4

Let V be a finite-dimensional real vector space, let

u1,u2, . . . ,un

be a basis of V , and let ε1, ε2, . . . , εn be the linear functionals on
V defined such that

εi

 n∑
j=1

λjuj

 = λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn. Then
ε1, ε2, . . . , εn constitute a basis of the dual space V ∗ of V .

Moreover ϕ =
n∑

i=1
ϕ(ui)εi for all ϕ ∈ V ∗.
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Proof
Let µ1, µ2, . . . , µn be real numbers with the property that
n∑

i=1
µiεi = 0V ∗ . Then

0 =

(
n∑

i=1

µiεi

)
(uj) =

n∑
i=1

µiεi (uj) = µj

for j = 1, 2, . . . , n. Thus the linear functionals ε1, ε2, . . . , εn on V
are linearly independent elements of the dual space V ∗.
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Now let ϕ : V → R be a linear functional on V , and let µi = ϕ(ui )
for i = 1, 2, . . . , n. Now

εi (uj) =

{
1 if i = j ;
0 if i 6= j .

It follows that(
n∑

i=1

µiεi

) n∑
j=1

λjuj

 =
n∑

i=1

n∑
j=1

µiλjεi (uj) =
n∑

j=1

µjλj

=
n∑

j=1

λjϕ(uj) = ϕ

 n∑
j=1

λjuj


for all real numbers λ1, λ2, . . . , λn.
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It follows that

ϕ =
n∑

i=1

µiεi =
n∑

i=1

ϕ(ui )εi .

We conclude from this that every linear functional on V can be
expressed as a linear combination of ε1, ε2, . . . , εn. Thus these
linear functionals span V ∗. We have previously shown that they
are linearly independent. It follows that they constitute a basis of

V ∗. Moreover we have verified that ϕ =
n∑

i=1
ϕ(ui )εi for all ϕ ∈ V ∗,

as required.
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Definition

Let V be a finite-dimensional real vector space, let u1,u2, . . . ,un

be a basis of V . The corresponding dual basis of the dual space V ∗

of V consists of the linear functionals ε1, ε2, . . . , εn on V , where

εi

 n∑
j=1

λjuj

 = λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn.
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Corollary 2.5

Let V be a finite-dimensional real vector space, and let V ∗ be the
dual space of V . Then dimV ∗ = dimV .

Proof
We have shown that any basis of V gives rise to a dual basis of
V ∗, where the dual basis of V has the same number of elements as
the basis of V to which it corresponds. The result follows
immediately from the fact that the dimension of a
finite-dimensional real vector space is the number of elements in
any basis of that vector space.
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Let V be a real-vector space, and let V ∗ be the dual space of V .
Then V ∗ is itself a real vector space, and therefore has a dual
space V ∗∗. Now each element v of V determines a corresponding
linear functional Ev : V ∗ → R on V ∗, where Ev(ϕ) = ϕ(v) for all
ϕ ∈ V ∗. It follows that there exists a function ι : V → V ∗∗ defined
so that ι(v) = Ev for all v ∈ V . Then ι(v)(ϕ) = ϕ(v) for all v ∈ V
and ϕ ∈ V ∗.
Now

ι(v + w)(ϕ) = ϕ(v + w) = ϕ(v) + ϕ(w) = (ι(v) + ι(w))(ϕ)

and
ι(λv)(ϕ) = ϕ(λv) = λϕ(v) = (λι(v))(ϕ)

for all v,w ∈ V and ϕ ∈ V ∗ and for all real numbers λ. It follows
that ι(v + w) = ι(v) + ι(w) and ι(λv) = λι(v) for all v,w ∈ V and
for all real numbers λ. Thus ι : V → V ∗∗ is a linear transformation.
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Proposition 2.6

Let V be a finite-dimensional real vector space, and let
ι : V → V ∗∗ be the linear transformation defined such that
ι(v)(ϕ) = ϕ(v) for all v ∈ V and ϕ ∈ V ∗. Then ι : V → V ∗∗ is an
isomorphism of real vector spaces.

Proof
Let u1,u2, . . . ,un be a basis of V , let ε1, ε2, . . . , εn be the dual
basis of V ∗, where

εi (uj) =

{
1 if i = j ,
0 if i 6= j ,

and let v ∈ V . Then there exist real numbers λ1, λ2, . . . , λn such

that v =
n∑

i=1
λiui .
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Suppose that ι(v) = 0V ∗∗ . Then ϕ(v) = Ev(ϕ) = 0 for all ϕ ∈ V ∗.
In particular λi = εi (v) = 0 for i = 1, 2, . . . , n, and therefore
v = 0V . We conclude that ι : V → V ∗∗ is injective.
Now let F : V ∗ → R be a linear functional on V ∗, let λi = F (εi )

for i = 1, 2, . . . , n, let v =
n∑

i=1
λiui , and let ϕ ∈ V ∗. Then

ϕ =
n∑

i=1
ϕ(ui )εi (see Lemma 2.4), and therefore

ι(v)(ϕ) = ϕ(v) =
n∑

i=1

λiϕ(ui ) =
n∑

i=1

F (εi )ϕ(ui )

= F

(
n∑

i=1

ϕ(ui )εi

)
= F (ϕ).
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Thus ι(v) = F . We conclude that the linear transformation
ι : V → V ∗∗ is surjective. We have previously shown that this linear
transformation is injective. There ι : V → V ∗∗ is an isomorphism
between the real vector spaces V and V ∗∗ as required.

The following corollary is an immediate consequence of
Proposition 2.6.

Corollary 2.7

Let V be a finite-dimensional real vector space, and let V ∗ be the
dual space of V . Then, given any linear functional F : V ∗ → R,
there exists some v ∈ V such that F (ϕ) = ϕ(v) for all ϕ ∈ V ∗.
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