MA3484 Methods of Mathematical
Economics
School of Mathematics, Trinity College
Hilary Term 2015
Lecture 25 (March 18, 2015)

David R. Wilkins

Example

Consider the following linear programming problem in general primal form:—

find values of x_1 , x_2 , x_3 and x_4 so as to minimize the objective function

$$c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$$

subject to the following constraints:—

- $a_{1,1}x_1 + a_{1,2}x_2 + a_{1,3}x_3 + a_{1,4}x_4 = b_1$;
- $a_{2,1}x_1 + a_{2,2}x_2 + a_{2,3}x_3 + a_{2,4}x_4 = b_2$;
- $a_{3,1}x_1 + a_{3,2}x_2 + a_{3,3}x_3 + a_{3,4}x_4 \ge b_3$;
- $x_1 \ge 0$ and $x_3 \ge 0$.

Here $a_{i,j}$, b_i and c_j are constants for i = 1, 2, 3 and j = 1, 2, 3, 4. The dual problem is the following:—

find values of p_1 , p_2 and p_3 so as to maximize the objective function

$$p_1b_1 + p_2b_2 + p_3b_3$$

subject to the following constraints:-

- $p_1a_{1,1} + p_2a_{2,1} + p_3a_{3,1} \le c_1$;
- $p_1 a_{1,2} + p_2 a_{2,2} + p_3 a_{3,2} = c_2;$
- $p_1a_{1,3} + p_2a_{2,3} + p_3a_{3,3} \le c_3$;
- $p_1 a_{1,4} + p_2 a_{2,4} + p_3 a_{3,4} = c_4;$
- $p_3 \ge 0$.

We refer to the first and second problems as the *primal problem* and the *dual problem* respectively. Let (x_1, x_2, x_3, x_4) be a feasible solution of the primal problem, and let (p_1, p_2, p_3) be a feasible solution of the dual problem. Then

$$\sum_{j=1}^{4} c_j x_j - \sum_{i=1}^{3} p_i b_i = \sum_{j=1}^{4} \left(c_j - \sum_{i=1}^{3} p_i a_{i,j} \right) x_j + \sum_{i=1}^{3} p_i \left(\sum_{j=1}^{4} a_{i,j} x_j - b_i \right).$$

Now the quantity $c_j - \sum_{i=1}^3 p_i a_{i,j} = 0$ for j = 2 and j = 4, and $\sum_{i=1}^4 a_{i,j} x_j - b_i = 0$ for i = 1 and i = 2. It follows that

$$\sum_{j=1}^{4} c_j x_j - \sum_{i=1}^{3} p_i b_i = \left(c_1 - \sum_{i=1}^{3} p_i a_{i,1}\right) x_1 + \left(c_3 - \sum_{i=1}^{3} p_i a_{i,3}\right) x_3 + p_3 \left(\sum_{i=1}^{4} a_{3,i} x_j - b_3\right).$$

Now $x_1 \ge 0$, $x_3 \ge 0$ and $p_3 \ge 0$. Also

$$c_1 - \sum_{i=1}^{3} p_i a_{i,1} \ge 0, \quad c_3 - \sum_{i=1}^{3} p_i a_{i,3} \ge 0$$

and

$$\sum_{j=1}^{4} a_{3,j} x_j - b_3 \ge 0.$$

It follows that

$$\sum_{i=1}^{4} c_j x_j - \sum_{i=1}^{3} p_i b_i \ge 0.$$

and thus

$$\sum_{i=1}^4 c_j x_j \geq \sum_{i=1}^3 p_i b_i.$$

Now suppose that

$$\sum_{j=1}^{4} c_{j} x_{j} = \sum_{i=1}^{3} p_{i} b_{i}.$$

Then

$$\begin{pmatrix}
c_1 - \sum_{i=1}^3 p_i a_{i,1} \\
c_3 - \sum_{i=1}^3 p_i a_{i,3} \\
c_4 - \sum_{i=1}^4 a_{3,i} x_i - b_3
\end{pmatrix} = 0,$$

because a sum of three non-negative quantities is equal to zero if and only if each of those quantities is equal to zero.

It follows that

$$\sum_{j=1}^{4} c_{j} x_{j} = \sum_{i=1}^{3} p_{i} b_{i}$$

if and only if the following three complementary slackness conditions are satisfied:—

•
$$\sum_{i=1}^{3} p_i a_{i,1} = c_1 \text{ if } x_1 > 0;$$

•
$$\sum_{i=1}^{3} p_i a_{i,3} = c_3$$
 if $x_3 > 0$;

•
$$\sum_{j=1}^4 a_{3,j} x_j = b_3$$
 if $p_3 > 0$.

Open and Closed Sets in Euclidean Spaces

Open and Closed Sets in Euclidean Spaces

Let m be a positive integer. The *Euclidean norm* $|\mathbf{x}|$ of an element \mathbf{x} of \mathbb{R}^m is defined such that

$$|\mathbf{x}|^2 = \sum_{i=1}^m (\mathbf{x})_i^2.$$

The Euclidean distance function d on \mathbb{R}^m is defined such that

$$d(\mathbf{x},\mathbf{y}) = |\mathbf{y} - \mathbf{x}|$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$. The Euclidean distance function satisfies the Triangle Inequality, together with all the other basic properties required of a distance function on a metric space, and therefore \mathbb{R}^m with the Euclidean distance function is a metric space.

A subset U of \mathbb{R}^m is said to be *open* in \mathbb{R}^m if, given any point **b** of U, there exists some real number ε satisfying $\varepsilon > 0$ such that

$$\{\mathbf{x} \in \mathbb{R}^m : |\mathbf{x} - \mathbf{b}| < \varepsilon\} \subset U.$$

A subset of \mathbb{R}^m is *closed* in \mathbb{R}^m if and only if its complement is open in \mathbb{R}^m .

Every union of open sets in \mathbb{R}^m is open in \mathbb{R}^m , and every finite intersection of open sets in \mathbb{R}^m is open in \mathbb{R}^m .

Every intersection of closed sets in \mathbb{R}^m is closed in \mathbb{R}^m , and every finite union of closed sets in \mathbb{R}^m is closed in \mathbb{R}^m .

Lemma

Lemma FK-T01 Let m be a positive integer, let $\mathbf{u}^{(1)}, \mathbf{u}^{(2)}, \dots, \mathbf{u}^{(m)}$ be a basis of \mathbb{R}^m , and let

$$F = \left\{ \sum_{i=1}^{m} s_i \mathbf{u}^{(i)} : s_i \geq 0 \text{ for } i = 1, 2, \dots, m \right\}.$$

Then F is a closed set in \mathbb{R}^m .

Proof

Let $T: \mathbb{R}^m \to \mathbb{R}^m$ be defined such that

$$T(s_1, s_2, \ldots, s_m) = \sum_{i=1}^m s_i \mathbf{u}^{(i)}$$

for all real numbers s_1, s_2, \ldots, s_m . Then T is an invertible linear operator on \mathbb{R}^m , and F = T(G), where

$$G = \{ \mathbf{x} \in \mathbb{R}^m : (\mathbf{x})_i \ge 0 \text{ for } i = 1, 2, \dots, m \}.$$

Moreover the subset G of \mathbb{R}^m is closed in \mathbb{R}^m .

Now it is a standard result of real analysis that every linear operator on a finite-dimensional vector space is continuous. Therefore $T^{-1} \colon \mathbb{R}^m \to \mathbb{R}^m$ is continuous. Moreover T(G) is the preimage of the closed set G under the continuous map T^{-1} , and the preimage of any closed set under a continuous map is itself closed. It follows that T(G) is closed in \mathbb{R}^m . Thus F is closed in \mathbb{R}^m , as required.

Lemma

Lemma FK-CS-02 Let m be a positive integer, let F be a non-empty closed set in \mathbb{R}^m , and let \mathbf{b} be a vector in \mathbb{R}^m . Then there exists an element \mathbf{g} of F such that $|\mathbf{x} - \mathbf{b}| \ge |\mathbf{g} - \mathbf{b}|$ for all $\mathbf{x} \in F$.

Proof

Let R be a positive real number chosen large enough to ensure that the set F_0 is non-empty, where

$$F_0 = F \cap \{\mathbf{x} \in \mathbb{R}^m : |\mathbf{x} - \mathbf{b}| \le R\}.$$

Then F_0 is a closed bounded subset of \mathbb{R}^m . Let $f: F_0 \to \mathbb{R}$ be defined such that $f(\mathbf{x}) = |\mathbf{x} - \mathbf{b}|$ for all $\mathbf{x} \in F$. Then $f: F_0 \to \mathbb{R}$ is a continuous function on F_0 .

Now it is a standard result of real analysis that any continuous real-valued function on a closed bounded subset of a finite-dimensional Euclidean space attains a minimum value at some point of that set. It follows that there exists an element ${\bf g}$ of F_0 such that

$$|\mathbf{x} - \mathbf{b}| \ge |\mathbf{g} - \mathbf{b}|$$

for all $\mathbf{x} \in F_0$. If $\mathbf{x} \in F \setminus F_0$ then

$$|\mathbf{x} - \mathbf{b}| \ge R \ge |\mathbf{g} - \mathbf{b}|.$$

It follows that

$$|\mathbf{x} - \mathbf{b}| \ge |\mathbf{g} - \mathbf{b}|$$

for all $\mathbf{x} \in F$, as required.