MA3484 Methods of Mathematical Economics School of Mathematics, Trinity College Hilary Term 2015 Lecture 25 (March 18, 2015) David R. Wilkins #### **Example** Consider the following linear programming problem in general primal form:— find values of $x_1$ , $x_2$ , $x_3$ and $x_4$ so as to minimize the objective function $$c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$$ subject to the following constraints:— - $a_{1,1}x_1 + a_{1,2}x_2 + a_{1,3}x_3 + a_{1,4}x_4 = b_1$ ; - $a_{2,1}x_1 + a_{2,2}x_2 + a_{2,3}x_3 + a_{2,4}x_4 = b_2$ ; - $a_{3,1}x_1 + a_{3,2}x_2 + a_{3,3}x_3 + a_{3,4}x_4 \ge b_3$ ; - $x_1 \ge 0$ and $x_3 \ge 0$ . Here $a_{i,j}$ , $b_i$ and $c_j$ are constants for i = 1, 2, 3 and j = 1, 2, 3, 4. The dual problem is the following:— find values of $p_1$ , $p_2$ and $p_3$ so as to maximize the objective function $$p_1b_1 + p_2b_2 + p_3b_3$$ subject to the following constraints:- - $p_1a_{1,1} + p_2a_{2,1} + p_3a_{3,1} \le c_1$ ; - $p_1 a_{1,2} + p_2 a_{2,2} + p_3 a_{3,2} = c_2;$ - $p_1a_{1,3} + p_2a_{2,3} + p_3a_{3,3} \le c_3$ ; - $p_1 a_{1,4} + p_2 a_{2,4} + p_3 a_{3,4} = c_4;$ - $p_3 \ge 0$ . We refer to the first and second problems as the *primal problem* and the *dual problem* respectively. Let $(x_1, x_2, x_3, x_4)$ be a feasible solution of the primal problem, and let $(p_1, p_2, p_3)$ be a feasible solution of the dual problem. Then $$\sum_{j=1}^{4} c_j x_j - \sum_{i=1}^{3} p_i b_i = \sum_{j=1}^{4} \left( c_j - \sum_{i=1}^{3} p_i a_{i,j} \right) x_j + \sum_{i=1}^{3} p_i \left( \sum_{j=1}^{4} a_{i,j} x_j - b_i \right).$$ Now the quantity $c_j - \sum_{i=1}^3 p_i a_{i,j} = 0$ for j = 2 and j = 4, and $\sum_{i=1}^4 a_{i,j} x_j - b_i = 0$ for i = 1 and i = 2. It follows that $$\sum_{j=1}^{4} c_j x_j - \sum_{i=1}^{3} p_i b_i = \left(c_1 - \sum_{i=1}^{3} p_i a_{i,1}\right) x_1 + \left(c_3 - \sum_{i=1}^{3} p_i a_{i,3}\right) x_3 + p_3 \left(\sum_{i=1}^{4} a_{3,i} x_j - b_3\right).$$ Now $x_1 \ge 0$ , $x_3 \ge 0$ and $p_3 \ge 0$ . Also $$c_1 - \sum_{i=1}^{3} p_i a_{i,1} \ge 0, \quad c_3 - \sum_{i=1}^{3} p_i a_{i,3} \ge 0$$ and $$\sum_{j=1}^{4} a_{3,j} x_j - b_3 \ge 0.$$ It follows that $$\sum_{i=1}^{4} c_j x_j - \sum_{i=1}^{3} p_i b_i \ge 0.$$ and thus $$\sum_{i=1}^4 c_j x_j \geq \sum_{i=1}^3 p_i b_i.$$ Now suppose that $$\sum_{j=1}^{4} c_{j} x_{j} = \sum_{i=1}^{3} p_{i} b_{i}.$$ Then $$\begin{pmatrix} c_1 - \sum_{i=1}^3 p_i a_{i,1} \\ c_3 - \sum_{i=1}^3 p_i a_{i,3} \\ c_4 - \sum_{i=1}^4 a_{3,i} x_i - b_3 \end{pmatrix} = 0,$$ because a sum of three non-negative quantities is equal to zero if and only if each of those quantities is equal to zero. It follows that $$\sum_{j=1}^{4} c_{j} x_{j} = \sum_{i=1}^{3} p_{i} b_{i}$$ if and only if the following three complementary slackness conditions are satisfied:— • $$\sum_{i=1}^{3} p_i a_{i,1} = c_1 \text{ if } x_1 > 0;$$ • $$\sum_{i=1}^{3} p_i a_{i,3} = c_3$$ if $x_3 > 0$ ; • $$\sum_{j=1}^4 a_{3,j} x_j = b_3$$ if $p_3 > 0$ . #### Open and Closed Sets in Euclidean Spaces # Open and Closed Sets in Euclidean Spaces Let m be a positive integer. The *Euclidean norm* $|\mathbf{x}|$ of an element $\mathbf{x}$ of $\mathbb{R}^m$ is defined such that $$|\mathbf{x}|^2 = \sum_{i=1}^m (\mathbf{x})_i^2.$$ The Euclidean distance function d on $\mathbb{R}^m$ is defined such that $$d(\mathbf{x},\mathbf{y}) = |\mathbf{y} - \mathbf{x}|$$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ . The Euclidean distance function satisfies the Triangle Inequality, together with all the other basic properties required of a distance function on a metric space, and therefore $\mathbb{R}^m$ with the Euclidean distance function is a metric space. A subset U of $\mathbb{R}^m$ is said to be *open* in $\mathbb{R}^m$ if, given any point **b** of U, there exists some real number $\varepsilon$ satisfying $\varepsilon > 0$ such that $$\{\mathbf{x} \in \mathbb{R}^m : |\mathbf{x} - \mathbf{b}| < \varepsilon\} \subset U.$$ A subset of $\mathbb{R}^m$ is *closed* in $\mathbb{R}^m$ if and only if its complement is open in $\mathbb{R}^m$ . Every union of open sets in $\mathbb{R}^m$ is open in $\mathbb{R}^m$ , and every finite intersection of open sets in $\mathbb{R}^m$ is open in $\mathbb{R}^m$ . Every intersection of closed sets in $\mathbb{R}^m$ is closed in $\mathbb{R}^m$ , and every finite union of closed sets in $\mathbb{R}^m$ is closed in $\mathbb{R}^m$ . #### Lemma **Lemma FK-T01** Let m be a positive integer, let $\mathbf{u}^{(1)}, \mathbf{u}^{(2)}, \dots, \mathbf{u}^{(m)}$ be a basis of $\mathbb{R}^m$ , and let $$F = \left\{ \sum_{i=1}^{m} s_i \mathbf{u}^{(i)} : s_i \geq 0 \text{ for } i = 1, 2, \dots, m \right\}.$$ Then F is a closed set in $\mathbb{R}^m$ . #### **Proof** Let $T: \mathbb{R}^m \to \mathbb{R}^m$ be defined such that $$T(s_1, s_2, \ldots, s_m) = \sum_{i=1}^m s_i \mathbf{u}^{(i)}$$ for all real numbers $s_1, s_2, \ldots, s_m$ . Then T is an invertible linear operator on $\mathbb{R}^m$ , and F = T(G), where $$G = \{ \mathbf{x} \in \mathbb{R}^m : (\mathbf{x})_i \ge 0 \text{ for } i = 1, 2, \dots, m \}.$$ Moreover the subset G of $\mathbb{R}^m$ is closed in $\mathbb{R}^m$ . Now it is a standard result of real analysis that every linear operator on a finite-dimensional vector space is continuous. Therefore $T^{-1} \colon \mathbb{R}^m \to \mathbb{R}^m$ is continuous. Moreover T(G) is the preimage of the closed set G under the continuous map $T^{-1}$ , and the preimage of any closed set under a continuous map is itself closed. It follows that T(G) is closed in $\mathbb{R}^m$ . Thus F is closed in $\mathbb{R}^m$ , as required. #### Lemma **Lemma FK-CS-02** Let m be a positive integer, let F be a non-empty closed set in $\mathbb{R}^m$ , and let $\mathbf{b}$ be a vector in $\mathbb{R}^m$ . Then there exists an element $\mathbf{g}$ of F such that $|\mathbf{x} - \mathbf{b}| \ge |\mathbf{g} - \mathbf{b}|$ for all $\mathbf{x} \in F$ . #### **Proof** Let R be a positive real number chosen large enough to ensure that the set $F_0$ is non-empty, where $$F_0 = F \cap \{\mathbf{x} \in \mathbb{R}^m : |\mathbf{x} - \mathbf{b}| \le R\}.$$ Then $F_0$ is a closed bounded subset of $\mathbb{R}^m$ . Let $f: F_0 \to \mathbb{R}$ be defined such that $f(\mathbf{x}) = |\mathbf{x} - \mathbf{b}|$ for all $\mathbf{x} \in F$ . Then $f: F_0 \to \mathbb{R}$ is a continuous function on $F_0$ . Now it is a standard result of real analysis that any continuous real-valued function on a closed bounded subset of a finite-dimensional Euclidean space attains a minimum value at some point of that set. It follows that there exists an element ${\bf g}$ of $F_0$ such that $$|\mathbf{x} - \mathbf{b}| \ge |\mathbf{g} - \mathbf{b}|$$ for all $\mathbf{x} \in F_0$ . If $\mathbf{x} \in F \setminus F_0$ then $$|\mathbf{x} - \mathbf{b}| \ge R \ge |\mathbf{g} - \mathbf{b}|.$$ It follows that $$|\mathbf{x} - \mathbf{b}| \ge |\mathbf{g} - \mathbf{b}|$$ for all $\mathbf{x} \in F$ , as required.