
MA3484 Methods of Mathematical
Economics

School of Mathematics, Trinity College
Hilary Term 2015

Lecture 25 (March 18, 2015)

David R. Wilkins



Duality and Complementary Slackness (continued)

Example
Consider the following linear programming problem in general
primal form:—

find values of x1, x2, x3 and x4 so as to minimize the
objective function

c1x1 + c2x2 + c3x3 + c4x4

subject to the following constraints:—

a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 = b1;
a2,1x1 + a2,2x2 + a2,3x3 + a2,4x4 = b2;
a3,1x1 + a3,2x2 + a3,3x3 + a3,4x4 ≥ b3;
x1 ≥ 0 and x3 ≥ 0.



Duality and Complementary Slackness (continued)

Here ai ,j , bi and cj are constants for i = 1, 2, 3 and j = 1, 2, 3, 4.
The dual problem is the following:—

find values of p1, p2 and p3 so as to maximize the
objective function

p1b1 + p2b2 + p3b3

subject to the following constraints:—

p1a1,1 + p2a2,1 + p3a3,1 ≤ c1;
p1a1,2 + p2a2,2 + p3a3,2 = c2;
p1a1,3 + p2a2,3 + p3a3,3 ≤ c3;
p1a1,4 + p2a2,4 + p3a3,4 = c4;
p3 ≥ 0.



Duality and Complementary Slackness (continued)

We refer to the first and second problems as the primal problem
and the dual problem respectively. Let (x1, x2, x3, x4) be a feasible
solution of the primal problem, and let (p1, p2, p3) be a feasible
solution of the dual problem. Then

4∑
j=1

cjxj −
3∑

i=1

pibi =
4∑

j=1

(
cj −

3∑
i=1

piai ,j

)
xj

+
3∑

i=1

pi

 4∑
j=1

ai ,jxj − bi

 .



Duality and Complementary Slackness (continued)

Now the quantity cj −
3∑

i=1
piai ,j = 0 for j = 2 and j = 4, and

4∑
j=1

ai ,jxj − bi = 0 for i = 1 and i = 2. It follows that

4∑
j=1

cjxj −
3∑

i=1

pibi =

(
c1 −

3∑
i=1

piai ,1

)
x1

+

(
c3 −

3∑
i=1

piai ,3

)
x3

+ p3

 4∑
j=1

a3,jxj − b3

 .



Duality and Complementary Slackness (continued)

Now x1 ≥ 0, x3 ≥ 0 and p3 ≥ 0. Also

c1 −
3∑

i=1

piai ,1 ≥ 0, c3 −
3∑

i=1

piai ,3 ≥ 0

and
4∑

j=1

a3,jxj − b3 ≥ 0.

It follows that
4∑

j=1

cjxj −
3∑

i=1

pibi ≥ 0.

and thus
4∑

j=1

cjxj ≥
3∑

i=1

pibi .



Duality and Complementary Slackness (continued)

Now suppose that
4∑

j=1

cjxj =
3∑

i=1

pibi .

Then (
c1 −

3∑
i=1

piai ,1

)
x1 = 0,(

c3 −
3∑

i=1

piai ,3

)
x3 = 0,

p3

 4∑
j=1

a3,jxj − b3

 = 0,

because a sum of three non-negative quantities is equal to zero if
and only if each of those quantities is equal to zero.



Duality and Complementary Slackness (continued)

It follows that
4∑

j=1

cjxj =
3∑

i=1

pibi

if and only if the following three complementary slackness
conditions are satisfied:—

3∑
i=1

piai ,1 = c1 if x1 > 0;

3∑
i=1

piai ,3 = c3 if x3 > 0;∑4
j=1 a3,jxj = b3 if p3 > 0.



Open and Closed Sets in Euclidean Spaces

Open and Closed Sets in Euclidean Spaces

Let m be a positive integer. The Euclidean norm |x| of an
element x of Rm is defined such that

|x|2 =
m∑
i=1

(x)2i .



Open and Closed Sets in Euclidean Spaces (continued)

The Euclidean distance function d on Rm is defined such that

d(x, y) = |y − x|

for all x, y ∈ Rm. The Euclidean distance function satisfies the
Triangle Inequality, together with all the other basic properties
required of a distance function on a metric space, and therefore
Rm with the Euclidean distance function is a metric space.



Open and Closed Sets in Euclidean Spaces (continued)

A subset U of Rm is said to be open in Rm if, given any point b of
U, there exists some real number ε satisfying ε > 0 such that

{x ∈ Rm : |x− b| < ε} ⊂ U.

A subset of Rm is closed in Rm if and only if its complement is
open in Rm.

Every union of open sets in Rm is open in Rm, and every finite
intersection of open sets in Rm is open in Rm.

Every intersection of closed sets in Rm is closed in Rm, and every
finite union of closed sets in Rm is closed in Rm .



Open and Closed Sets in Euclidean Spaces (continued)

Lemma

Lemma FK-T01 Let m be a positive integer, let
u(1),u(2), . . . ,u(m) be a basis of Rm, and let

F =

{
m∑
i=1

siu
(i) : si ≥ 0 for i = 1, 2, . . . ,m

}
.

Then F is a closed set in Rm.



Open and Closed Sets in Euclidean Spaces (continued)

Proof
Let T : Rm → Rm be defined such that

T (s1, s2, . . . , sm) =
m∑
i=1

siu
(i)

for all real numbers s1, s2, . . . , sm. Then T is an invertible linear
operator on Rm, and F = T (G ), where

G = {x ∈ Rm : (x)i ≥ 0 for i = 1, 2, . . . ,m}.

Moreover the subset G of Rm is closed in Rm.



Open and Closed Sets in Euclidean Spaces (continued)

Now it is a standard result of real analysis that every linear
operator on a finite-dimensional vector space is continuous.
Therefore T−1 : Rm → Rm is continuous. Moreover T (G ) is the
preimage of the closed set G under the continuous map T−1, and
the preimage of any closed set under a continuous map is itself
closed. It follows that T (G ) is closed in Rm. Thus F is closed in
Rm, as required.



Open and Closed Sets in Euclidean Spaces (continued)

Lemma

Lemma FK-CS-02 Let m be a positive integer, let F be a
non-empty closed set in Rm, and let b be a vector in Rm. Then
there exists an element g of F such that |x− b| ≥ |g − b| for all
x ∈ F .

Proof
Let R be a positive real number chosen large enough to ensure
that the set F0 is non-empty, where

F0 = F ∩ {x ∈ Rm : |x− b| ≤ R}.

Then F0 is a closed bounded subset of Rm. Let f : F0 → R be
defined such that f (x) = |x− b| for all x ∈ F . Then f : F0 → R is
a continuous function on F0.



Open and Closed Sets in Euclidean Spaces (continued)

Now it is a standard result of real analysis that any continuous
real-valued function on a closed bounded subset of a
finite-dimensional Euclidean space attains a minimum value at
some point of that set. It follows that there exists an element g of
F0 such that

|x− b| ≥ |g − b|

for all x ∈ F0. If x ∈ F \ F0 then

|x− b| ≥ R ≥ |g − b|.

It follows that
|x− b| ≥ |g − b|

for all x ∈ F , as required.


