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Simplex Tableau Example (continued)

We now calculate the new values for the criterion row. The new
basis B ′ is given by B ′ = {j ′1, j ′2, j ′3}, where j ′1 = 1, j ′2 = 4 and
j ′3 = 3. The values p′1, p′2 and p′3 that are to be recorded in the
criterion row of the new tableau in the columns labelled by e(1),
e(2) and e(3) respectively are determined by the equation

p′k = cj ′1r
′
1,k + cj ′2r

′
2,k + cj ′3r

′
3,k

for k = 1, 2, 3, where

cj ′1 = c1 = 2, cj ′2 = c4 = 1, cj ′3 = c3 = 3,

and where r ′i ,k denotes the ith component of the vector e(k) with

respect to the basis a(1), a(4), a(3) of R3.



Simplex Tableau Example (continued)

We find that

p′1 = cj ′1r
′
1,1 + cj ′2r

′
2,1 + cj ′3r

′
3,1

= 2×
(
− 9

27

)
+ 1× 6

27 + 3× 6
27 = 6

27 ,

p′2 = cj ′1r
′
1,2 + cj ′2r

′
2,2 + cj ′3r

′
3,2

= 2× 12
27 + 1× 7

27 + 3×
(
−11

27

)
= − 2

27 ,

p′3 = cj ′1r
′
1,3 + cj ′2r

′
2,3 + cj ′3r

′
3,3

= 2× 3
27 + 1×

(
− 5

27

)
+ 3× 4

27 = 13
27 .



Simplex Tableau Example (continued)

We next calculate the cost C ′ of the new basic feasible solution.
The quantities s ′1, s ′2 and s ′3 satisfy s ′i = x ′ji for i = 1, 2, 3, where
(x ′1, x

′
2, x
′
3, x
′
4, x
′
5) is the new basic feasible solution. It follows that

C ′ = cj1s
′
1 + cj2s

′
2 + cj3s

′
3,

where s1, s2 and s3 are determined so that

b = s ′1a
(j ′1) + s ′2a

(j ′2) + s ′3a
(j ′3).

The values of s ′1, s ′2 and s ′3 have already been determined, and
have been recorded in the column of the new tableau labelled by
the vector b.



Simplex Tableau Example (continued)

We can therefore calculate C ′ as follows:—

C ′ = cj ′1s
′
1 + cj2s

′
2 + cj3s

′
3 = c1s

′
1 + c4s

′
2 + c3s

′
3

= 2× 99
27 + 69

27 + 3× 15
27 = 312

27 .

Alternatively we can use the identity C ′ = p′Tb to calculate C ′ as
follows:

C ′ = p′1b1 + p′2b2 + p′3b3 = 6
27 × 13− 2

27 × 13 + 13
27 × 20 = 312

27 .



Simplex Tableau Example (continued)

We now enter the values of p′1, p′2, p′3 and C ′ into the tableau
associated with basis {1, 4, 3}. The tableau then takes the
following form:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 24
27 0 0 3

27
99
27 − 9

27
12
27

3
27

a(4) 0 23
27 0 1 31

27
69
27

6
27

7
27 − 5

27

a(3) 0 −13
27 1 0 13

27
15
27

6
27 −11

27
4
27

· · · · · 312
27

6
27 − 2

23
13
23



Simplex Tableau Example (continued)

In order to complete the extended tableau, it remains to calculate
the values −q′j for j = 1, 2, 3, 4, 5, where q′j satisfies the equation

−q′j = p′Taj − cj for j = 1, 2, 3, 4, 5.

Now q′j is the jth component of the vector q′ that satisfies the

matrix equation −q′T = p′TA− cT . It follows that

−q′T = p′TA− cT

=
(

6
27

−2
27

13
27

) 1 2 3 3 5
2 3 1 2 3
4 2 5 1 4


−
(

2 4 3 1 4
)

=
(

2 32
27 3 1 76

27

)
−
(

2 4 3 1 4
)

=
(

0 −76
27 0 0 −32

27

)



Simplex Tableau Example (continued)

Thus

q′1 = 0, q′2 = 76
27 , q′3 = 0, q′4 = 0, q′5 = 32

27 .

The value of each q′j can also be calculated from the other values
recorded in the column of the extended simplex tableau labelled by
the vector a(j). Indeed the vector p′ is determined so as to satisfy
the equation p′Ta(j

′) = cj ′ for all j ′ ∈ B ′. It follows that

p′Ta(j) =
3∑

i=1

ti ,jp
′Ta(j

′
i ) =

3∑
i=1

cj ′i t
′
i ,j ,

and therefore

−q′j =
3∑

i=1

cj ′i t
′
i ,j − cj .



Simplex Tableau Example (continued)

The extended simplex tableau for the basis {1, 4, 3} has now been
computed, and the completed tableau is as follows:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 24
27 0 0 3

27
99
27 − 9

27
12
27

3
27

a(4) 0 23
27 0 1 31

27
69
27

6
27

7
27 − 5

27

a(3) 0 −13
27 1 0 13

27
15
27

6
27 −11

27
4
27

0 −76
27 0 0 −32

27
312
27

6
27 − 2

23
13
23



Simplex Tableau Example (continued)

The fact that q′j ≥ 0 for j = 1, 2, 3, 4, 5 shows that we have now

found our basic optimal solution. Indeed the cost C of any feasible
solution x satisfies

C = cTx = p′TAx + q′Tx = p′Tb + q′Tx

= C ′ + q′Tx

= C ′ +
76

27
x2 +

32

27
x5,

where x2 = (x)2 and x5 = (x)5.
Therefore x′ is a basic optimal solution to the linear programming
problem, where

x′T =
(

99
27 0 15

27
69
27 0

)
.



Simplex Tableau Example (continued)

It is instructive to compare the pivot row and criterion row of the
tableau for the basis {1, 2, 3} with the corresponding rows of the
tableau for the basis {1, 4, 3}.



Simplex Tableau Example (continued)

These rows in the old tableau for the basis {1, 2, 3} contain the
following values:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(2) 0 1 0 27
23

31
23 3 6

23
7
23 − 5

23

0 0 0 76
23

60
23 20 22

23
18
23 − 3

23

The corresponding rows in the new tableau for the basis {1, 4, 3}
contain the following values:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(4) 0 23
27 0 1 31

27
69
27

6
27

7
27 − 5

27

0 −76
27 0 0 −32

27
312
27

6
27 − 2

23
13
23



Simplex Tableau Example (continued)

If we examine the values of the criterion row in the new tableau we
find that they are obtained from corresponding values in the
criterion row of the old tableau by subtracting off the corresponding
elements of the pivot row of the old tableau multiplied by the
factor 76

27 . As a result, the new tableau has value 0 in the cell of

the criterion row in column a(4). Thus the same rule used to
calculate values in other rows of the new tableau would also have
yielded the correct elements in the criterion row of the tableau.

We now investigate the reasons why this is so.



Simplex Tableau Example (continued)

First we consider the transformation of the elements of the
criterion row in the columns labelled by a(j) for j = 1, 2, 3, 4, 5.
Now the coefficients ti ,j and t ′i ,j are defined for i = 1, 2, 3 and
j = 1, 2, 3, 4, 5 so that

a(j) =
3∑

i=1

ti ,ja
(ji ) =

3∑
i=1

t ′i ,ja
(j ′i ),

where j1 = j ′1 = 1, j3 = j ′3 = 3, j2 = 2 and j ′2 = 4. Moreover

t ′2,j =
1

t2,4
t2,j

and

t ′i ,j = ti ,j −
ti ,4
t2,4

t2,j (i = 1, 3).



Simplex Tableau Example (continued)

Now

−qj =
3∑

i=1

cji ti ,j − cj

= c1t1,j + c2t2,j + c3t3,j − cj ,

−q′j =
3∑

i=1

cj ′i t
′
i ,j − cj .

= c1t
′
1,j + c4t

′
2,j + c3t

′
3,j − cj .



Simplex Tableau Example (continued)

Therefore

qj − q′j = c1(t ′1,j − t1,j) + c4t
′
2,j − c2t2,j + c3(t ′3,j − t3,j)

=
1

t2,4
(−c1t1,4 + c4 − c2t2,4 − c3t3,4) t2,j

=
q4
t2,4

t2,j

and thus
−q′j = −qj +

q4
t2,4

t2,j

for j = 1, 2, 3, 4, 5.



Simplex Tableau Example (continued)

Next we note that

C =
3∑

i=1

cji si = c1s1 + c2s2 + c3s3,

C ′ =
3∑

i=1

cj ′i s
′
i = c1s

′
1 + c4s

′
2 + c3s

′
3.



Simplex Tableau Example (continued)

Therefore

C ′ − C = c1(s ′1 − s1) + c4s
′
2 − c2s2 + c3(s ′3 − s3)

=
1

t2,4
(−c1t1,4 + c4 − c2t2,4 − c3t3,4) s2

=
q4
t2,4

s2

and thus
C ′ = qk +

q4
t2,4

s2

for k = 1, 2, 3.



Simplex Tableau Example (continued)

To complete the verification that the criterion row of the extended
simplex tableau transforms according to the same rule as the other
rows we note that

pk =
3∑

i=1

cji ri ,k = c1r1,k + c2r2,k + c3r3,k ,

p′k =
3∑

i=1

cj ′i r
′
i ,k = c1r

′
1,k + c4r

′
2,k + c3r

′
3,k .



Simplex Tableau Example (continued)

Therefore

p′k − pk = c1(r ′1,k − r1,k) + c4r
′
2,k − c2r2,k + c3(r ′3,k − r3,k)

=
1

t2,4
(−c1t1,4 + c4 − c2t2,4 − c3t3,4) r2,k

=
q4
t2,4

r2,k

and thus
p′k = pk +

q4
t2,4

r2,k

for k = 1, 2, 3.

This completes the discussion of the structure and properties of
the extended simplex tableau associated with the optimization
problem under discussion.



Linear Algebra Results

Some Results concerning Finite-Dimensional
Real Vector Spaces

We consider the representation of vectors belonging to the
m-dimensional vector space Rm as linear combinations of basis
vectors belonging to some chosen basis of this m-dimensional real
vector space.

Elements of Rm are normally considered to be column vectors
represented by m × 1 matrices. Given any v ∈ Rm, we denote by
(v)i the ith component of the vector v, and we denote by vT the
1×m row vector that is the transpose of the column vector
representing v ∈ Rm. Thus

vT =
(
v1 v2 · · · vm

)
,

where vi = (v)i for i = 1, 2, . . . ,m.



Linear Algebra Results (continued)

We define the standard basis of the real vector space Rm to be the
basis

e(1), e(2), . . . , e(m)

defined such that

(e(k))i =

{
1 if k = i ;
0 if k 6= i .

It follows that v =
m∑
i=1

(v)ie
(i) for all v ∈ Rm.



Linear Algebra Results (continued)

Let u(1),u(2), . . . ,u(m) be a basis of the real vector space Rm, and
let e(1), e(2), . . . , e(m) denote the standard basis of Rm. Then there
exists an invertible m ×m matrix M with the property that

u(k) =
m∑
i=1

(M)i ,ke
(i)

for k = 1, 2, . . . ,m.



Linear Algebra Results (continued)

The product Mv is defined in the usual fashion for any
m-dimensional vector v: the vector v is expressed as an m × 1
column vector, and the matrix product is then calculated according
to the usual rules of matrix multiplication, so that

(Mv)i =
m∑

k=1

(M)i ,k(v)k ,

and thus

Mv =
m∑
i=1

m∑
k=1

Mi ,k(v)ke
(i) =

m∑
k=1

(v)ku
(k).

Then Me(i) = u(i) for i = 1, 2, . . . ,m. The inverse matrix M−1 of
M then satisfies M−1u(i) = e(i) for i = 1, 2, . . . ,m.



Linear Algebra Results (continued)

Lemma

Lemma STG-01 Let m be a positive integer, let
u(1),u(2), . . . ,u(m) be a basis of Rm, let e(1), e(2), . . . , e(m) denote
the standard basis of Rm, and let M be the non-singular matrix
that satisfies Me(i) = u(i) for i = 1, 2, . . . ,m. Let v be a vector in
Rm, and let λ1, λ2, . . . , λm be the unique real numbers for which

v =
m∑
i=1

λiu
(i).

Then λi is the ith component of the vector M−1v for
i = 1, 2, . . . ,m.



Linear Algebra Results (continued)

Proof
The inverse matrix M−1 of M satisfies M−1u(k) = e(k) for
k = 1, 2, . . . ,m. It follows that

M−1v =
m∑

k=1

λkM
−1u(k) =

m∑
k=1

λke
(k),

and thus λ1, λ2, . . . , λm are the components of the column vector
M−1v, as required.



Linear Algebra Results (continued)

Lemma

Lemma STG-02 Let m be a positive integer, let
u(1),u(2), . . . ,u(m) be a basis of Rm, let e(1), e(2), . . . , e(m) denote
the standard basis of Rm, and let M be the non-singular matrix
that satisfies Me(i) = u(i) for i = 1, 2, . . . ,m. Then

e(k) =
m∑
i=1

ri ,ku
(i),

where ri ,k is the coefficient (M−1)i ,k in the ith row and kth
column of the inverse M−1 of the matrix M.



Linear Algebra Results (continued)

Proof

It follows from Lemma STG-01 that e(k) =
m∑
i=1

ri ,ku
(i), where

ri ,k = (M−1e(k))i for i = 1, 2, . . . ,m. But M−1e(k) is the column
vector whose components are those of the kth column of the
matrix M−1. The result follows.



Linear Algebra Results (continued)

Lemma

Lemma STG-03 Let m be a positive integer, let
u(1),u(2), . . . ,u(m) be a basis of Rm, let e(1), e(2), . . . , e(m) denote
the standard basis of Rm, let M be the non-singular matrix that
satisfies Me(i) = u(i) for i = 1, 2, . . . ,m, and let ri ,k = (M−1)i ,k
for i = 1, 2, . . . ,m and k = 1, 2, . . . ,m. Let g1, g2, . . . , gm be real

numbers, and let p =
∑m

k=1 pke
(k), where pk =

m∑
i=1

gi ri ,k for

k = 1, 2, . . . ,m. Then pTu(i) = gi for i = 1, 2, . . . ,m.



Linear Algebra Results (continued)

Proof
It follows from the definition of the matrix M that (u(i))k = (M)k,i
for all integers i and k between 1 and m. It follows that the ith
component of the row vector pTM is equal to pTu(i) for
i = 1, 2, . . . ,m. But the definition of the vector p ensures that pi
is the ith component of the row vector gTM−1, where g ∈ R is
defined so that

gT =
(
g1 g2 · · · gm

)
.

It follows that pT = gTM−1, and therefore pTM = gT . Taking
the ith component of the row vectors on both sides of this
equality, we find that pTu(i) = gi , as required.



Linear Algebra Results (continued)

Lemma

Lemma STG-04 Let m be a positive integer, let
u(1),u(2), . . . ,u(m) and û(1), û(2), . . . , û(m) be bases of Rm, and let
v be an element of Rm. Let h be an integer between 1 and m.

Suppose that û(h) =
m∑
i=1

µiu
(i), where µ1, µ2, . . . , µm are real

numbers, and that u(i) = û(i) for all integers i between 1 and m

satisfying i 6= h. Let v =
m∑
i=1

λiu
(i) =

m∑
i=1

λ̂i û
(i). where λi ∈ R and

λ̂i ∈ R for i = 1, 2, . . . ,m. Then

λ̂(i) =


1

µh
λh if i = h;

λi −
µi
µh

λh if i 6= h.



Linear Algebra Results (continued)

Proof
From the representation of û(h) as a linear combination of
u(1),u(2), . . . ,u(m) we find that

1

µh
û(h) = u(h) +

∑
1≤i≤m
i 6=h

µi
µh

u(i).

Moreover û(i) = u(i) for all integers i between 1 and m satisfying
i 6= h. It follows that

u(h) =
1

µh
û(h) −

∑
1≤i≤m
i 6=h

µi
µh

û(i).



Linear Algebra Results (continued)

It follows that

n∑
i=1

λ̂i û
(i) = v =

n∑
i=1

λiu
(i)

=
∑

1≤i≤m
i 6=h

λi û
(i) +

1

µh
λhû

(h) −
∑

1≤i≤m
i 6=h

µi
µh

λhu
(i).

=
∑

1≤i≤m
i 6=h

(
λi −

µi
µh

λh

)
û(i) +

1

µh
λhû

(h)



Linear Algebra Results (continued)

Therefore, equating coefficients of û(i) for i = 1, 2, . . . , n, we find
that

λ̂(i) =


1

µh
λh if i = h,

λi −
µi
µh

λh if i 6= h,

as required.



The Extended Simplex Tableau

The Extended Simplex Tableau for solving
Linear Programming Problems

We now consider the construction of a tableau for a linear
programming problem in Dantzig standard form. Such a problem is
specified by an m × n matrix A, an m-dimensional target vector
b ∈ Rm and an n-dimensional cost vector c ∈ Rn. We suppose
moreover that the matrix A is of rank m. We consider procedures
for solving the following linear program in Danzig standard form.

Determine x ∈ Rn so as to minimize cTx subject to the
constraints Ax = b and x ≥ 0.



The Extended Simplex Tableau (continued)

We denote by Ai ,j the component of the matrix A in the ith row
and jth column, we denote by bi the ith component of the target
vector b for i = 1, 2, . . . ,m, and we denote by cj the jth
component of the cost vector c for j = 1, 2, . . . , n.

A feasible solution to this problem consists of an n-dimensional
vector x that satisfies the constraints Ax = b and x ≥ 0. An
optimal solution to the problem is a feasible solution that
minimizes the objective function cTx amongst all feasible solutions
to the problem.



The Extended Simplex Tableau (continued)

A feasible solution to this optimization problem thus consists of
real numbers x1, x2, . . . , xn that satisfy the constraints

Ai ,1x1 + Ai ,2x2 + · · ·+ Ai ,nxn = bi

for i = 1, 2, . . . ,m, and
xj ≥ 0

for j = 1, 2, . . . , n.

Such a feasible solution is optimal if and only if it minimizes the
objective function

c1x1 + c2x2 + · · ·+ cnxn

amongst all feasible solution to the problem.



The Extended Simplex Tableau (continued)

We denote by a(j) the m-dimensional column vector whose
components are those in the jth column of the matrix A. A
feasible solution of the linear programming problem then consists
of non-negative real numbers x1, x2, . . . , xn for which

n∑
j=1

xja
(j) = b.

A feasible solution determined by x1, x2, . . . , xn is optimal if it

minimizes cost
n∑

j=1
cjxj amongst all feasible solutions to the linear

programming problem.



The Extended Simplex Tableau (continued)

A basis B for the linear programming problem is a subset of
{1, 2, . . . , n} with m elements which has the property that the
vectors a(j) for j ∈ B constitute a basis of the real vector space Rm.

In the following discussion we let

B = {j1, j2, . . . , jm},

where j1, j2, . . . , jm are distinct integers between 1 and n.

We denote by MB the invertible m ×m matrix whose component
(M)i ,k in the ith row and jth column satisfies (MB)i ,k = (A)i ,jk for
i , k = 1, 2, . . . ,m. Then the kth column of the matrix MB is
specified by the column vector a(jk ) for k = 1, 2, . . . ,m, and thus
the columns of the matrix MB coincide with those columns of the
matrix A that are determined by elements of the basis B.



The Extended Simplex Tableau (continued)

Every vector in Rm can be expressed as a linear combination of
a(j1), a(j2), . . . , a(jm). It follows that there exist uniquely determined
real numbers ti ,j and si for i = 1, 2, . . . ,m and j = 1, 2, . . . , n such
that

a(j) =
m∑
i=1

ti ,ja
(ji ) and b =

m∑
i=1

sia
(ji ).

It follows from Lemma STG-01 that

ti ,j = (M−1B a(j))i and si = (M−1B b)i

for i = 1, 2, . . . ,m.



The Extended Simplex Tableau (continued)

The standard basis e(1), e(2), . . . , e(m) of Rm is defined such that

(e(k))i =

{
1 if k = i ;
0 if k 6= i .

It follows from Lemma STG-02 that

e(k) =
m∑
i=1

ri ,ku
(i),

where ri ,k is the coefficient (M−1B )i ,k in the ith row and kth
column of the inverse M−1B of the matrix MB .



The Extended Simplex Tableau (continued)

We can record the coefficients of the m-dimensional vectors

a(1), a(2), . . . , a(n), b, e(1), e(2), . . . , e(m)

with respect to the basis a(j1), a(j2), . . . , a(jm), of Rm in a tableau of
the following form:—

a(1) a(2) · · · a(n) b e(1) e(2) · · · e(m)

a(j1) t1,1 t1,2 · · · t1,n s1 r1,1 r1,2 · · · r1,m
a(j2) t2,1 t2,2 · · · t2,n s2 r2,1 r2,2 · · · r2,m

...
...

...
. . .

...
...

...
...

. . .
...

a(jm) tm,1 tm,2 · · · tm,n sm rm,1 rm,2 · · · rm,m

· · · · · · · · · · · · ·



The Extended Simplex Tableau (continued)

The definition of the quantities ti ,j ensures that

ti ,jk =

{
1 if i = k ;
0 if i 6= k .

Also

ti ,j =
m∑

k=1

ri ,kAi ,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and

si =
m∑

k=1

ri ,kbk

for i = 1, 2, . . . ,m.



The Extended Simplex Tableau (continued)

If the quantities s1, s2, . . . , sm are all non-negative then they
determine a basic feasible solution x of the linear programming
problem associated with the basis B with components
x1, x2, . . . , xn, where xji = si for i = 1, 2, . . . ,m and xj = 0 for all
integers j between 1 and n that do not belong to the basis B.
Indeed

n∑
j=1

xja
(j) =

m∑
i=1

xjia
(ji ) =

m∑
i=1

sia
(ji ).



The Extended Simplex Tableau (continued)

The cost C of the basic feasible solution x is defined to be the
value cTx of the objective function. The definition of the
quantities s1, s2, . . . , sm ensures that

C =
n∑

j=1

cjxj =
m∑
i=1

cji si .

If the quantities s1, s2, . . . , sn are not all non-negative then there is
no basic feasible solution associated with the basis B.



The Extended Simplex Tableau (continued)

The criterion row at the bottom of the tableau has cells to record
quantities p1, p2, . . . , pm associated with the vectors that
constitute the standard basis e(1), e(2), . . . , e(m) of Rm. These
quantities are defined so that

pk =
m∑
i=1

cji ri ,k

for k = 1, 2, . . . ,m, where cji is the cost associated with the basis
vector a(ji ) for i = 1, 2, . . . , k,



The Extended Simplex Tableau (continued)

An application of Lemma STG-03 establishes that

m∑
k=1

pkAk,ji = cji

for i = 1, 2, . . . , k .



The Extended Simplex Tableau (continued)

On combining the identities

si =
m∑

k=1

ri ,kbk , pk =
m∑
i=1

cji ri ,k and C =
m∑
i=1

cji si

derived above, we find that

C =
m∑
i=1

cji si =
m∑
i=1

m∑
k=1

cji ri ,kbk =
m∑

k=1

pkbk .



The Extended Simplex Tableau (continued)

The tableau also has cells in the criterion row to record quantities
−q1,−q2, . . . ,−qn, where q1, q2, . . . , qn are the components of the
unique n-dimensional vector q characterized by the following
properties:

qji = 0 for i = 1, 2, . . . ,m;

cTx = C + qTx for all x ∈ Rm satisfying the matrix equation
Ax = b.



The Extended Simplex Tableau (continued)

First we show that if q ∈ Rn is defined such that qT = cT − pTA
then the vector q has the required properties.

The definition of p1, p2, . . . , pk ensures (as a consequence of
Lemma STG-03, as noted above) that

m∑
k=1

pkAk,ji = cji

for i = 1, 2, . . . , k . It follows that

qji = cji − (pTA)ji = cji −
m∑

k=1

pkAk,ji = 0

for i = 1, 2, . . . , n.



The Extended Simplex Tableau (continued)

Also pTb = C . It follows that if x ∈ Rn satisfies Ax = b then

cTx = pTAx + qTx = pTb + qTx = C + qTx.

Thus if qT = cT − pTA then the vector q satisfies the properties
specified above.



The Extended Simplex Tableau (continued)

We next show that

(pTA)j =
m∑
i=1

cji ti ,j

for j = 1, 2, . . . , n.

Now

ti ,j =
m∑

k=1

ri ,kAk,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. (This is a consequence of
the identities

a(j) =
m∑

k=1

Ak,je
(k) =

m∑
i=1

m∑
k=1

ri ,kAk,ja
(ji ),

as noted earlier.)



The Extended Simplex Tableau (continued)

Also the definition of pk ensures that

pk =
m∑
i=1

cji ri ,k

for k = 1, 2, . . . ,m. These results ensure that

m∑
i=1

cji ti ,j =
m∑
i=1

m∑
k=1

cji ri ,kAk,j =
m∑

k=1

pkAk,j = (pTA)j .

It follows that

−qj =
m∑

k=1

pkAk,j − cj =
m∑
i=1

cji ti ,k − cj

for j = 1, 2, . . . , n.



The Extended Simplex Tableau (continued)

The extended simplex tableau associated with the basis B is
obtained by entering the values of the quantities −qj (for
j = 1, 2, . . . , n), C and pk (for k = 1, 2, . . . ,m) into the bottom
row to complete the tableau described previously. The extended
simplex tableau has the following structure:—

a(1) a(2) · · · a(n) b e(1) e(2) · · · e(m)

a(j1) t1,1 t1,2 · · · t1,n s1 r1,1 r1,2 · · · r1,m
a(j2) t2,1 t2,2 · · · t2,n s2 r2,1 r2,2 · · · r2,m

...
...

...
. . .

...
...

...
...

. . .
...

a(jm) tm,1 tm,2 · · · tm,n sm rm,1 rm,2 · · · rm,m

−q1 −q2 · · · −qn C p1 p2 · · · pm



Simplex Tableau Example (continued)

The extended simplex tableau can be represented in block form as
follows:—

a(1) · · · a(n) b e(1) · · · e(m)

a(j1)

... M−1B A M−1B b M−1B

a(jm)

pTA− cT pTb pT



Simplex Tableau Example (continued)

Let cB denote the m-dimensional vector defined so that

cTB =
(
cj1 cj2 · · · cjm

)
.

The identities we have verified ensure that the extended simplex
tableau can therefore also be represented in block form as
follows:—

a(1) · · · a(n) b e(1) · · · e(m)

a(j1)

... M−1B A M−1B b M−1B

a(jm)

cTBM
−1
B A− cT cTBM

−1
B b cTBM

−1
B


