
MA3484 Methods of Mathematical
Economics

School of Mathematics, Trinity College
Hilary Term 2015

Lecture 14 (February 12, 2015)

David R. Wilkins



Dual Spaces

Dual Spaces

Definition
Let V be a real vector space. A linear functional ϕ : V → R on V
is a linear transformation from the vector space V to the field R of
real numbers.

Given linear functionals ϕ : V → R and ψ : V → R on a real vector
space V , and given any real number λ, we define ϕ+ ψ and λϕ to
be the linear functionals on V defined such that
(ϕ+ ψ)(v) = ϕ(v) + ψ(v) and (λϕ)(v) = λϕ(v) for all v ∈ V .

The set V ∗ of linear functionals on a real vector space V is itself a
real vector space with respect to the algebraic operations of
addition and multiplication-by-scalars defined above.



Dual Spaces (continued)

Definition
Let V be a real vector space. The dual space V ∗ of V is the
vector space whose elements are the linear functionals on the
vector space V .



Dual Spaces (continued)

Now suppose that the real vector space V is finite-dimensional.
Let u1,u2, . . . ,un be a basis of V , where n = dimV . Given any
v ∈ V there exist uniquely-determined real numbers λ1, λ2, . . . , λn

such that v =
n∑

j=1
λjuj . It follows that there are well-defined

functions ε1, ε2, . . . , εn from V to the field R defined such that

εi

 n∑
j=1

λjuj

 = λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn. These
functions are linear transformations, and are thus linear functionals
on V .



Dual Spaces (continued)

Lemma

Lemma LA-13 Let V be a finite-dimensional real vector space,
let u1,u2, . . . ,un be a basis of V , and let ε1, ε2, . . . , εn be the
linear functionals on V defined such that

εi

 n∑
j=1

λjuj

 = λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn. Then
ε1, ε2, . . . , εn constitute a basis of the dual space V ∗ of V .
Moreover

ϕ =
n∑

i=1

ϕ(ui)εi

for all ϕ ∈ V ∗.



Dual Spaces (continued)

Proof
Let µ1, µ2, . . . , µn be real numbers with the property that
n∑

i=1
µiεi = 0V ∗ . Then

0 =

(
n∑

i=1

µiεi

)
(uj) =

n∑
i=1

µiεi (uj) = µj

for j = 1, 2, . . . , n. Thus the linear functionals ε1, ε2, . . . , εn on V
are linearly independent elements of the dual space V ∗.



Dual Spaces (continued)

Now let ϕ : V → R be a linear functional on V , and let µi = ϕ(ui )
for i = 1, 2, . . . , n. Now

εi (uj) =

{
1 if i = j ;
0 if i 6= j .

It follows that(
n∑

i=1

µiεi

) n∑
j=1

λjuj

 =
n∑

i=1

n∑
j=1

µiλjεi (uj) =
n∑

j=1

µjλj

=
n∑

j=1

λjϕ(uj) = ϕ

 n∑
j=1

λjuj


for all real numbers λ1, λ2, . . . , λn.



Dual Spaces (continued)

It follows that

ϕ =
n∑

i=1

µiεi =
n∑

i=1

ϕ(ui )εi .

We conclude from this that every linear functional on V can be
expressed as a linear combination of ε1, ε2, . . . , εn. Thus these
linear functionals span V ∗. We have previously shown that they
are linearly independent. It follows that they constitute a basis of

V ∗. Moreover we have verified that ϕ =
n∑

i=1
ϕ(ui )εi for all ϕ ∈ V ∗,

as required.



Dual Spaces (continued)

Definition
Let V be a finite-dimensional real vector space, let u1,u2, . . . ,un

be a basis of V . The corresponding dual basis of the dual space V ∗

of V consists of the linear functionals ε1, ε2, . . . , εn on V , where

εi

 n∑
j=1

λjuj

 = λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn.



Dual Spaces (continued)

Corollary

Corollary LA-14 Let V be a finite-dimensional real vector
space, and let V ∗ be the dual space of V . Then dimV ∗ = dimV .

Proof
We have shown that any basis of V gives rise to a dual basis of
V ∗, where the dual basis of V has the same number of elements as
the basis of V to which it corresponds. The result follows
immediately from the fact that the dimension of a
finite-dimensional real vector space is the number of elements in
any basis of that vector space.



Dual Spaces (continued)

Let V be a real-vector space, and let V ∗ be the dual space of V .
Then V ∗ is itself a real vector space, and therefore has a dual
space V ∗∗. Now each element v of V determines a corresponding
linear functional Ev : V ∗ → R on V ∗, where Ev(ϕ) = ϕ(v) for all
ϕ ∈ V ∗. It follows that there exists a function ι : V → V ∗∗ defined
so that ι(v) = Ev for all v ∈ V . Then ι(v)(ϕ) = ϕ(v) for all v ∈ V
and ϕ ∈ V ∗.



Dual Spaces (continued)

Now

ι(v + w)(ϕ) = ϕ(v + w) = ϕ(v) + ϕ(w) = (ι(v) + ι(w))(ϕ)

and
ι(λv)(ϕ) = ϕ(λv) = λϕ(v) = (λι(v))(ϕ)

for all v,w ∈ V and ϕ ∈ V ∗ and for all real numbers λ. It follows
that ι(v + w) = ι(v) + ι(w) and ι(λv) = λι(v) for all v,w ∈ V and
for all real numbers λ. Thus ι : V → V ∗∗ is a linear transformation.



Dual Spaces (continued)

Proposition

Proposition LA-15 Let V be a finite-dimensional real vector
space, and let ι : V → V ∗∗ be the linear transformation defined
such that ι(v)(ϕ) = ϕ(v) for all v ∈ V and ϕ ∈ V ∗. Then
ι : V → V ∗∗ is an isomorphism of real vector spaces.

Proof
Let u1,u2, . . . ,un be a basis of V , let ε1, ε2, . . . , εn be the dual
basis of V ∗, where

εi (uj) =

{
1 if i = j ,
0 if i 6= j ,

and let v ∈ V . Then there exist real numbers λ1, λ2, . . . , λn such

that v =
n∑

i=1
λiui .



Dual Spaces (continued)

Suppose that ι(v) = 0V ∗∗ . Then ϕ(v) = Ev(ϕ) = 0 for all ϕ ∈ V ∗.
In particular λi = εi (v) = 0 for i = 1, 2, . . . , n, and therefore
v = 0V . We conclude that ι : V → V ∗∗ is injective.

Now let F : V ∗ → R be a linear functional on V ∗, let λi = F (εi )

for i = 1, 2, . . . , n, let v =
n∑

i=1
λiui , and let ϕ ∈ V ∗. Then

ϕ =
n∑

i=1
ϕ(ui )εi (see Lemma LA-13), and therefore

ι(v)(ϕ) = ϕ(v) =
n∑

i=1

λiϕ(ui ) =
n∑

i=1

F (εi )ϕ(ui )

= F

(
n∑

i=1

ϕ(ui )εi

)
= F (ϕ).



Dual Spaces (continued)

Thus ι(v) = F . We conclude that the linear transformation
ι : V → V ∗∗ is surjective. We have previously shown that this linear
transformation is injective. There ι : V → V ∗∗ is an isomorphism
between the real vector spaces V and V ∗∗ as required.

The following corollary is an immediate consequence of
Proposition LA-15.

Corollary

Corollary LA-16 Let V be a finite-dimensional real vector
space, and let V ∗ be the dual space of V . Then, given any linear
functional F : V ∗ → R, there exists some v ∈ V such that
F (ϕ) = ϕ(v) for all ϕ ∈ V ∗.



Dual Spaces (continued)

Definition
Let V and W be real vector spaces, and let θ : V →W be a linear
transformation from V to W . The adjoint θ∗ : W ∗ → V ∗ of the
linear transformation θ : V →W is the linear transformation from
the dual space W ∗ of W to the dual space V ∗ of V defined such
that (θ∗η)(v) = η(θ(v)) for all v ∈ V and η ∈W ∗.



Linear Transformations and Matrices

Linear Transformations and Matrices

Let V and V ′ be finite-dimensional vector spaces, let
u1,u2, . . . ,un be a basis of V , and let u′1,u

′
2, . . . ,u

′
n′ be a basis of

V ′. Then every linear transformation θ : V → V ′ can be
represented with respect to these bases by an n′ × n matrix, where
n = dimV and n′ = dimV ′. The basic formulae are presented in
the following proposition.



Linear Transformations and Matrices (continued)

Proposition

Proposition LA-17 Let V and V ′ be finite-dimensional vector
spaces, and let θ : V → V ′ be a linear transformation from V to
V ′. Let u1,u2, . . . ,un be a basis of V , and let u′1,u

′
2, . . . ,u

′
n′ be a

basis of V ′. Let A be the n′ × n matrix whose coefficients (A)k,j

are determined such that θ(uj) =
m∑

k=1

(A)k,ju
′
k for k = 1, 2, . . . , n′.

Then

θ

 n∑
j=1

λjuj

 =
m∑

k=1

µku′k ,

where µk =
n∑

j=1
(A)k,jλj for k = 1, 2, . . . , n′.



Linear Transformations and Matrices (continued)

Proof
This result is a straightforward calculation, using the linearity of
θ : V → V ′. Indeed

θ

 n∑
j=1

λjuj

 =
n∑

j=1

λjθ(uj)

=
n∑

j=1

n′∑
k=1

(A)k,jλju
′
k .

It follows that θ

(
n∑

j=1
λjuj

)
=

n′∑
k=1

µku′k , where µk =
n∑

j=1
(A)k,jλj

for k = 1, 2, . . . , n′, as required.



Linear Transformations and Matrices (continued)

Corollary

Corollary LA-18 Let V , V ′ and V ′′ be finite-dimensional vector
spaces, and let θ : V → V ′ be a linear transformation from V to
V ′ and let ψ : V ′ → V ′′ be a linear transformation from V ′ to V ′′.
Let A and B be the matrices representing the linear
transformations θ and ψ respectively with respect to chosen bases
of V , V ′ and V ′′. Then the matrix representing the composition
ψ ◦ θ of the linear transformations θ and ψ is the product BA of
the matrices representing those linear transformations.



Linear Transformations and Matrices (continued)

Proof
Let u1,u2, . . . ,un be a basis of V , let u′1,u

′
2, . . . ,u

′
n′ be a basis of

V ′, and let u′′1,u
′′
2, . . . ,u

′′
n′′ be a basis of V ′′. Let A and B be the

matrices whose coefficients (A)k,j and (B)i ,k are determined such

that θ(uj) =
n′∑

k=1

(A)k,ju
′
k for k = 1, 2, . . . , n′ and

ψ(u′k) =
p∑

i=1
(B)i ,ku′′i . Then

ψ

θ
 n∑

j=1

λjuj

 =

p∑
i=1

νiu
′′
i ,

where



Linear Transformations and Matrices (continued)

νi =
n∑

j=1

(
n′∑

k=1

(B)l ,k(A)k,j

)
λj

for l = 1, 2, . . . , p. Thus the composition ψ ◦ θ of the linear
transformations θ : V → V ′ and ψ : V ′ → V ′′ is represented by the
product BA of the matrix B representing ψ and the matrix A
representing A with respect to the chosen bases of V , V ′ and V ′′,
as required.



Linear Transformations and Matrices (continued)

Lemma

Lemma LA-19 Let V and W be finite-dimensional real vector
spaces, and let θ : V →W be a linear transformation from V to
W . Let u1,u2, . . . ,un be a basis of V , let ε1, ε2, . . . , εn be the
corresponding dual basis of the dual space V ∗ of V , let
u′1,u

′
2, . . . ,u

′
n′ be a basis of W , and let ε′1, ε

′
2, . . . , ε

′
n be the

corresponding dual basis of the dual space W ∗ of W . Then the
matrix representing the adjoint θ∗ : W ∗ → V ∗ of θ : V →W with
respect to the dual bases of W ∗ and V ∗ is the transpose of the
matrix representing θ : V →W with respect to the chosen bases of
V and W .



Linear Transformations and Matrices (continued)

Proof
Let A be the n′ × n matrix representing the linear transformation
θ : V →W with respect to the chosen bases. Then

ϕ(uj) =
n′∑
i=1

(A)i ,ju
′
i for j = 1, 2, . . . , n. Let v ∈ V and η ∈W ∗, let

v =
n∑

i=1
λivi , let η =

n′∑
j=1

ciε
′
i , where λ1, λ2, . . . , λn and

c1, c2, . . . , cn′ are real numbers. Then



Linear Transformations and Matrices (continued)

(θ∗η)(v) = η(θ(v)) = η

 n∑
j=1

λjθ(uj)


=

n∑
j=1

λjη((θ(uj)) =
n∑

j=1

λjη

(
n′∑
i=1

(A)i ,ju
′
i

)

=
n′∑
i=1

n∑
j=1

(A)i ,jλjη(u′i ) =
n′∑
i=1

n∑
j=1

(A)i ,jλjci .



Linear Transformations and Matrices (continued)

Thus if η =
n′∑
j=1

ciε
′
i , where c1, c2, . . . , cn are real numbers, then

θ∗η =
∑n

i=1 hjεj , where where

hj =
n′∑
i=1

(A)i ,jci =
n′∑
i=1

(AT )j ,ici

for j = 1, 2, . . . , n, and where AT is the transpose of the matrix A,
defined so that (AT )j ,i = Ai ,j for i = 1, 2, . . . , n′ and
j = 1, 2, . . . , n. It follows from this that the matrix that represents
the adjoint θ∗ with respect to the dual bases on W ∗ and V ∗ is the
transpose of the matrix A that represents θ with respect to the
chosen bases on V and W , as required.


