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The Transportation Problem: Basic Framework (continued)

We now discuss basic feasible solutions of the Transportation
Problem with supply vector s, demand vector d and cost matrix C .

Let X be a feasible solution of this problem. Then the components
(X )i ,j of X are all non-negative, ρ(X ) = s and σ(X ) = d, where
the ith component of ρ(X ) is the sum of the coefficients occuring
in the ith row of the matrix X and the jth component of σ(X ) is
the sum of the coefficients occuring in the jth column of X .
Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, and let K be the
subset of I × J defined such that

K = {(i , j) ∈ I × J : (X )i ,j > 0}.



The Transportation Problem: Basic Framework (continued)

Each element (i , j) of K determines a corresponding element β(i ,j)

of W defined such that

β(i ,j) = (b(i),b(j)),

where b(i) denotes the vector in Rm whose ith component is equal
to 1 and whose other components are zero, and where b(j) denotes
the vector in Rn whose jth component is equal to 1 and whose
other components are zero.

We now prove that if K and L are subsets of I × J, if the elements
β(i ,j) of W for which (i , j) ∈ K are linearly independent, and if the
elements β(i ,j) for which (i , j) ∈ L span the vector space W , then
there exists a basis B of the Transportation Problem satisfying
K ⊂ B ⊂ L.



The Transportation Problem: Basic Framework (continued)

Proposition

Proposition TP-01 Let m and n be positive integers, and let

W =

{
(s,d) ∈ Rm × Rn :

m∑
i=1

(s)i =
n∑

j=1
(d)j

}
.

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . ,m}, and, for each
(i , j) ∈ I × J, let β(i ,j) = (b(i),b(j)) where b(i) is the vector in Rm

whose ith component is equal to 1 and whose other components
are zero, and b(j) is the vector in Rn whose jth component is equal
to 1 and whose other components are zero. Let K and L be
subsets of I × J satisfying K ⊂ L. Suppose that the elements β(i ,j)

of W for which (i , j) ∈ K are linearly independent, and that the
elements β(i ,j) for which (i , j) ∈ L span the vector space W . Then
there exists a basis B of the Transportation Problem satisfying
K ⊂ B ⊂ L.



The Transportation Problem: Basic Framework (continued)

Proof
Let K0 = K , and let W0 be the subspace of W spanned by the
elements β(i ,j) for which (i , j) ∈ K0. Suppose that W0 is a proper
subspace of W . Then there exists (i1, j1) ∈ L such that
β(i1,j1) 6∈W0. Let K1 = K0 ∪ {(i1, j1)}. Then the elements β(i ,j) for
which (i , j) ∈ K1 are also linearly independent, and they span a
subspace W1 of W for which dimW1 > dimW0.
Successive iterations of this process will eventually generate a
subset B of L for which the elements of the set

{θ(E (i ,j)) : (i , j) ∈ B}

are linearly independent and also span W . Then B is a basis for
the Transportation Problem, and K ⊂ B ⊂ L, as required.



The Transportation Problem: Basic Framework (continued)

The feasible solution X is said to be basic if the elements β(i ,j) of
W determined by the ordered pairs (i , j) belonging to the set K
are linearly independent. It follows from Proposition TP-01 that
this is the case if and only if K ⊂ B for some basis B for the
Transportation Problem.

Given any basis B contained in I × J, there can exist at most one
basic feasible solution X that satisfies (X )i ,j = 0 whenever
(i , j) 6∈ B. Indeed the linear transformation θB : MB →W that
sends X ∈ MB to (ρ(X ), σ(X )) is an isomorphism, and
θB(X ) = (s,d), and therefore if X is a feasible solution that
satisfies (X )i ,j = 0 whenever (i , j) 6∈ B, then X = θ−1

B (s,d).



The Transportation Problem: Basic Framework (continued)

The m × n matrix θ−1
B (s,d) can be computed for any basis B

contained in I × J. However this matrix will often have negative
coefficients, in which case it does not represent a feasible solution.
The Transportation Problem determined by the supply vector,
demand vector and cost matrix has only finitely many basic
feasible solutions, because there are only finitely many bases for
the problem, and each basis can determine at most one basic
feasible solution. Nevertheless the number of basic feasible
solutions may be quite large.



The Transportation Problem: Basic Framework (continued)

But it can be shown that the Transportation Problem always has a
basic optimal solution. It can be found using an algorithm that
implements the Simplex Method devised by George B. Dantzig in
the 1940s. This algorithm involves passing from one basis to
another, lowering the cost at each stage, until one eventually finds
a basis that can be shown to determine a basic optimal solution of
the Transportation Problem.



The Transportation Problem: A Numerical Example

The Numerical Example Revisited
We return to the discussion of the solution of the particular
example of the Transportation Problem with 4 suppliers and 5
recipients, where the supply and demand vectors and the cost
matrix are as follows:—

sT = (9, 11, 4, 5), dT = (6, 7, 5, 3, 8).

C =


2 4 3 7 5
4 8 5 1 8
5 9 4 4 2
7 2 5 5 3

 .



The Transportation Problem: A Numerical Example (continued)

We found a basic feasible solution to this problem using the
Northwest Corner Method. The values xi ,j that constitute this
basic feasible solution are as set out in the following tableau:—

xi ,j 1 2 3 4 5 si
1 6 3 0 0 0 9
2 0 4 5 2 0 11
3 0 0 0 1 3 4
4 0 0 0 0 5 5

dj 6 7 5 3 8 29

This basic feasible solution is associated with the basis B, where

B = {(1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}.



The Transportation Problem: A Numerical Example (continued)

The rows of the tableau are labelled on the left by the indices that
represent the suppliers. The columns of the tableau are labelled on
the top by the indices that represent the recipients. The basic
feasible solution is represented as an array of real numbers xi ,j ,
where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 5. These real numbers must be

non-negative and must satisfy
5∑

j=1
xi ,j = si for i = 1, 2, 3, 4 and

4∑
i=1

xi ,j = dj for j = 1, 2, 3, 4, 5, where

s1 = 9, s2 = 11, s3 = 4, s4 = 5,

d1 = 6, d2 = 7, d3 = 5, d4 = 3, d5 = 8.



The Transportation Problem: A Numerical Example (continued)

The values of s1, s2, s3 and s4 associated with the rows of the
tableau are listed to the right of the tableau, and the values of d1,
d2, d3, d4 and d5 associated with the columns of the tableau are
listed at the bottom of the tableau. The rows of the array
presented in the body of the tableau must sum up to the values
listed to the right, and the columns of this array must sum up to
the values listed along the bottom.

It should be noted that the values xi ,j presented in the table satisfy
xi ,j = 0 when (i , j) 6∈ B. This ensures that the feasible solution
(xi ,j) is a basic feasible solution associated with the basis B.



The Transportation Problem: A Numerical Example (continued)

The vector space R4 has basis b(1),b(2),b(3),b(4), where

b(1) = (1, 0, 0, 0), b(2) = (0, 1, 0, 0),

b(3) = (0, 0, 1, 0), b(4) = (0, 0, 0, 1).

Similarly the vector space R5 has basis b(1),b(2),b(3),b(4),b(5),
where

b(1) = (1, 0, 0, 0, 0), b(2) = (0, 1, 0, 0, 0),

b(3) = (0, 0, 1, 0, 0), b(4) = (0, 0, 0, 1, 0),

b(5) = (0, 0, 0, 0, 1).



The Transportation Problem: A Numerical Example (continued)

Let W be the 8-dimensional real vector space defined such that

W =

(s,d) ∈ R4 × R5 :
4∑

i=1

(s)i =
5∑

j=1

(d)j

 .

Then each ordered pair (i , j) with 1 ≤ i ≤ 4 and 1 ≤ j ≤ 5
determines a corresponding element β(i ,j) of W , where
β(i ,j) = (b(i),b(j)).

Let B be a subset of the set of ordered pairs (i , j) of integers for
which 1 ≤ i ≤ 4 and 1 ≤ j ≤ 5. The set B is said to be a basis for
the Transportation Problem (with 4 suppliers and 5 recipients) if
the elements β(i ,j) of W for which (i , j) ∈ B constitute a basis of
the real vector space W .



The Transportation Problem: A Numerical Example (continued)

In the particular case of the Transportation Problem in which

s1 = 9, s2 = 11, s3 = 4, s4 = 5,

d1 = 6, d2 = 7, d3 = 5, d4 = 3, d5 = 8,

the Northwest Corner Method determines a basis B for the
Transportation Problem, where

B = {(1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}.



The Transportation Problem: A Numerical Example (continued)

The basis vectors in W determined by the ordered pairs

(1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)

belonging to the the basis B are as follows:—

β(1,1) = ((1, 0, 0, 0), (1, 0, 0, 0, 0)),

β(1,2) = ((1, 0, 0, 0), (0, 1, 0, 0, 0)),

β(2,2) = ((0, 1, 0, 0), (0, 1, 0, 0, 0)),

β(2,3) = ((0, 1, 0, 0), (0, 0, 1, 0, 0)),

β(2,4) = ((0, 1, 0, 0), (0, 0, 0, 1, 0)),

β(3,4) = ((0, 0, 1, 0), (0, 0, 0, 1, 0)),

β(3,5) = ((0, 0, 1, 0), (0, 0, 0, 0, 1)),

β(4,5) = ((0, 0, 0, 1), (0, 0, 0, 0, 1)).



The Transportation Problem: A Numerical Example (continued)

Previous calculations have established that if
5∑

j=1
xi ,j = si for

i = 1, 2, 3, 4,
4∑

i=1
xi ,j = dj for j = 1, 2, 3, 4, 5, and if xi ,j = 0 when

(i , j) 6∈ B, then

x1,1 = d1,

x1,2 = s1 − d1,

x2,2 = d2 − s1 + d1,

x2,3 = d3,

x2,4 = s2 − d3 − d2 + s1 − d1,

x3,4 = d4 − s2 + d3 + d2 − s1 + d1,

x3,5 = s3 − d4 + s2 − d3 − d2 + s1 − d1,

x4,5 = d5 − s3 + d4 − s2 + d3 + d2 − s1 + d1.



The Transportation Problem: A Numerical Example (continued)

It follows from this that

((s1, s2, s3, s4), (d1, d2, d3, d4, d5))

= d1β
(1,1) + (s1 − d1)β(1,2)

+ (d2 − s1 + d1)β(2,2) + d3β
(2,3)

+ (s2 − d3 − d2 + s1 − d1))β(2,4)

+ (d4 − s2 + d3 + d2 − s1 + d1)β(3,4)

+ (s3 − d4 + s2 − d3 − d2 + s1 − d1)β(3,5)

+ (d5 − s3 + d4 − s2 + d3 + d2 − s1 + d1)β(4,5)

for all ((s1, s2, s3, s4), (d1, d2, d3, d4, d5)) ∈W .



The Transportation Problem: A Numerical Example (continued)

We can then express the elements of β(i ,j) of W corresponding to
ordered pairs (i , j) not belonging to B as linear combinations of
elements of the basis

β(1,1), β(1,2), β(2,2), β(2,3), β(2,4), β(3,4), β(3,5), β(4,5)

of W . For example, to determine β(3,1) we set s3 = 1, si = 0 for
i 6= 3, d1 = 1 and dj = 0 for j 6= 1. We then find that

β(3,1) = β(1,1) − β(1,2) + β(2,2) − β(2,4) + β(3,4).

Similarly to determine β(4,2) we set s4 = 1 si = 0 for i 6= 4, d2 = 1,
and dj = 0 for j 6= 2. We then find that

β(4,2) = β(2,2) − β(2,4) + β(3,4) − β(3,5) + β(4,5).



The Transportation Problem: A Numerical Example (continued)

These formulae determining β(i ,j) in terms of the elements of the
basis of W can readily be checked. Indeed β(i ,j) = (b(i),b(j)) for
i = 1, 2, 3, 4 and j = 1, 2, 3, 4, 5. It follows that

β(1,1) − β(1,2) + β(2,2) − β(2,4) + β(3,4)

= (b(1),b(1))− (b(1),b(2)) + (b(2),b(2))

− (b(2),b(4)) + (b(3),b(4))

= (b(1) − b(1) + b(2) − b(2) + b(3),

b(1) − b(2) + b(2) − b(4) + b(4))

= (b(3),b(1))

= β(3,1).


