
MA3484 Methods of Mathematical
Economics

School of Mathematics, Trinity College
Hilary Term 2015

Lecture 6 (January 23, 2015)

David R. Wilkins



The Transportation Problem: Basic Framework

The Transportation Problem in the case where total supply equals
total demand can be presented as follows:

determine xi ,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n

so as minimize
∑
i ,j

ci ,jxi ,j

subject to the constraints

xi ,j ≥ 0 for all i and j ,

n∑
j=1

xi ,j = si and
m∑
i=1

xi ,j = dj , where

si ≥ 0 and dj ≥ 0 for all i and j , and

m∑
i=1

si =
n∑

j=1
dj .



The Transportation Problem: Basic Framework (continued)

We commence the analysis of the Transportation Problem by
studying the interrelationships between the various real vector
spaces and linear transformations that arise naturally from the
statement of the Transportation Problem.

The quantities xi ,j to be determined are coefficients of an m × n
matrix X . This matrix X is represented as an element of the real
vector space Mm,n(R) that consists of all m × n matrices with real
coefficients.



The Transportation Problem: Basic Framework (continued)

The non-negative quantities s1, s2, . . . , sm that specify the sums of
the coefficients in the rows of the unknown matrix X are the
components of a supply vector s belonging to the m-dimensional
real vector space Rm.

Similarly the non-negative quantities d1, d2, . . . , dn that specify the
sums of the coefficients in the columns of the unknown matrix X
are the components of a demand vector d belonging to the
n-dimensional space Rn.



The Transportation Problem: Basic Framework (continued)

The requirement that total supply equals total demand translates

into a requirement that the sum
m∑
i=1

(s)i of the components of the

supply vector s must equal the sum
n∑

j=1
(d)j of the components of

the demand vector d.

Accordingly we introduce a real vector space W consisting of all
ordered pairs (s,d) for which s ∈ Rm, d ∈ Rn and
m∑
i=1

(s)i =
n∑

j=1
(d)j .



The Transportation Problem: Basic Framework (continued)

It is straightforward to verify that the dimension of the real vector
space W is m when n = 1. Suppose that n > 1. Given real
numbers s1, s2, . . . , sn and d1, d2, . . . , dn−1, there exists exactly one
element (s,d) of W that satisfies (s)i = si for i = 1, 2, . . . ,m and
(d)j = dj for j = 1, 2, . . . , n− 1. The remaining component (d)n of
the n-dimensional vector d is then determined by the equation

(d)n =
m∑
i=1

si −
m−1∑
j=1

dj .

It follows from this that dimW = m + n − 1.



The Transportation Problem: Basic Framework (continued)

The supply and demand constraints on the sums of the rows and
columns of the unknown matrix X can then be specified by means
of linear transformations

ρ : Mm,n(R)→ Rm

and
σ : Mm,n(R)→ Rn,

where, for each X ∈ Mm,n(R), the components of the
m-dimensional vector ρ(X ) are the sums of the coefficients along
each row of X , and the components of the n-dimensional vector
σ(X ) are the sums of the coefficients along each column of X .



The Transportation Problem: Basic Framework (continued)

Accordingly, for each X ∈ Mm,n(R), the ith component ρ(X )i of
the vector ρ(X ) is determined by the equation

ρ(X )i =
n∑

j=1

(X )i ,j for i = 1, 2, . . . ,m,

for i = 1, 2, . . . ,m, and the jth component σ(X )j of σ(X ) is
determined by the equation

σ(X )j =
m∑
i=1

(X )i ,j for j = 1, 2, . . . , n.

for j = 1, 2, . . . , n.



The Transportation Problem: Basic Framework (continued)

The costs ci ,j are the components of an m × n matrix C , the cost
matrix, that in turn determines a linear functional

f : Mm,n(R)→ R

on the vector space Mm,n(R) defined such that

f (X ) = trace(CTX ) =
m∑
i=1

n∑
j=1

(C )i ,jXi ,j

for all X ∈ Mm,n(R).



The Transportation Problem: Basic Framework (continued)

We now discuss the definitions of feasible solutions and optimal
solutions of the Transportation Problem in the case where total
supply equals total demand.

An instance of the problem is specified by specifying a supply
vector s, demand vector d and cost matrix C . The components of
s and d are required to be non-negative real numbers. Moreover
(s,d) ∈W , where W is the real vector space consisting of all
ordered pairs (s,d) with s ∈ Rm and d ∈ Rn for which the sum of
the components of the vector s equals the sum of the components
of the vector d.



The Transportation Problem: Basic Framework (continued)

A feasible solution of the Transportation Problem with given
supply vector s, demand vector d and cost matrix C is represented
by an m × n matrix X satisfying the following three conditions:—

The coefficients of X are all non-negative;

ρ(X ) = s;

σ(X ) = d.

The cost functional f : Mm,n(R)→ R is defined so that
f (X ) = trace(CTX ) for all X ∈ Mm,n(R). A feasible solution X of
this Transportation Problem is said to be optimal if it minimizes
f (X ) amongst all feasible solutions of the problem. Thus a feasible
solution X is optimal if and only if f (X ) ≤ f (X ) for all feasible
solutions X of the problem.



The Transportation Problem: Basic Framework (continued)

Let X ∈ Mm,n(R). Then

m∑
i=1

ρ(X )i =
m∑
i=1

n∑
j=1

(X )i ,j =
n∑

j=1

σ(X )j .

It follows that (ρ(X ), σ(X )) ∈W for all X ∈ Mm,n(R). Thus the
linear transformations ρ : Mm,n(R)→ Rm and σ : Mm,n(R)→ Rn

together determine a linear transformation

θ : Mm,n(R)→W ,

where θ(X ) = (ρ(X ), σ(X )) for all X ∈ Mm,n(R).



The Transportation Problem: Basic Framework (continued)

An m × n matrix X then represents a feasible solution of the
transportation problem with supply vector s and demand vector d
if and only if the following two conditions are satisfied:—

The coefficients of X are all non-negative;

θ(X ) = (s,d).



The Transportation Problem: Basic Framework (continued)

The real vector space Mm,n(R) consisting of all m × n matrices
with real coefficients has a natural basis consisting of the matrices
E (i ,j) for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, where, for each i and
j , the coefficient of the matrix E (i ,j) in the ith row and jth column
has the value 1, and all other coefficients are zero. Indeed

X =
m∑
i=1

n∑
j=1

(X )i ,jE
(i ,j)

for all X ∈ Mm,n(R).



The Transportation Problem: Basic Framework (continued)

Now ρ(E (i ,j)) = b(i) and σ(E (i ,j)) = b(j) for i = 1, 2, . . . ,m and
j = 1, 2, . . . , n, where b(i) denotes the vector in Rm whose ith
component is equal to 1 and whose other components are zero,
and b(j) denotes the vector in Rn whose jth component is equal
to 1 and whose other components are zero. It follows that

θ(E (i ,j)) = β(i ,j)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, where

β(i ,j) = (b(i),b(j)).



The Transportation Problem: Basic Framework (continued)

Let
I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}.

Then I × J is the set of ordered pairs (i , j) of indices where i and j
are integers satisfying 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Each subset K of I × J determines corresponding vector subspace
MK of Mm,n(R) where

MK = {X ∈ Mm,n(R) : (X )i ,j = 0 when (i , j) 6∈ K}.



The Transportation Problem: Basic Framework (continued)

The real vector space MK has a basis consisting of the elements
E (i ,j) for (i , j) ∈ K , where E (i ,j) denotes the matrix whose
coefficient in the ith row and jth column is equal to 1 and whose
other coefficients are zero.

It follows that dimMK = |K |, where |K | denotes the number of
elements in the set K .

For each subset K of I × J, let θK : MK →W denote the
restriction of the linear transformation θ : Mm,n(R)→W to MK .
Then θK (E (i ,j)) = β(i ,j) for all (i , j) ∈ K .



The Transportation Problem: Basic Framework (continued)

It follows from basic linear algebra that

θK : MK →W

is injective if and only if the elements β(i ,j) of W determined by the
ordered pairs (i , j) belonging to the set K are linearly independent.

Also
θK : MK →W

is surjective if and only if the elements β(i ,j) of W determined by
the ordered pairs (i , j) belonging to the set K span the vector
space W .



The Transportation Problem: Basic Framework (continued)

These results ensure that

θK : MK →W

is an isomorphism if and only if the elements β(i ,j) of W
determined by the ordered pairs (i , j) belonging to the set K
constitute a basis for the real vector space W .



The Transportation Problem: Basic Framework (continued)

Now dimMK = |K | and dimW = m + n − 1.

It follows that if θK : MK →W is injective then dimMK ≤ dimW ,
and therefore |K | ≤ m + n − 1.

If θK : MK →W is surjective then dimMK ≥ dimW , and
therefore |K | ≥ m + n − 1.

If θK : MK →W is an isomorphism then |K | = m + n − 1.



The Transportation Problem: Basic Framework (continued)

We say that a subset B of I × J is a basis for the Transportation
Problem if the elements β(i ,j) determined by the ordered pairs (i , j)
belonging to the set B constitute a basis for the real vector
space W .

The results described previously ensure that a subset B of I × J is
a basis for the Transportation Problem if and only if the associated
linear transformation θB : MB →W is an isomorphism.

Thus a subset B of I × J is a basis for the Transportation Problem
if and only if, given any element (s,d) of W , there exists a unique
m × n matrix X for which ρ(X ) = s and σ(X ) = d.


