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The Transportation Problem: Statement of the Problem

The Transportation Problem in the case where total supply equals
total demand can be presented as follows:

determine xi ,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n

so as minimize
∑
i ,j

ci ,jxi ,j

subject to the constraints

xi ,j ≥ 0 for all i and j ,

n∑
j=1

xi ,j = si and
m∑
i=1

xi ,j = dj , where

si ≥ 0 and dj ≥ 0 for all i and j , and

m∑
i=1

si =
n∑

j=1
dj .



The Transportation Problem: Subspaces and Bases

Let
I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}.

Then I × J is the set of ordered pairs (i , j) of indices where i and j
are integers satisfying 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Let Mm,n(R) denote the real vector space that consists of all m× n
matrices with real coefficients, let K be a subset of I × J, and let

MK = {X ∈ Mm,n(R) : (X )i ,j = 0 when (i , j) 6∈ K}.

Then MK is a vector subspace of the space Mm,n(R).



The Transportation Problem: Row and Column Sums (continued)

The real vector space MK has a basis consisting of the elements
E (i ,j) for (i , j) ∈ K , where E (i ,j) denotes the matrix whose
coefficient in the ith row and jth column is equal to 1 and whose
other coefficients are zero.

It follows that dimMK = |K |, where |K | denotes the number of
elements in the set K .



The Transportation Problem: Row and Column Sums (continued)

Let
b(1),b(2), . . .b(m)

denote the standard basis of Rm where, for each integer i between
1 and m, b(i) is the vector in Rm whose ith component is equal to
1 and whose other components are zero. Similarly let

b(1),b(2), . . . ,b(n)

denote the standard basis of Rn where, for each integer j between
1 and n, b(j) is the vector in Rn whose jth component is equal to 1

and whose other components are zero. Then s =
m∑
i=1

(s)ib
(i) for all

s ∈ Rm, where, for each i , (s)i denotes the ith component of s,

and d =
n∑

j=1
(d)jb

(j), for all d ∈ Rn, where, for each j , (d)j denotes

the jth component of d.



The Transportation Problem: Row and Column Sums (continued)

We denote by W the real vector space consisting of all ordered

pairs (s,d) for which s ∈ Rm, d ∈ Rn and
m∑
i=1

(s)i =
n∑

j=1
(d)j .

Let s ∈ Rm and d ∈ Rn, and let si = (s)i for i = 1, 2, . . . ,m and
dj = (d)j for j = 1, 2, . . . , n. Then (s,d) ∈W if and only if

dn =
m∑
i=1

si −
n−1∑
j=1

dj .

It follows that, given any element w of W , there exist
uniquely-determined real numbers s1, s2, . . . , sm and
d1, d2, . . . , dn−1 such that

w =
m∑
i=1

si (bi ,bn) +
n−1∑
j=1

dj(0,bj − bn).



The Transportation Problem: Row and Column Sums (continued)

It follows that the real vector space W is of dimension m + n − 1,
and that W has a basis consisting of the elements (bi ,bn) for
i = 1, 2, . . . ,m, together with the elements (0,bj − bn) for
j = 1, 2, . . . , n − 1.



The Transportation Problem: Row and Column Sums (continued)

Given an m × n matrix X with real coefficients, let ρ(X ) denote
the m-dimensional vector whose ith component ρ(X )i is the sum
of the elements of the ith row of X , and let σ(X ) denote the
n-dimensional vector whose jth component is the sum of the
elements of the jth column of X . Then ρ : Mm,n(R)→ Rm and
σ : Mm,n(R)→ Rn are linear transformations. Moreover

ρ(X )i =
n∑

j=1

(X )i ,j for i = 1, 2, . . . ,m,

and

σ(X )j =
m∑
i=1

(X )i ,j for j = 1, 2, . . . , n.



The Transportation Problem: Row and Column Sums (continued)

The linear transformations ρ : Mm,n(R)→ Rm and
σ : Mm,n(R)→ Rn then satisfy

ρ(E (i ,j)) = b(i) and σ(E (i ,j)) = b(j)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, where E (i ,j) denotes the
m × n matrix whose coefficient in the ith row and jth column is
equal to 1 and whose other coefficients are zero, b(i) denotes the
vector in Rm whose ith component is equal to 1 and whose other
components are zero, and where b(j) denotes the vector in Rn

whose jth component is equal to 1 and whose other components
are zero.



The Transportation Problem: Row and Column Sums (continued)

Let θ : Mm,n(R)→W denote the linear transformation from the
space Mm,n(R) of m × n matrices with real coefficients to the
vector space W , defined such that θ(X ) = (ρ(X ), σ(X )) for all

X ∈ Mm,n(R), where ρ(X )i =
n∑

j=1
(X )i ,j for i = 1, 2, . . . ,m and

σ(X )j =
m∑
i=1

(X )i ,j for j = 1, 2, . . . , n.

Then
θ(E (i ,j)) = β(i ,j)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, where

β(i ,j) = (b(i),b(j)).



The Transportation Problem: Row and Column Sums (continued)

For each subset K of I × J, where

I = {1, 2, . . . ,m} and J = {1, 2, . . . , n},

the linear transformation θ : Mm,n(R)→W restricts to a linear
transformation θK : MK →W , where

MK = {X ∈ Mm,n(R) : (X )i ,j = 0 whenever (i , j) 6∈ K}.

The rank rank(θK ) of θK is the dimension of the image θK (MK ) of
θK , where

θK (MK ) = {θ(X ) : X ∈ MK}.

The nullity nullity(θK ) of θK is the dimension of the kernel ker θK
of θK , where

ker θK = {X ∈ MK : θK (X ) = (0, 0)}.



The Transportation Problem: Row and Column Sums (continued)

A basic theorem of linear algebra guarantees that the sum of the
rank and nullity of a linear transformation is equal to the
dimension of the domain of that transformation. Now the domain
of θK is MK , and this vector space is of dimension |K |, where |K |
denotes the number of elements in the finite set K . Therefore

rank(θK ) + nullity(θK ) = |K |.

Now θK (MK ) is a subspace of W , and therefore

rank(θK ) = dim θK (MK ) ≤ dimW = m + n − 1.

Thus rank(θK ) ≤ m + n − 1. Moreover rank(θK ) = m + n − 1 if
and only if θK : MK →W is surjective.



The Transportation Problem: Row and Column Sums (continued)

If θK : MK →W is injective then nullity(θK ) = 0, and therefore

|K | = rank(θK ) ≤ m + n − 1.

If θK : MK →W is surjective then rank(θK ) = m + n − 1, and
therefore

|K | = rank(θK ) + nullity(θK ) ≥ m + n − 1.

It follows that if θK : MK →W is an isomorphism then
|K | = m + n − 1.



The Transportation Problem: Row and Column Sums (continued)

Definition
We say that a subset B of I × J is a basis for the Transportation
Problem if the corresponding linear transformation

θB : MB(R)→W

is an isomorphism.

If B is a basis for the Transportation Problem then the linear
transformation

θB : MB(R)→W

must be both injective and surjective, and therefore the number
|B| of elements of that basis must satisfy

|B| = dimW = m + n − 1.



The Transportation Problem: Row and Column Sums (continued)

It then follows from this definition that a subset B of I × J is a
basis (in the context of the Transportation Problem) if and only if,
given any real numbers s1, s2, . . . , sm and d1, d2, . . . , dn satisfying

m∑
i=1

si =
n∑

j=1

dj ,

there exist uniquely-determined real numbers xi ,j such that

n∑
j=1

xi ,j = si for i = 1, 2, . . . ,m,

m∑
i=1

xi ,j = dj for j = 1, 2, . . . , n,

and
xi ,j = 0 whenever (i , j) 6∈ B.



The Transportation Problem: Row and Column Sums (continued)

Here E (i ,j) denotes the m × n matrix whose coefficient in the ith
row and jth column is equal to 1 and whose other coefficients are
zero, W is the real vector space consisting of all ordered pairs

(s,d) in Rm × Rn for which
m∑
i=1

(s)i =
n∑

j=1
(d)j , and

θ : Mm,n(R)→W is defined such that

θ(X ) =

 n∑
j=1

(X )i ,j ,
m∑
i=1

(X )i ,j


for all X ∈ Mm,n(R).



The Transportation Problem: Row and Column Sums (continued)

Let β(i ,j) ∈W be defined for all (i , j) ∈ I × J such that
β(i ,j) = θ(E (i ,j)). Then β(i ,j) = (b(i),b(j)) where (b(i))i = 1,
(b(i))i ′ = 0 for all i ′ ∈ I \ {i}, (b(j))j = 1 and (b(j))j ′ = 0 for all
j ′ ∈ J \ {j}.

A subset B of I × J is a basis for the Transportation Problem if
and only if the elements β(i ,j) for which (i , j) ∈ B consistitute a
basis of the vector space W .

We now prove that if K and L are subsets of I × J, if the elements
β(i ,j) of W for which (i , j) ∈ K are linearly independent, and if the
elements β(i ,j) for which (i , j) ∈ L span the vector space W , then
there exists a basis B of the Transportation Problem satisfying
K ⊂ B ⊂ L.



The Transportation Problem: Row and Column Sums (continued)

Proposition

Proposition TP-01 Let m and n be positive integers, and let

W =

{
(s,d) ∈ Rm × Rn :

m∑
i=1

(s)i =
n∑

j=1
(d)j

}
.

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . ,m}, and, for each
(i , j) ∈ I × J, let β(i ,j) = (b(i),b(j)) where b(i) is the vector in Rm

whose ith component is equal to 1 and whose other components
are zero, and b(j) is the vector in Rn whose jth component is equal
to 1 and whose other components are zero. Let K and L be
subsets of I × J satisfying K ⊂ L. Suppose that the elements β(i ,j)

of W for which (i , j) ∈ K are linearly independent, and that the
elements β(i ,j) for which (i , j) ∈ L span the vector space W . Then
there exists a basis B of the Transportation Problem satisfying
K ⊂ B ⊂ L.



The Transportation Problem: Row and Column Sums (continued)

Proof
Let K0 = K , and let W0 be the subspace of W spanned by the
elements β(i ,j) for which (i , j) ∈ K0. Suppose that W0 is a proper
subspace of W . Then there exists (i1, j1) ∈ L such that
β(i1,j1) 6∈W0. Let K1 = K0 ∪ {(i1, j1)}. Then the elements β(i ,j) for
which (i , j) ∈ K1 are also linearly independent, and they span a
subspace W1 of W for which dimW1 > dimW0.
Successive iterations of this process will eventually generate a
subset B of L for which the elements of the set

{θ(E (i ,j)) : (i , j) ∈ B}

are linearly independent and also span W . Then B is a basis for
the Transportation Problem, and K ⊂ B ⊂ L, as required.



The Transportation Problem: Row and Column Sums (continued)

Corollary

Corollary TP-02 Let m and n be positive integers, let
I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, and let K be a subset of
I × J. Suppose that there is no basis of the Transportation
Problem for which K ⊂ B. Then there exist real numbers yi ,j for
(i , j) ∈ I × J, not all zero, which satisfy the following conditions:—

n∑
j=1

yi ,j = 0 for i = 1, 2, . . . ,m;

m∑
i=1

yi ,j = 0 for j = 1, 2, . . . , n;

yi ,j = 0 when (i , j) 6∈ K .



The Transportation Problem: Row and Column Sums (continued)

Proof
Let the real vector space W and the elements β(i ,j) of W
corresponding to ordered pairs (i , j) belonging to I × J be defined
as in the statement of Proposition TP-01. Also let E (i ,j) denote
the m × n matrix whose coefficient in the ith row and jth column
is equal to 1 and whose remaining coefficients are zero. Then
β(i ,j) = θ(E (i ,j)) for all (i , j) ∈ I × J, where

θ(X ) =

 n∑
j=1

(X )i ,j ,
m∑
i=1

(X )i ,j


for all X ∈ MI×J .



The Transportation Problem: Row and Column Sums (continued)

If it were the case that the elements β(i ,j) for which (i , j) ∈ K were
linearly independent elements of the vector space W then it would
follow from an application of Proposition TP-01 (with L = I × J)
that there would exist a basis B for the transportation problem
satisfying K ⊂ B ⊂ I × J.



The Transportation Problem: Row and Column Sums (continued)

However there is no basis B for the Transportation Problem for
which K ⊂ B. It follows that the elements β(i ,j) for which
(i , j) ∈ K must be linearly dependent elements of W , and
therefore there must exist real numbers yi ,j for all (i , j) ∈ I × J,
not all zero, such that yi ,j = 0 when (i , j) 6∈ K and∑
(i ,j)∈K

yi ,jβ
(i ,j) = 0W , where 0W denotes the zero element of W .

Now β(i ,j) = θ(E (i ,j)) for all (i , j) ∈ I × J, where E (i ,j) denotes the
m × n matrix whose coefficient in the ith row and jth column is
equal to 1 and whose other coefficients are zero, W is the real
vector space consisting of all ordered pairs (s,d) in Rm × Rn for

which
m∑
i=1

(s)i =
n∑

j=1
(d)j , and θ : Mm,n(R)→W is defined such that



The Transportation Problem: Row and Column Sums (continued)

θ(X ) =

 n∑
j=1

(X )i ,j ,
m∑
i=1

(X )i ,j


for all X ∈ Mm,n(R). It follows that

θ

 ∑
(i ,j)∈K

yi ,jE
(i ,j)

 =
∑

(i ,j)∈K

yi ,jθ(E (i ,j)) =
∑

(i ,j)∈K

yi ,jβ
(i ,j) = 0W .

It then follows that
n∑

j=1
yi ,j = 0 for i = 1, 2, . . . ,m,

m∑
i=1

yi ,j = 0 for

j = 1, 2, . . . , n. Moreover yi ,j = 0 when (i , j) 6∈ K , as required.



The Transportation Problem: Row and Column Sums (continued)

Corollary

Corollary TP-03 Let K be a subset of I × J, where
I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}. Suppose that the
number |K | of elements of K satisfies |K | > m + n − 1. Then
there exist real numbers yi ,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n,
not all zero, such that

n∑
j=1

yi ,j = 0 for i = 1, 2, . . . ,m,

m∑
i=1

yi ,j = 0 for j = 1, 2, . . . , n.

and yi ,j = 0 whenever i , j 6∈ K .



The Transportation Problem: Row and Column Sums (continued)

Proof
Let W be the real vector space consisting of ordered pairs (s,d) of
vectors where s has components s1, s2, . . . , sm, d has components
d1, d2, . . . , dn and

m∑
i=1

si =
n∑

j=1

dj .

Then dimW = m + n − 1.

Now every basis for the Transportation Problem contains
m + n − 1 elements. But |K | > m + n − 1, and thus that there
cannot exist any basis B for the Transportation Problem that
satisfies K ⊂ B. It therefore follows from Corollary TP-02 that
there must exist real numbers yi ,j for (i , j) ∈ I × J that satisfy the
required conditions.



The Transportation Problem: Row and Column Sums (continued)

Remark
Corollary TP-03 follows from the basic principle that, in a system
of simultaneous linear equations, if the number of unknowns
exceeds the number of independent equations, then solutions to
the system are not uniquely determined.



The Transportation Problem: Row and Column Sums (continued)

In the context of Lemma TP-03 we consider a system of
simultanous linear equations of the form

n∑
j=1

xi ,j = si for i = 1, 2, . . . ,m,

m∑
i=1

xi ,j = di for j = 1, 2, . . . , n,

where s1, s2, . . . , sm and d1, d2, . . . , dn are given real numbers that
satisfy

m∑
i=1

si =
n∑

j=1

dj .



The Transportation Problem: Row and Column Sums (continued)

We also have a subset K of I × J with |K | elements, where

I = {1, 2, . . . ,m} and J = {1, 2, . . . , n},

we require that xi ,j = 0 when (i , j) 6∈ K , and the system of
simultaneous equations is to be solved to determine the unknowns
xi ,j for (i , j) ∈ K .

We thus have a system of n + m simultaneous linear equations to
determine |K | unknowns.



The Transportation Problem: Row and Column Sums (continued)

However the linear equations in the system are not independent.
Indeed suppose that n > 1 and that

n∑
j=1

xi ,j = si for i = 1, 2, . . . ,m,

m∑
i=1

xi ,j = di for j = 1, 2, . . . , n − 1,

Then

xi ,n = si −
n−1∑
j=1

xi ,j ,

and therefore



The Transportation Problem: Row and Column Sums (continued)

m∑
i=1

xi ,n =
m∑
i=1

si −
m∑
i=1

n−1∑
j=1

xi ,j

=
n∑

j=1

dj −
n−1∑
j=1

(
m∑
i=1

xi ,j

)

=
n∑

j=1

dj −
n−1∑
j=1

dj

= dn.



The Transportation Problem: Row and Column Sums (continued)

Thus the system of simultaneous linear equations has at most
n + m − 1 independent equations.

It follows that if the system is to be solved to determine |K |
unknowns, then those unknowns are not uniquely determined.

In particular the solution of the set of simultanous linear equations
is not unique in the case where si = 0 for all i and dj = 0 for all j .
It follows that there must exist real numbers yi ,j for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n, not all zero, such that

n∑
j=1

yi ,j = 0 for i = 1, 2, . . . ,m,

m∑
i=1

yi ,j = 0 for j = 1, 2, . . . , n.

and yi ,j = 0 whenever i , j 6∈ K .



The Transportation Problem: Row and Column Sums (continued)

Thus the conclusions of Lemma TP-03 thus follow from the basic
principle that solutions to systems of simultaneous linear equations
are not uniquely determined when the number of unknowns
exceeds the number of independent equations in the system.



The Transportation Problem: Types of Solutions

Feasible, Basic and Optimal Solutions of the Transportation
Problem

Consider the Transportation Problem with m suppliers and n
recipients, where the ith supplier can provide at most si units of
some given commodity, where si ≥ 0, and the jth recipient requires
at least dj units of that commodity, where dj ≥ 0. We suppose
also that total supply equals total demand, so that

m∑
i=1

si =
n∑

j=1

dj ,

The cost of transporting the commodity from the ith supplier to
the jth recipient is ci ,j .



The Transportation Problem: Feasible Solutions

Definition
A feasible solution to the Transportation Problem takes the form
of real numbers xi ,j , where

xi ,j ≥ 0 for i = 1, 2, . . . ,m and j = 1, 2, . . . , n;
n∑

j=1
xi ,j = si ;

m∑
i=1

xi ,j = dj .

Definition
A feasible solution (xi ,j) of a Transportation Problem is said to be
basic if there exists a basis B for that Transportation Problem such
that xi ,j = 0 whenever (i , j) 6∈ B.



The Transportation Problem: Optimal Solutions

The cost associated with a feasible solution (xi ,j) to the
Transportation Problem is

m∑
i=1

n∑
j=1

ci ,jxi ,j .

Definition
A feasible solution (xi ,j) is said to be optimal if it minimizes cost
amongst all feasible solutions of the Transportation Problem.

Thus a feasible solution (xi ,j) is optimal if and only if

m∑
i=1

n∑
j=1

ci ,jxi ,j ≤
m∑
i=1

n∑
j=1

ci ,jx i ,j

for all feasible solutions (x i ,j) of the Transportation Problem.



The Transportation Problem: Optimal Solutions (continued)

Definition
An optimal solution (xi ,j) of a Transportation Problem is said to be
basic if there exists a basis B for that Transportation Problem such
that xi ,j = 0 whenever (i , j) 6∈ B.



The Transportation Problem: Optimal Solutions (continued)

Example
Consider the instance of the Transportation Problem where
m = n = 2, s1 = 8, s2 = 3, d1 = 2, d2 = 9, c1,1 = 2, c1,2 = 3,
c2,1 = 4 and c2,2 = 1.



The Transportation Problem: Optimal Solutions (continued)

A feasible solution takes the form of a 2× 2 matrix(
x1,1 x1,2
x2,1 x2,2

)
with non-negative components which satisfies the two matrix
equations (

x1,1 x1,2
x2,1 x2,2

)(
1
1

)
=

(
8
3

)
and (

1 1
)( x1,1 x1,2

x2,1 x2,2

)
=
(

2 9
)
.



The Transportation Problem: Optimal Solutions (continued)

A basic feasible solution will have at least one component equal to
zero. There are four matrices with at least one zero component
which satisfy the required equations. They are the following:—(

0 8
2 1

)
,

(
8 0
−6 9

)
,

(
2 6
0 3

)
,

(
−1 9
3 0

)
.

The first and third of these matrices have non-negative
components. These two matrices represent basic feasible solutions
to the problem, and moreover they are the only basic feasible
solutions.



The Transportation Problem: Optimal Solutions (continued)

The costs associated with the components of the matrices are
c1,1 = 2, c1,2 = 3, c2,1 = 4 and c2,2 = 1.

The cost of the basic feasible solution

(
0 8
2 1

)
is

8c1,2 + 2c2,1 + c2,2 = 24 + 8 + 1 = 33.

The cost of the basic feasible solution

(
2 6
0 3

)
is

2c1,1 + 6c1,2 + 3c2,2 = 4 + 18 + 3 = 25.



The Transportation Problem: Optimal Solutions (continued)

Now any 2× 2 matrix

(
x1,1 x1,2
x2,1 x2,2

)
satisfying the two matrix

equations (
x1,1 x1,2
x2,1 x2,2

)(
1
1

)
=

(
8
3

)
,

(
1 1

)( x1,1 x1,2
x2,1 x2,2

)
=
(

2 9
)

must be of the form(
x1,1 x1,2
x2,1 x2,2

)
=

(
λ 8− λ

2− λ 1 + λ

)
for some real number λ.



The Transportation Problem: Optimal Solutions (continued)

But the matrix

(
λ 8− λ

2− λ 1 + λ

)
has non-negative components if

and only if 0 ≤ λ ≤ 2. It follows that the set of feasible solutions
of this instance of the transportation problem is{(

λ 8− λ
2− λ 1 + λ

)
: λ ∈ R and 0 ≤ λ ≤ 2

}
.



The Transportation Problem: Optimal Solutions (continued)

The costs associated with the components of the matrices are
c1,1 = 2, c1,2 = 3, c2,1 = 4 and c2,2 = 1. Therefore, for each real
number λ satisfying 0 ≤ λ ≤ 2, the cost f (λ) of the feasible

solution

(
λ 8− λ

2− λ 1 + λ

)
is given by

f (λ) = 2λ+ 3(8− λ) + 4(2− λ) + (1 + λ) = 33− 4λ.

Cost is minimized when λ = 2, and thus

(
2 6
0 3

)
is the optimal

solution of this instance of the Transportation Problem. The cost
of this optimal solution is 25.



The Transportation Problem: Optimal Solutions (continued)

Proposition

Proposition TP-04 Given any feasible solution of the
Transportation Problem, there exists a basic feasible solution with
whose cost does not exceed that of the given solution.

Proof
Let m and n be positive integers, and let s and d be elements of
Rm and Rn respectively that satisfy (s)i ≥ 0 for i = 1, 2, . . . ,m,

(d)i ≥ 0 for j = 1, 2, . . . , n and
m∑
i=1

(s)i =
n∑

j=1
(d)j , let C be an

m × n matrix whose components are non-negative real numbers,
and let X be a feasible solution of the resulting instance of the
Transportation Problem with cost matrix C .



The Transportation Problem: Optimal Solutions (continued)

Let si = (s)i , dj = (d)j , xi ,j = (X )i ,j and ci ,j = (C )i ,j for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Then xi ,j ≥ 0 for all i and j ,
n∑

j=1
xi ,j = si for i = 1, 2, . . . ,m and

m∑
i=1

xi ,j = dj for j = 1, 2, . . . , n.

The cost of the feasible solution X is then
m∑
i=1

n∑
j=1

ci ,jxi ,j .

If the feasible solution X is itself basic then there is nothing to
prove. Suppose therefore that X is not a basic solution. We show
that there then exists a feasible solution X with fewer non-zero
components than the given feasible solution.



The Transportation Problem: Optimal Solutions (continued)

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, and let

K = {(i , j) ∈ I × J : xi ,j > 0}.

Because X is not a basic solution to the Transportation Problem,
there does not exist any basis B for the Transportation Problem
satisfying K ⊂ B. It therefore follows from Corollary TP-02 that
there exist real numbers yi ,j for (i , j) ∈ I × J, not all zero, which
satisfy the following conditions:—

n∑
j=1

yi ,j = 0 for i = 1, 2, . . . ,m;

m∑
i=1

yi ,j = 0 for j = 1, 2, . . . , n;

yi ,j = 0 when (i , j) 6∈ K .



The Transportation Problem: Optimal Solutions (continued)

We can assume without loss of generality that
m∑
i=1

n∑
j=1

ci ,jyi ,j ≥ 0,

because otherwise we can replace yi ,j with −yi ,j for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n.

Let Y be the m × n matrix satisfying (Y )i ,j = yi ,j for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and let Zλ = X − λY for all
real numbers λ. Then (Zλ)i ,j = xi ,j − λyi ,j for i = 1, 2, . . . ,m and
j = 1, 2, . . . , n.



The Transportation Problem: Optimal Solutions (continued)

Moreover the matrix Zλ has the following properties:—
n∑

j=1
(Zλ)i ,j = si ;

m∑
i=1

(Zλ)i ,j = dj ;

(Zλ)i ,j = 0 whenever (i , j) 6∈ K ;
m∑
i=1

n∑
j=1

ci ,j(Zλ)i ,j ≤
m∑
i=1

n∑
j=1

ci ,j(X )i ,j whenever λ ≥ 0.



The Transportation Problem: Optimal Solutions (continued)

Now the matrix Y is a non-zero matrix whose rows and columns
all sum to zero. It follows that at least one of its coefficients must
be strictly positive. Thus there exists at least one ordered pair
(i , j) belonging to the set K for which yi ,j > 0. Let

λ0 = minimum

{
xi ,j
yi ,j

: (i , j) ∈ K and yi ,j > 0

}
.

Then λ0 > 0. Moreover if 0 ≤ λ < λ0 then xi ,j − λyi ,j > 0 for all
(i , j) ∈ K , and if λ > λ0 then there exists at least one element
(i0, j0) of K for which xi0,j0 − λyi0,j0 < 0. It follows that
xi ,j − λ0yi ,j ≥ 0 for all (i , j) ∈ K , and xi0,j0 − λ0yi0,j0 = 0.



The Transportation Problem: Optimal Solutions (continued)

Thus Zλ0 is a feasible solution of the given Transportation Problem
whose cost does not exceed that of the given feasible solution X .
Moreover Zλ0 has fewer non-zero components than the given
feasible solution X .

If Zλ0 is itself a basic feasible solution, then we have found the
required basic feasible solution whose cost does not exceed that of
the given feasible solution. Otherwise we can iterate the process
until we arrive at the required basic feasible solution whose cost
does not exceed that of the given feasible solution.



The Transportation Problem: Optimal Solutions (continued)

A given instance of the Transportation Problem has only finitely
many basic feasible solutions. Indeed there are only finitely many
bases for the problem, and any basis is associated with at most one
basic feasible solution. Therefore there exists a basic feasible
solution whose cost does not exceed the cost of any other basic
feasible solution. It then follows from Proposition TP-04 that the
cost of this basic feasible solution cannot exceed the cost of any
other feasible solution of the given instance of the Transportation
Problem. This basic feasible solution is thus a basic optimal
solution of the Transportation Problem.


