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1. [Note: the following worked solution reproduces the detail of a large
number of small steps to explain, demonstrate and validate the reason-
ing. A solution with this amount of detail would not be expected in a
solution written out during the course of an examination.

Moreover, in writing out a worked solution, it became apparent that,
in this example, the process for passing from an initial basic feasible
solution to an optimal solution required three changes of basis, which
is probably a large number for a problem of this size, and as a result
the time taken to complete the problem would exceed what would one
would normally expect for problems of this size.]

We now find a basic optimal solution to a transportation problem with
3 suppliers and 4 recipients. We find an initial basic feasible solution
using the Minimum Cost Method, and then continue to find a basic
optimal solution using a form of the Simplex Method adapted to the
Transportation Problem.

The supply vector is (7, 10, 13) and the demand vector is (5, 10, 9, 6).
The components of both the supply vector and the demand vector add
up to 30.

The costs are as specified in the following cost matrix:— 6 8 9 6
5 10 3 7
3 9 2 4

 .

We fill in the row sums (or supplies), the column sums (or demands)
and the costs ci,j for the given problem. The resultant tableau looks as
follows:—

ci,j ↘ xi,j 1 2 3 4 si

1 6 8 9 6
? ? ? ? 7

2 5 10 3 7
? ? ? ? 10

3 3 9 2 4
? ? ? ? 13

dj 5 10 9 6 30
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We find an initial basic feasible solution using the Minimum Cost
Method, in which we select a cell with minimum cost for which xi,j
is as yet undetermined, then fill in the cell with the minimum of the
supply si and demand dj. Then either one column, or one row is com-
pleted with zeros. This reduces to a transportation-type problem of
smaller size, and the Minimum Cost Method is applied recursively un-
til the initial basic feasible solution has been found.

To start, the minimum cost cell is in position (3, 3), and the minimum
of supply and demand is 9. We therefore fill in the third column follows:

x1,3 = 0, x2,3 = 0, x3,3 = 9.

(We also add a • symbol to cell (3, 3) to indicate that this cell represents
an element of the initial basis.)

Then cell (3, 1) becomes the cell of lowest cost with undetermined xi,j.
Minimum of residual supply and demand for this cell is 4 (because we
require that x3,1 + x3,2 + 9 + x3,4 = 13), and we complete the third row
as follows:

x3,1 = 4, x3,2 = 0, x3,4 = 0.

(We also add a • symbol to cell (3, 1) to indicate that this cell represents
an element of the initial basis.)

Then cell (2, 1) becomes the cell of lowest cost with undetermined xi,j.
Minimum of residual supply and demand for this cell is 1 (because we
require that x1,1 + x2,1 + 4 = 5), and we complete the first column by
setting x1,1 = 0 and x2,1 = 1.

The lowest cost cell with undetermined xi,j is then (1, 4). We set x1,4 =
6, and complete the fourth column by setting x2,4 = 0.

The lowest cost cell with undetermined xi,j is then (1, 2). We set x1,2 =
1.

We complete the process by setting x2,2 = 9.

The completed tableau after determining the initial basic solution by
the Minimum Cost Method is as follows:—
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ci,j ↘ xi,j 1 2 3 4 si

1 6 8 • 9 6 •
0 1 0 6 7

2 5 • 10 • 3 7
1 9 0 0 10

3 3 • 9 2 • 4
4 0 9 0 13

dj 5 10 9 6 30

Our initial basic feasible solution is thus specified by the 4×3 matrix X,
where

X =

 0 1 0 6
1 9 0 0
4 0 9 0

 .

The initial basis B for the transportation problem is as follows:—

B = {(1, 2), (1, 4), (2, 1), (2, 2), (3, 1), (3, 3)}.

The basis has six elements as expected. (The number of basis elements
should be m+ n− 1, where m is the number of suppliers and n is the
number of recipients.)

The coefficient of this matrix X in the ith row and jth column is
the quantity xi,j that determines the quantity of the commodity to
transport from the ith supplier to the jth recipient. Note that xi,j = 0
when (i, j) 6∈ B. This corresponds to the requirement that (xi,j) be a
basic feasible solution determined by the basis B. Also xi,j > 0 for all
(i, j) ∈ B.

The cost of this initial feasible basic solution is

8× 1 + 6× 6 + 5× 1 + 10× 9

+ 3× 4 + 2× 9

= 8 + 36 + 5 + 90 + 12 + 18

= 169.

We next determine whether the initial basic feasible solution found by
the Minimum Cost Method is an optimal solution, and, if not, how to
adjust the basis go obtain a solution of lower cost.
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We determine u1, u2, u3 and v1, v2, v3, v4 such that ci,j = vj − ui for all
(i, j) ∈ B, where B is the initial basis. We seek a solution with u1 = 0.
We then determine qi,j so that ci,j = vj − ui + qi,j for all i and j.

We therefore complete the following tableau:—

ci,j ↘ qi,j 1 2 3 4 ui

1 6 8 • 9 6 • 0
? 0 ? 0

2 5 • 10 • 3 7 ?
0 0 ? ?

3 3 • 9 2 • 4 ?
0 ? 0 ?

vj ? ? ? ?

We first calculate the quantities ui and vj.

Now (1, 2) ∈ B, u1 = 0 and c1,2 = 8 force v2 = 8.

Similarly (1, 4) ∈ B, u1 = 0 and c1,4 = 6 force v4 = 6.

Then (2, 2) ∈ B, v2 = 8 and c2,2 = 10 force u2 = −2.

Then (2, 1) ∈ B, u2 = −2 and c2,1 = 5 force v1 = 3.

Then (3, 1) ∈ B, v1 = 3 and c3,1 = 3 force u3 = 0.

Finally (3, 3) ∈ B, u3 = 0 and c3,3 = 2 force v3 = 2.

The tableau after the calculation of the ui and vj is as follows:—

ci,j ↘ qi,j 1 2 3 4 ui

1 6 8 • 9 6 • 0
? 0 ? 0

2 5 • 10 • 3 7 −2
0 0 ? ?

3 3 • 9 2 • 4 0
0 ? 0 ?

vj 3 8 2 6

We next determine qi,q so that ci,j = vj − ui + qi,j for all i and j. The
completed tableau is as follows:—
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ci,j ↘ qi,j 1 2 3 4 ui

1 6 8 • 9 6 • 0
3 0 7 0

2 5 • 10 • 3 7 −2
0 0 −1 −1

3 3 • 9 2 • 4 0
0 1 0 −2

vj 3 8 2 6

The initial basic feasible solution is not optimal because some of the
quantities qi,j are negative. Indeed q3,4 = −2, We therefore seek to
bring (3, 4) into the basis.

The procedure for achieving this requires us to determine a 3× 4 ma-
trix Y satisfying the following conditions:—

• y3,4 = 1;

• yi,j = 0 when (i, j) 6∈ B ∪ {(3, 4)};
• all rows and columns of the matrix Y sum to zero.

Accordingly we fill in the following tableau with those coefficients yi,j
of the matrix Y that correspond to cells in the current basis (marked
with the • symbol), so that all rows sum to zero and all columns sum
to zero:—

yi,j 1 2 3 4

1 ? • ? • 0
2 ? • ? • 0
3 ? • ? • 1 ◦ 0

0 0 0 0 0

The fourth column sums to zero, and therefore y1,4 = −1.

Then the first row sums to zero, and therefore y1,2 = 1.

Then the second column sums to zero, and therefore y2,2 = −1.

Then the second row sums to zero, and therefore y2,1 = 1.
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Then the first column sums to zero, and therefore y3,1 = −1.

Finally the third row sums to zero, and therefore y3,3 = 0.

The completed tableau is as follows:—

yi,j 1 2 3 4

1 1 • −1 • 0
2 1 • −1 • 0
3 −1 • 0 • 1 ◦ 0

0 0 0 0 0

The following 3× 4 matrix Y therefore satisfies our requirements:—

Y =

 0 1 0 −1
1 −1 0 0
−1 0 0 1

 .

Now X + λY is a feasible solution of the given transportation problem
for all values of λ for which the coefficients are all non-negative. Now

X + λY =

 0 1 + λ 0 6− λ
1 + λ 9− λ 0 0
4− λ 0 9 λ

 .

We can increase λ, decreasing the cost by 2λ, up to λ = 4. This gives
us a new basic feasible solution, which we take to be the current basic
feasible solution.

Let X now denote the current basic feasible solution, and let B now
denote the associated basis. Then

X =

 0 5 0 2
5 5 0 0
0 0 9 4

 .

and
B = {(1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (3, 4)}.

The new cost is 161, and one can verify that this is equal to 169−2×4,
where 169 is the cost of the initial basic solution.
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We next compute the numbers ui and vj and qi,j so that ci,j = vj − ui
for all (i, j) ∈ B and ci,j = vj − ui + qi,j for i = 1, 2, 3 and j = 1, 2, 3, 4.

We therefore complete the following tableau:—

ci,j ↘ qi,j 1 2 3 4 ui

1 6 8 • 9 6 • 0
? 0 ? 0

2 5 • 10 • 3 7 ?
0 0 ? ?

3 3 9 2 • 4 • ?
? ? 0 0

vj ? ? ? ?

The completed tableau is as follows:—

ci,j ↘ qi,j 1 2 3 4 ui

1 6 8 • 9 6 • 0
3 0 5 0

2 5 • 10 • 3 7 −2
0 0 −3 −1

3 3 9 2 • 4 • 2
2 3 0 0

vj 3 8 4 6

The current basic feasible solution is not optimal because some of the
quantities qi,j are negative. Indeed q2,3 = −3, We therefore seek to
bring (2, 3) into the basis.

The procedure for achieving this requires us to determine a 3× 4 ma-
trix Y satisfying the following conditions:—

• y2,3 = 1;

• yi,j = 0 when (i, j) 6∈ B ∪ {(2, 3)};
• all rows and columns of the matrix Y sum to zero.

Accordingly we fill in the following tableau with those coefficients yi,j
of the matrix Y that correspond to cells in the current basis (marked
with the • symbol), so that all rows sum to zero and all columns sum
to zero:—
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yi,j 1 2 3 4

1 ? • ? • 0
2 ? • ? • 1 ◦ 0
3 ? • ? • 0

0 0 0 0 0

The third column sums to zero, and therefore y3,3 = −1.

Then the third row sums to zero, and therefore y3,4 = 1.

Then the fourth column sums to zero, and therefore y1,4 = −1.

Then the first row sums to zero, and therefore y1,2 = 1.

Then the second column sums to zero, and therefore y2,2 = −1.

Finally the second row sums to zero, and therefore y2,1 = 0.

The completed tableau is as follows:—

yi,j 1 2 3 4

1 1 • −1 • 0
2 0 • −1 • 1 ◦ 0
3 −1 • 1 • 0

0 0 0 0 0

The following 3× 4 matrix Y therefore satisfies our requirements:—

Y =

 0 1 0 −1
0 −1 1 0
0 0 −1 1

 .

Now X + λY is a feasible solution of the given transportation problem
for all values of λ for which the coefficients are all non-negative. Now

X + λY =

 0 5 + λ 0 2− λ
5 5− λ λ 0
0 0 9− λ 4 + λ

 .
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We can increase λ, decreasing the cost by 3λ, up to λ = 2. This gives
us a new basic feasible solution, which we take to be the current basic
feasible solution.

Let X now denote the current basic feasible solution, and let B now
denote the associated basis. Then

X =

 0 7 0 0
5 3 2 0
0 0 7 6

 .

and
B = {(1, 2), (2, 1), (2, 2), (2, 3), (3, 3), (3, 4)}.

The new cost is 155, and one can verify that this is equal to 161−3×2,
where 161 is the cost of the previous basic solution.

We next compute the numbers ui and vj and qi,j so that ci,j = vj − ui
for all (i, j) ∈ B and ci,j = vj − ui + qi,j for i = 1, 2, 3 and j = 1, 2, 3, 4.

We therefore complete the following tableau:—

ci,j ↘ qi,j 1 2 3 4 ui

1 6 8 • 9 6 0
? 0 ? ?

2 5 • 10 • 3 • 7 ?
0 0 0 ?

3 3 9 2 • 4 • ?
? ? 0 0

vj ? ? ? ?

The completed tableau is as follows:—

ci,j ↘ qi,j 1 2 3 4 ui

1 6 8 • 9 6 0
3 0 8 3

2 5 • 10 • 3 • 7 −2
0 0 0 2

3 3 9 2 • 4 • −1
−1 0 0 0

vj 3 8 1 3
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The current basic feasible solution is not optimal because one of the
quantities qi,j is negative. Indeed q3,1 = −1, We therefore seek to bring
(3, 1) into the basis.

The procedure for achieving this requires us to determine a 3× 4 ma-
trix Y satisfying the following conditions:—

• y3,1 = 1;

• yi,j = 0 when (i, j) 6∈ B ∪ {(3, 1)};
• all rows and columns of the matrix Y sum to zero.

Accordingly we fill in the following tableau with those coefficients yi,j
of the matrix Y that correspond to cells in the current basis (marked
with the • symbol), so that all rows sum to zero and all columns sum
to zero:—

yi,j 1 2 3 4

1 ? • 0
2 ? • ? • ? • 0
3 1 ◦ ? • ? • 0

0 0 0 0 0

The first column sums to zero, and therefore y2,1 = −1.

The first row sums to zero and therefore y1,2 = 0.

Then the second column sums to zero, and therefore y2,2 = 0.

The fourth column sums to zero, and therefore y3,4 = 0.

Then the third row sums to zero, and therefore y3,3 = −1.

Finally the third column sums to zero, and therefore y2,3 = 1.

The completed tableau is as follows:—

yi,j 1 2 3 4

1 0 • 0
2 −1 • 0 • 1 • 0
3 1 ◦ −1 • 0 • 0

0 0 0 0 0
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The following 3× 4 matrix Y therefore satisfies our requirements:—

Y =

 0 0 0 0
−1 0 1 0
1 0 −1 0

 .

Now X + λY is a feasible solution of the given transportation problem
for all values of λ for which the coefficients are all non-negative. Now

X + λY =

 0 7 0 0
5− λ 3 2 + λ 0
λ 0 7− λ 6

 .

We can increase λ, decreasing the cost by λ, up to λ = 5. This gives
us a new basic feasible solution, which we take to be the current basic
feasible solution.

Let X now denote the current basic feasible solution, and let B now
denote the associated basis. Then

X =

 0 7 0 0
0 3 7 0
5 0 2 6

 .

and
B = {(1, 2), (2, 2), (2, 3), (3, 1), (3, 3), (3, 4)}.

The new cost is 150, and one can verify that this is equal to 155−1×5,
where 155 is the cost of the previous basic solution.

We next compute the numbers ui and vj and qi,j so that ci,j = vj − ui
for all (i, j) ∈ B and ci,j = vj − ui + qi,j for i = 1, 2, 3 and j = 1, 2, 3, 4.

We therefore complete the following tableau:—

ci,j ↘ qi,j 1 2 3 4 ui

1 6 8 • 9 6 0
? 0 ? ?

2 5 10 • 3 • 7 ?
? 0 0 ?

3 3 • 9 2 • 4 • ?
0 ? 0 0

vj ? ? ? ?
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The completed tableau is as follows:—

ci,j ↘ qi,j 1 2 3 4 ui

1 6 8 • 9 6 0
4 0 8 3

2 5 10 • 3 • 7 −2
1 0 0 2

3 3 • 9 2 • 4 • −1
0 0 0 0

vj 2 8 1 3

The fact that all qi,j are non-negative ensures that the current feasible
solution is optimal.

Indeed let xi,j be the components of a feasible solution to the problem.
Then

3∑
i=1

4∑
j=1

ci,jxi,j =
4∑

j=1

vjdj −
3∑

i=1

uisi +
3∑

i=1

4∑
j=1

qi,jxi,j.

The last summand is always non-negative, and is equal to zero for the
current feasible solution.

[Note that q3,2 = 0 despite the fact that (3, 2) 6∈ B. A consequence of
this is that the basic optimal solution to this particular problem is not
unique. The following matrix

X =

 0 7 0 0
0 1 9 0
5 2 0 6

 .

provides an alternative basic optimal solution to the problem.]
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2. (a) [Definition.] Let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑

j=1

(z)j

}
,

and, for each (i, j) ∈ I×J , let β(i,j) = (b(i),b(j)), where b(i) ∈ Rm

and b(j) ∈ Rn are defined so that the ith component of b(i) and
that jth component of b(j) are equal to 1 and the other compo-
nents of these vectors are zero. A subset B of I × J is said to
be a basis for the Transportation Problem with m suppliers and
n recipients if and only if the elements β(i,j) for which (i, j) ∈ B
constitute a basis of the real vector space W .

(b) [Bookwork.] Let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑

j=1

(z)j

}
,

let b(1),b(2), . . . ,b(m) be the standard basis of Rm and let
b(1),b(2), . . . ,b(n) be the standard basis of Rn, where the ith com-
ponent of b(i) and the jth component of b(j) are equal to 1 and
the other components of these vectors are zero, and let β(i,j) =
(b(i),b(j)) for all (i, j) ∈ I × J .

Now the elements β(i,j) for (i, j) ∈ I×J span the vector space W .
It therefore follows from a standard result of linear algebra that if
the elements β(i,j) for which (i, j) ∈ K were linearly independent
then there would exist a subset B of I × J satisfying K ⊂ B such
that the elements β(i,j) for which (i, j) ∈ B would constitute a
basis of W . This subset B of I × J would then be a basis for the
Transportation Problem. But the subset K is not contained in any
basis for the Transportation Problem. It follows that the elements
β(i,j) for which (i, j) ∈ K must be linearly dependent. Therefore
there exists a non-zero m×n matrix Y with real coefficients such
that (Y )i,j = 0 when (i, j) 6∈ K and

m∑
i=1

n∑
j=1

(Y )i,jβ
(i,j) = 0W .
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Now β(i,j) = (b(i),b(j)) for all i ∈ I and j ∈ J . It follows that

m∑
i=1

n∑
j=1

(Y )i,jb
(i) = 0

and
m∑
i=1

n∑
j=1

(Y )i,jb
(j) = 0,

and therefore

n∑
j=1

(Y )i,j = 0 (i = 1, 2, . . . ,m)

and
m∑
i=1

(Y )i,j = 0 (j = 1, 2, . . . , n),

as required.
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3. [Seen similar.]

Note: There are several ways of organizing the calculation us-
ing tableaux. Any method that arrives at and verifies the optimal
solution is acceptable.

The problem is to minimize cTx subject to constraints Ax = b,
and x ≥ 0, where

A =

 9 3 5 2 1
2 7 3 4 3
4 2 3 6 2

 , b =

 14
26
13


and

cT =
(

3 2 5 9 4
)
, xT =

(
x1 x2 x3 x9 x5

)
.

We denote by a(j) the 3-dimensional vector specified by the jth
column of the matrix A.

We have an initial solution x = (0, 2, 1, 0, 3) with initial basis
B = {2, 3, 5} and initial cost 21. We find p ∈ R3 to satisfy the
matrix equation(

2 5 4
)

= (c2, c3, c5) = cTB = pTMB,

where

MB =

 3 5 1
7 3 3
2 3 2

 .

Now

detMB = 3× (3× 2− 3× 3) + 5× (2× 3− 7× 2) + 1× (7× 3− 2× 3)

= 3× (−3) + 5× (−8) + 15 = −34.

and

M−1
B =

−1

34

 −3 −7 12
−8 4 −2
15 1 −26

 ,
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and thus

pT =
(
c2 c3 c5

)
M−1

B =
−1

34

(
2 5 4

) −3 −7 12
−8 4 −2
15 1 −26


=

(
−14

34
−10

34
90
34

)
.

Then

cT − pTA =
(

3 2 5 9 4
)
−
(
−14

34
−10

34
90
34

) 9 3 5 2 1
2 7 3 4 3
4 2 3 6 2


=

(
3 2 5 9 4

)
−
(

214
34

2 5 472
34

4
)

=
(
−112

34
0 0 −166

34
0
)

Let x be a feasible solution, where Let x = (x1, x2, x3, x4, x5),
Then Ax = b and xj ≥ 0 for j = 1, 2, 3, 4, 5. Then

cTx = pTAx + qTx = pTb + qTx = 21 + qTx

= 21− 112

34
x1 −

166

34
x4,

where qT = cT − pTA. We look for a basis that includes 4. Now

a(4) = t2,4a
(2) + t3,4a

(3) + t5,4a
(5) = MB

 t2,4
t3,4
t5,4

 .

Therefore t2,4
t3,4
t5,4

 = M−1
B a(4) =

−1

34

 −3 −7 12
−8 4 −2
15 1 −26

 2
4
6

 =

 −38
34

12
34
122
34

 .

It follows that(
0 2 + 38

34
λ 1− 12

34
λ λ 3− 122

34
λ
)

is a feasible solution of the problem whenever all components are
non-negative. We obtain another basic feasible solution with lower
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cost on determining λ to be the largest non-negative real number
satisfying

1− 12

34
λ ≥ 0 and 3− 122

34
λ ≥ 0.

Now 122
34

lies between 3 and 4. We should therefore take λ =
3× 34

122
= 102

122
, and the new basic feasible solution is(

0 358
122

86
122

102
122

0
)

We now let this row vector represent the current basic solution.
The current cost is then 2064

122
and the current basis B is given by

B = {2, 3, 4}. Now let MB now consist of the 2nd and 3rd and
4th columns of the matrix A. We find that

MB =

 3 5 2
7 3 4
2 3 6

 , M−1
B = − 1

122

 6 −24 14
−34 14 2
15 1 −26

 .

We then let

pT =
(
c2 c3 c4

)
M−1

B = − 1

122

(
2 5 9

) 6 −24 14
−34 14 2
15 1 −26


=

(
23
122
− 31

122
196
122

)
.

Then

cT − pTA =
(

3 2 5 9 4
)
−
(

23
122
− 31

122
196
122

) 9 3 5 2 1
2 7 3 4 3
4 2 3 6 2


=

(
3 2 5 9 4

)
−
(

929
122

2 5 9 322
122

)
=

(
−563

122
0 0 0 166

122

)
The components of this vector are not all non-negative, and there-
fore the current basic solution is not optimal. Because the first
component is negative we seek to bring 1 into the basis. Now

a(1) = t2,1a
(2) + t3,1a

(3) + t4,1a
(4) = MB

 t2,1
t3,1
t4,1

 .
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Therefore t2,1
t3,1
t4,1

 = M−1
B a(1) =

−1

122

 6 −24 14
−34 14 2
15 1 −26

 9
2
4

 =

 − 62
122

270
122

− 33
122

 .

It follows that(
λ 358

122
+ 62

122
λ 86

122
− 270

122
λ 102

122
+ 33

122
λ 0

)
is a feasible solution of the problem whenever all components are
non-negative. We obtain another basic feasible solution with lower
cost than the current feasible solution on setting λ = 86

270
, and the

new current basic feasible solution is(
86
270

836
270

0 249
270

0
)

We now let this vector represent the current basic feasible solu-
tion x. The new basis B is given by B = {1, 2, 4}. We must test
the current basic feasible solution for optimality.

Accordingly we calculate p such that pT = cTBM
−1
B , where

cTB =
(
c1 c2 c4

)
=
(

3 2 9
)
.

and

MB =

 9 3 2
2 7 4
4 2 6

 , M−1
B =

1

270

 34 −14 −2
4 46 −32
−24 −6 57

 .

Then

pT =
1

270

(
3 2 9

) 34 −14 −2
4 46 −32
−24 −6 57


=

(
−106

270
− 4

270
443
270

)
.

Then

cT − pTA =
(

3 2 5 9 4
)
−
(
−106

270
− 4

270
443
270

) 9 3 5 2 1
2 7 3 4 3
4 2 3 6 2


=

(
3 2 5 9 4

)
−
(

3 2 787
270

9 768
270

)
=

(
0 0 563

270
0 312

270

)
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Because all components of this last row vector are non-negative,
the current basic feasible solution is optimal. The cost of this
solution is 4171

270
. The cost of any feasible solution (x1, x2, x3, x4, x5)

is
4171

270
+

563

270
x3 +

312

270
x5,

where x3 ≥ 0 and x5 ≥ 0. Thus the current basic feasible solution
( 86
270
, 836
270
, 0, 249

270
, 0) is indeed optimal.

Cancelling common factors from numerator and denominator, we
find that this basic optimal solution is ( 43

135
, 418
135
, 0, 83

90
, 0).
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4. (a) [Seen Similar.] The inequalities satisfied by the feasible solutions
(x1, x2, x3, x4) and (p1, p2, p3) of the corresponding linear program-
ming problems ensure that

c1x1 + c2x2 + c3x3 + c4x4 − p1b1 − p2b2 + p3b3

= (c1 − p1a1,1 − p2a2,1 − p3a3,1)x1
+ (c2 − p1a1,2 − p2a2,2 − p3a3,2)x2
+ (c3 − p1a1,3 − p2a2,3 − p3a3,3)x3
+ (c4 − p1a1,4 − p2a2,4 − p3a3,4)x4
+ p1(a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 − b1)
+ p2(a2,1x1 + a2,2x2 + a2,3x3 + a2,4x4 − b2)
+ p3(a3,1x1 + a3,2x2 + a3,3x3 + a3,4x4 − b3)

= (c2 − p1a1,2 − p2a2,2 − p3a3,2)x2
+ (c4 − p1a1,4 − p2a2,4 − p3a3,4)x4
+ p1(a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 − b1)
+ p3(a3,1x1 + a3,2x2 + a3,3x3 + a3,4x4 − b3)

because

a2,1x1 + a2,2x2 + a2,3x3 + a2,4x4 − b2 = 0,

a4,1x1 + a4,2x2 + a4,3x3 + a4,4x4 − b4 = 0,

c1 − p1a1,1 − p2a2,1 − p3a3,1 = 0,

c3 − p1a1,3 − p2a2,3 − p3a3,3 = 0.

Now the constraints in the relevant programming problems ensure
that the summands in the above expression for

c1x1 + c2x2 + c3x3 + c4x4 − p1b1 − p2b2 − p3b3
are all non-negative. It follows that

c1x1 + c2x2 + c3x3 + c4x4 − p1b1 − p2b2 − p3b3 ≥ 0.

Moreover equality holds if and only if all summands are zero, in
which case

a1,1x1 + a1,2x2 + a1,3 + a1,4 = b1 if p1 > 0,

a3,1x1 + a3,2x2 + a3,3 + a3,4 = b3 if p3 > 0,

p1a1,2 + p2a2,2 + p3a3,2 = c2 if x2 > 0,

p1a1,4 + p2a2,4 + p3a3,4 = c4 if x4 > 0,
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as required.

(b) [Bookwork.] Let K = {i ∈ I : ηi(x
∗) > si}. Suppose that there

do not exist non-negative real numbers gi for all i ∈ I such that
ϕ =

∑
i∈I
giηi and gi = 0 when i ∈ K. On applying the proposition

stated on in the Note on the examination paper (with L = I \K),
we deduce that there must exist some v ∈ Rn such that ηi(v) ≥ 0
for all i ∈ I \K and ϕ(v) < 0. Then

ηi(x
∗ + λv) = ηi(x

∗) + ληi(v) ≥ si

for all i ∈ I \ K and for all λ ≥ 0. If i ∈ K then ηi(x
∗) > si.

The set K is finite. It follows that there must exist some real
number λ0 satisfying λ0 > 0 such that ηi(x

∗ + λv) ≥ si for all
i ∈ K and for all real numbers λ satisfying 0 ≤ λ ≤ λ0.

Combining the results in the cases when i ∈ I\K and when i ∈ K,
we find that ηi(x

∗ + λv) ≥ si for all i ∈ I and λ ∈ [0, λ0], and
therefore x∗+λv ∈ X for all real numbers λ satisfying 0 ≤ λ ≤ λ0.
But

ϕ(x∗ + λv) = ϕ(x∗) + λϕ(v) < ϕ(x∗)

whenever λ > 0. It follows that the linear functional ϕ cannot
attain a minimum value in X at any point x∗ for which either
K = I or for which K is a proper subset of I but there exist non-
negative real numbers gi for all i ∈ I \K such that ϕ =

∑
i∈I\K

giηi.

The result follows.

23


