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3 The Transportation Problem

3.1 Transportation in the Dairy Industry

We discuss an example of the Transportation Problem of Linear Program-
ming, as it might be applied to optimize transportation costs in the dairy
industry.

A food business has milk-processing plants located in various towns in a
small country. We shall refer to these plants as dairies. Raw milk is supplied
by numerous farmers with farms located throughout that country, and is
transported by milk tanker from the farms to the dairies. The problem is
to determine the catchment areas of the dairies so as to minimize transport
costs.

We suppose that there are m farms, labelled by integers from 1 to m that
supply milk to n dairies, labelled by integers from 1 to n. Suppose that, in
a given year, the ith farm has the capacity to produce and supply a si litres
of milk for i = 1, 2, . . . ,m, and that the jth dairy needs to receive at least dj
litres of milk for j = 1, 2, . . . , n to satisfy the business obligations.

The quantity
m∑
i=1

si then represents that total supply of milk, and the

quantity
n∑
j=1

dj represents the total demand for milk.

We suppose that xi,j litres of milk are to be transported from the ith farm
to the jth dairy, and that ci,j represents the cost per litre of transporting this
milk.

Then the total cost of transporting milk from the farms to the dairies is

m∑
i=1

n∑
j=1

ci,jxi,j.

The quantities xi,j of milk to be transported from the farms to the dairies
should then be determined for i = 1, 2, . . . ,m and j = 1, 2, . . . , n so as to
minimize the total cost of transporting milk.

However the ith farm can supply no more than si litres of milk in a given
year, and that jth dairy requires at least dj litres of milk in that year. It
follows that the quantities xi,j of milk to be transported between farms and
dairy are constrained by the requirements that

n∑
j=1

xi,j ≤ si for i = 1, 2, . . . ,m
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and
m∑
i=1

xi,j ≥ dj for j = 1, 2, . . . ,m.

3.2 The General Transportation Problem

The Transportation Problem can be expressed generally in the following
form. Some commodity is supplied by m suppliers and is transported from
those suppliers to n recipients. The ith supplier can supply at most to si
units of the commodity, and the jth recipient requires at least dj units of the
commodity. The cost of transporting a unit of the commodity from the ith
supplier to the jth recipient is ci,j.

The total transport cost is then

m∑
i=1

n∑
j=1

ci,jxi,j.

where xi,j denote the number of units of the commodity transported from
the ith supplier to the jth recipient.

The Transportation Problem can then be presented as follows:

determine xi,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n so as
minimize

∑
i,j

ci,jxi,j subject to the constraints xi,j ≥ 0 for all i

and j,
n∑
j=1

xi,j ≤ si and
m∑
i=1

xi,j ≥ dj, where si ≥ 0 for all i,

dj ≥ 0 for all i, and
m∑
i=1

si ≥
n∑
j=1

dj.

3.3 Transportation Problems in which Total Supply
equals Total Demand

Consider an instance of the Transportation Problem with m suppliers and
n recipients. The following proposition shows that a solution to the Trans-
portation Problem can only exist if total supply of the relevant commodity
exceeds total demand for that commodity.

Proposition 3.1 Let s1, s2, . . . , sm and d1, d2, . . . , dn be non-negative real
numbers. Suppose that there exist non-negative real numbers xi,j be for i =
1, 2, . . . ,m and j = 1, 2, . . . , n that satisfy the inequalities

n∑
j=1

xi,j ≤ si and
m∑
i=1

xi,j ≥ dj.
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Then
n∑
j=1

dj ≤
m∑
i=1

si.

Moreover if it is the case that

n∑
j=1

dj =
m∑
i=1

si.

then
n∑
j=1

xi,j = si for i = 1, 2, . . . ,m

and
m∑
i=1

xi,j = dj for j = 1, 2, . . . , n.

Proof The inequalities satisfied by the non-negative real numbers xi,j ensure
that

n∑
j=1

dj ≤
m∑
i=1

n∑
j=1

xi,j ≤
m∑
i=1

si.

Thus the total supply must equal or exceed the total demand.

If it is the case that
n∑
j=1

xi,j < si for at least one value of i then
m∑
i=1

n∑
j=1

xi,j <∑m
i=1 si. Similarly if it is the case that

m∑
i=1

xi,j > dj for at least one value of

j then
m∑
i=1

n∑
j=1

xi,j >
∑n

j=1 dj.

It follows that if total supply equals total demand, so that

m∑
i=1

si =
n∑
j=1

dj,

then
n∑
j=1

xi,j = si for i = 1, 2, . . . ,m

and
m∑
i=1

xi,j = dj for j = 1, 2, . . . , n,

as required.
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We analyse the Transportation Problem in the case where total supply
equals total demand. The optimization problem in this case can then be
stated as follows:—

determine xi,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n so as
minimize

∑
i,j

ci,jxi,j subject to the constraints xi,j ≥ 0 for all i

and j,
n∑
j=1

xi,j = si and
m∑
i=1

xi,j = dj, where si ≥ 0 and dj ≥ 0 for

all i and j, and
m∑
i=1

si =
n∑
j=1

dj.

Definition A feasible solution to the Transportation Problem (with equality
of total supply and total demand) takes the form of real numbers xi,j, where

• xi,j ≥ 0 for i = 1, 2, . . . ,m and j = 1, 2, . . . , n;

•
n∑
j=1

xi,j = si;

•
m∑
i=1

xi,j = dj.

Definition A feasible solution (xi,j) of the Transportation Problem is said
to be optimal if it minimizes cost amongst all feasible solutions of the Trans-
portation Problem.

3.4 Row Sums and Column Sums of Matrices

We commence the analysis of the Transportation Problem by studying the
interrelationships between the various real vector spaces and linear trans-
formations that arise naturally from the statement of the Transportation
Problem.

The quantities xi,j to be determined are coefficients of an m×n matrix X.
This matrix X is represented as an element of the real vector space Mm,n(R)
that consists of all m× n matrices with real coefficients.

The non-negative quantities s1, s2, . . . , sm that specify the sums of the
coefficients in the rows of the unknown matrix X are the components of a
supply vector s belonging to the m-dimensional real vector space Rm.

Similarly the non-negative quantities d1, d2, . . . , dn that specify the sums
of the coefficients in the columns of the unknown matrix X are the compo-
nents of a demand vector d belonging to the n-dimensional space Rn.
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The requirement that total supply equals total demand translates into a

requirement that the sum
m∑
i=1

(s)i of the components of the supply vector s

must equal the sum
n∑
j=1

(d)j of the components of the demand vector d.

Accordingly we introduce a real vector space W consisting of all ordered

pairs (y, z) for which y ∈ Rm, z ∈ Rn and
m∑
i=1

(y)i =
n∑
j=1

(z)j.

Lemma 3.2 Let m and n be positive integers, and let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑
j=1

(z)j

}
.

Then the dimension of the real vector space W is m+ n− 1.

Proof It is easy to see that the vector space W is isomorphic to Rm when
n = 1. The result then follows directly in the case when n = 1. Thus suppose
that n > 1.

Given real numbers y1, y2, . . . , yn and z1, z2, . . . , zn−1, there exists exactly
one element (y, z) of W that satisfies (y)i = yi for i = 1, 2, . . . ,m and
(z)j = zj for j = 1, 2, . . . , n − 1. The remaining component (z)n of the
n-dimensional vector z is then determined by the equation

(z)n =
m∑
i=1

yi −
m−1∑
j=1

zj.

It follows from this that dimW = m+ n− 1, as required.

The supply and demand constraints on the sums of the rows and columns
of the unknown matrix X can then be specified by means of linear transfor-
mations

ρ:Mm,n(R)→ Rm

and
σ:Mm,n(R)→ Rn,

where, for each X ∈ Mm,n(R), the components of the m-dimensional vector
ρ(X) are the sums of the coefficients along each row ofX, and the components
of the n-dimensional vector σ(X) are the sums of the coefficients along each
column of X.
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Let X ∈ Mm,n(R). Then the ith component ρ(X)i of the vector ρ(X) is
determined by the equation

ρ(X)i =
n∑
j=1

(X)i,j for i = 1, 2, . . . ,m,

for i = 1, 2, . . . ,m, and the jth component σ(X)j of σ(X) is determined by
the equation

σ(X)j =
m∑
i=1

(X)i,j for j = 1, 2, . . . , n.

for j = 1, 2, . . . , n.
The costs ci,j are the components of an m×n matrix C, the cost matrix,

that in turn determines a linear functional

f :Mm,n(R)→ R

on the vector space Mm,n(R) defined such that

f(X) = trace(CTX) =
m∑
i=1

n∑
j=1

(C)i,jXi,j

for all X ∈Mm,n(R).
An instance of the problem is specified by specifying a supply vector s,

demand vector d and cost matrix C. The components of s and d are required
to be non-negative real numbers. Moreover (s,d) ∈ W , where W is the real
vector space consisting of all ordered pairs (s,d) with s ∈ Rm and d ∈ Rn

for which the sum of the components of the vector s equals the sum of the
components of the vector d.

A feasible solution of the Transportation Problem with given supply vec-
tor s, demand vector d and cost matrix C is represented by anm×nmatrixX
satisfying the following three conditions:—

• The coefficients of X are all non-negative;

• ρ(X) = s;

• σ(X) = d.

The cost functional f :Mm,n(R)→ R is defined so that

f(X) = trace(CTX)

for all X ∈Mm,n(R).
A feasible solution X of the Transportation problem is optimal if and

only if f(X) ≤ f(X) for all feasible solutions X of that problem.
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Lemma 3.3 Let Mm,n(R) be the real vector space consisting of all m × n
matrices with real coefficients, let ρ:Mm,n(R) → Rm and σ:Mm,n(R) → Rn

be the linear transformations defined so that the ith component ρ(X)i of ρ(X)
satisfies

ρ(X)i =
n∑
j=1

(X)i,j for i = 1, 2, . . . ,m,

for i = 1, 2, . . . ,m, and the jth component σ(X)j of σ(X) satisfies

σ(X)j =
m∑
i=1

(X)i,j for j = 1, 2, . . . , n.

for j = 1, 2, . . . , n. Then (ρ(X), σ(X)) ∈ W for all X ∈Mm,n(R), where

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑
j=1

(z)j

}
.

Proof Let X ∈Mm,n(R). Then

m∑
i=1

ρ(X)i =
m∑
i=1

n∑
j=1

(X)i,j =
n∑
j=1

σ(X)j.

It follows that (ρ(X), σ(X)) ∈ W for all X ∈Mm,n(R), as required.

3.5 Bases for the Transportation Problem

The real vector space Mm,n(R) consisting of all m×n matrices with real coef-
ficients has a natural basis consisting of the matrices E(i,j) for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n, where, for each i and j, the coefficient of the matrix E(i,j)

in the ith row and jth column has the value 1, and all other coefficients are
zero. Indeed

X =
m∑
i=1

n∑
j=1

(X)i,jE
(i,j)

for all X ∈Mm,n(R).
Let ρ:Mm,n(R) → Rm and σ:Mm,n(R) → Rn be the linear transforma-

tions defined such that (ρ(X))i =
n∑
j=1

(X)i,j for i = 1, 2, . . . ,m and (σ(X))j =

m∑
i=1

(X)i,j for j = 1, 2, . . . , n. Then ρ(E(i,j)) = b(i) for i = 1, 2, . . . ,m, where

b(i) denotes the ith vector in the standard basis of Rm, defined such that

(b(i))k =

{
1 if i = k;
0 if i 6= k.
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Similarly σ(E(i,j)) = b(j) for j = 1, 2, . . . , n, where b(j) denotes the jth vector
in the standard basis of Rn, defined such that

(b(j))l =

{
1 if j = l;
0 if j 6= l.

Now (ρ(X), σ(X)) ∈ W for all X ∈Mm,n(R), where

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑
j=1

(z)j

}
.

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, and let

β(i,j) = (b(i),b(j))

for all (i, j) ∈ I × J . Then the elements β(i,j) span the vector space W . It
follows from basic linear algebra that there exist subsets B of I×J such that
the elements β(i,j) of W for which (i, j) ∈ B constitute a basis of the real
vector space W (see Corollary 2.3).

Definition Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, where m and n are
positive integers, let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑
j=1

(z)j

}
,

and, for each (i, j) ∈ I×J , let β(i,j) = (b(i),b(j)), where b(i) ∈ Rm and b(j) ∈
Rn are defined so that the ith component of b(i) and that jth component
of b(j) are equal to 1 and the other components of these vectors are zero.
A subset B of I × J is said to be a basis for the Transportation Problem
with m suppliers and n recipients if and only if the elements β(i,j) for which
(i, j) ∈ B constitute a basis of the real vector space W .

The real vector space W is of dimension m+n−1, where m is the number
of suppliers and n is the number of recipients. It follows that any basis for
the Transportation Problem with m suppliers and n recipients has m+n−1
members.

Proposition 3.4 Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, where m
and n are positive integers. Then a subset B of I × J is a basis for the
transportation problem if and only if, given any vectors y ∈ Rm and z ∈ Rn

satisfying
m∑
i=1

(y)m =
n∑
j=1

(z)n, there exists a unique m× n matrix X with real

coefficients satisfying the following properties:—
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(i)
n∑
j=1

(X)i,j = (y)i for i = 1, 2, . . . ,m;

(ii)
m∑
i=1

(X)i,j = (z)j for j = 1, 2, . . . , n;

(ii) (X)i,j = 0 unless (i, j) ∈ B.

Proof For each (i, j) ∈ I × J , let E(i,j) denote the matrix whose coefficient
in the ith row and jth column are equal to 1 and whose other coefficients are
zero, and let ρ(X) ∈ Rm and σ(X) ∈ Rn be defined for all m×n matrices X

with real coefficients so that (ρ(X))i =
n∑
j=1

(X)i,j and (σ(X))j =
m∑
i=1

(X)i,j.

Then ρ(E(i,j)) = b(i) for i = 1, 2, . . . ,m, where b(i) denotes the vector in Rm

whose ith component is equal to 1 and whose other components are zero.
Similarly σ(E(i,j)) = b(j) for j = 1, 2, . . . , n, where b(j) denotes the vector
in Rm whose jth component is equal to 1 and whose other components are
zero.

Let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑
j=1

(z)j

}
.

Then (ρ(X), σ(X)) ∈ W for all X ∈Mm,n(R), and

(ρ(E(i,j)), σ(E(i,j)) = β(i,j)

for all (i, j) ∈ I × J where

β(i,j) = (b(i),b(j)).

Let B be a subset of I × J , let y and z be elements of Rm and Rn

respectively that satisfy (y, z) ∈ W , and let X be an m×n matrix with real
coefficients with the property that (X)i,j = 0 unless (i, j) ∈ B. Then

ρ(X) =
∑

(i,j)∈B

(X)(i,j)ρ(E(i,j)) =
∑

(i,j)∈B

(X)(i,j)b
(i)

and
σ(X) =

∑
(i,j)∈B

(X)(i,j)σ(E(i,j)) =
∑

(i,j)∈B

(X)(i,j)b
(j),

and therefore
(ρ(X), σ(X)) =

∑
(i,j)∈B

(X)(i,j)β
(i,j).
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Suppose that, given any y ∈ Rm and z ∈ Rn for which (y, z) ∈ W , there
exists a unique m×n matrix X such that y = ρ(X), z = σ(X) and (X)i,j = 0
for all (i, j) ∈ B. Then the elements β(i,j) of W for which (i, j) ∈ B must span
W and must also be linearly independent. These elements must therefore
constitute a basis for the vector space B. It then follows that the subset B
of I × J must be a basis for the Transportation Problem.

Conversely if B is a basis for the Transportation Problem then, given any
(y, z) ∈ W , there must exist a unique m× n matrix X with real coefficients
such that (y, z) =

∑
(i,j)∈B

(X)i,jβ
(i,j) and (X)i,j = 0 unless (i, j) ∈ B. The

result follows.

Lemma 3.5 Let m and n be positive integers, let I = {1, 2, . . . ,m} and
J = {1, 2, . . . , n}, and let K be a subset of I × J . Suppose that there is no
basis B of the Transportation Problem for which K ⊂ B. Then there exists
a non-zero m×n matrix Y with real coefficients which satisfies the following
conditions:

•
n∑
j=1

(Y )i,j = 0 for i = 1, 2, . . . ,m;

•
m∑
i=1

(Y )i,j = 0 for j = 1, 2, . . . , n;

• (Y )i,j = 0 when (i, j) 6∈ K.

Proof Let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑
j=1

(z)j

}
,

let b(1),b(2), . . . ,b(m) be the standard basis of Rm and let b(1),b(2), . . . ,b(n)

be the standard basis of Rn, where the ith component of b(i) and the jth
component of b(j) are equal to 1 and the other components of these vectors
are zero, and let β(i,j) = (b(i),b(j)) for all (i, j) ∈ I × J .

Now follows from Proposition 2.2 that if the elements β(i,j) for which
(i, j) ∈ K were linearly independent then there would exist a subset B of
I × J satisfying K ⊂ B such that the elements β(i,j) for which (i, j) ∈ B
would constitute a basis of W . This subset B of I × J would then be a
basis for the Transportation Problem. But the subset K is not contained in
any basis for the Transportation Problem. It follows that the elements β(i,j)

for which (i, j) ∈ K must be linearly dependent. Therefore there exists a
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non-zero m × n matrix Y with real coefficients such that (Y )i,j = 0 when
(i, j) 6∈ K and

m∑
i=1

n∑
j=1

(Y )i,jβ
(i,j) = 0W .

Now β(i,j) = (b(i),b(j)) for all i ∈ I and j ∈ J . It follows that

m∑
i=1

n∑
j=1

(Y )i,jb
(i) = 0

and
m∑
i=1

n∑
j=1

(Y )i,jb
(j) = 0,

and therefore
n∑
j=1

(Y )i,j = 0 (i = 1, 2, . . . ,m)

and
m∑
i=1

(Y )i,j = 0 (j = 1, 2, . . . , n),

as required.

3.6 Basic Feasible Solutions of Transportation Prob-
lems

Consider the Transportation Problem with m suppliers and n recipients,
where the ith supplier can provide at most si units of some given commod-
ity, where si ≥ 0, and the jth recipient requires at least dj units of that
commodity, where dj ≥ 0. We suppose also that total supply equals total
demand, so that

m∑
i=1

si =
n∑
j=1

dj,

The cost of transporting the commodity from the ith supplier to the jth
recipient is ci,j.

The concept of a basis for the Transportation Problem was introduced in
Subsection 3.5. We recall some results established in that subsection.

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}. A subset B of I×J is a basis
for the Transportation Problem if and only if, given any vectors y ∈ Rm and
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z ∈ Rn satisfying
m∑
i=1

(y)i =
n∑
j=1

(z)j, there exists a unique matrix X with real

coefficients such that
n∑
j=1

(X)i,j = (y)i for i = 1, 2, . . . ,m,
m∑
i=1

(X)i,j = (z)j for

j = 1, 2, . . . , n and (X)i,j = 0 unless (i, j) ∈ B (see Proposition 3.4). A basis
for the transportation problem has m+ n− 1 elements.

Also if K is a subset of I × J that is not contained in any basis for the
Transportation Problem then there exists a non-zero m × n matrix Y such

that
n∑
j=1

(Y )i,j = 0 for i = 1, 2, . . . ,m,
m∑
i=1

(X)i,j = 0 for j = 1, 2, . . . , n and

(Y )i,j = 0 unless (i, j) ∈ K (see Lemma 3.5).

Definition A feasible solution (xi,j) of a Transportation Problem is said to
be basic if there exists a basis B for that Transportation Problem such that
xi,j = 0 whenever (i, j) 6∈ B.

Example Consider the instance of the Transportation Problem where m =
n = 2, s1 = 8, s2 = 3, d1 = 2, d2 = 9, c1,1 = 2, c1,2 = 3, c2,1 = 4 and c2,2 = 1.

A feasible solution takes the form of a 2× 2 matrix(
x1,1 x1,2
x2,1 x2,2

)
with non-negative components which satisfies the two matrix equations(

x1,1 x1,2
x2,1 x2,2

)(
1
1

)
=

(
8
3

)
and (

1 1
)( x1,1 x1,2

x2,1 x2,2

)
=
(

2 9
)
.

A basic feasible solution will have at least one component equal to zero.
There are four matrices with at least one zero component which satisfy the
required equations. They are the following:—(

0 8
2 1

)
,

(
8 0
−6 9

)
,

(
2 6
0 3

)
,

(
−1 9
3 0

)
.

The first and third of these matrices have non-negative components.
These two matrices represent basic feasible solutions to the problem, and
moreover they are the only basic feasible solutions.

The costs associated with the components of the matrices are c1,1 = 2,
c1,2 = 3, c2,1 = 4 and c2,2 = 1.
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The cost of the basic feasible solution

(
0 8
2 1

)
is

8c1,2 + 2c2,1 + c2,2 = 24 + 8 + 1 = 33.

The cost of the basic feasible solution

(
2 6
0 3

)
is

2c1,1 + 6c1,2 + 3c2,2 = 4 + 18 + 3 = 25.

Now any 2× 2 matrix

(
x1,1 x1,2
x2,1 x2,2

)
satisfying the two matrix equations

(
x1,1 x1,2
x2,1 x2,2

)(
1
1

)
=

(
8
3

)
,

(
1 1

)( x1,1 x1,2
x2,1 x2,2

)
=
(

2 9
)

must be of the form(
x1,1 x1,2
x2,1 x2,2

)
=

(
λ 8− λ

2− λ 1 + λ

)
for some real number λ.

But the matrix

(
λ 8− λ

2− λ 1 + λ

)
has non-negative components if and

only if 0 ≤ λ ≤ 2. It follows that the set of feasible solutions of this instance
of the transportation problem is{(

λ 8− λ
2− λ 1 + λ

)
: λ ∈ R and 0 ≤ λ ≤ 2

}
.

The costs associated with the components of the matrices are c1,1 = 2,
c1,2 = 3, c2,1 = 4 and c2,2 = 1. Therefore, for each real number λ satisfying

0 ≤ λ ≤ 2, the cost f(λ) of the feasible solution

(
λ 8− λ

2− λ 1 + λ

)
is given

by
f(λ) = 2λ+ 3(8− λ) + 4(2− λ) + (1 + λ) = 33− 4λ.

Cost is minimized when λ = 2, and thus

(
2 6
0 3

)
is the optimal solution

of this instance of the Transportation Problem. The cost of this optimal
solution is 25.
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Proposition 3.6 Given any feasible solution of the Transportation Problem,
there exists a basic feasible solution with whose cost does not exceed that of
the given solution.

Proof Let m and n be positive integers, and let s and d be elements of
Rm and Rn respectively that satisfy (s)i ≥ 0 for i = 1, 2, . . . ,m, (d)i ≥ 0

for j = 1, 2, . . . , n and
m∑
i=1

(s)i =
n∑
j=1

(d)j, let C be an m × n matrix whose

components are non-negative real numbers, and let X be a feasible solution
of the resulting instance of the Transportation Problem with cost matrix C.

Let si = (s)i, dj = (d)j, xi,j = (X)i,j and ci,j = (C)i,j for i = 1, 2, . . . ,m

and j = 1, 2, . . . , n. Then xi,j ≥ 0 for all i and j,
n∑
j=1

xi,j = si for i =

1, 2, . . . ,m and
m∑
i=1

xi,j = dj for j = 1, 2, . . . , n. The cost of the feasible

solution X is then
m∑
i=1

n∑
j=1

ci,jxi,j.

If the feasible solution X is itself basic then there is nothing to prove.
Suppose therefore that X is not a basic solution. We show that there then
exists a feasible solution X with fewer non-zero components than the given
feasible solution.

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, and let

K = {(i, j) ∈ I × J : xi,j > 0}.

Because X is not a basic solution to the Transportation Problem, there does
not exist any basis B for the Transportation Problem satisfying K ⊂ B. It
therefore follows from Lemma 3.5 that there exists a non-zero m×n matrix Y
which satisfies the following conditions:—

•
n∑
j=1

(Y )i,j = 0 for i = 1, 2, . . . ,m;

•
m∑
i=1

(Y )i,j = 0 for j = 1, 2, . . . , n;

• (Y )i,j = 0 when (i, j) 6∈ K.

We can assume without loss of generality that
m∑
i=1

n∑
j=1

ci,j(Y )i,j ≥ 0, be-

cause otherwise we can replace Y with −Y .
Let Zλ = X − λY for all real numbers λ. Then (Zλ)i,j = xi,j − λyi,j for

i = 1, 2, . . . ,m and j = 1, 2, . . . , n, where xi,j = (X)i,j and yi,j = (Y )i,j.
Moreover the matrix Zλ has the following properties:—

26



•
n∑
j=1

(Zλ)i,j = si;

•
m∑
i=1

(Zλ)i,j = dj;

• (Zλ)i,j = 0 whenever (i, j) 6∈ K;

•
m∑
i=1

n∑
j=1

ci,j(Zλ)i,j ≤
m∑
i=1

n∑
j=1

ci,j(X)i,j whenever λ ≥ 0.

Now the matrix Y is a non-zero matrix whose rows and columns all sum
to zero. It follows that at least one of its coefficients must be strictly positive.
Thus there exists at least one ordered pair (i, j) belonging to the set K for
which yi,j > 0. Let

λ0 = minimum

{
xi,j
yi,j

: (i, j) ∈ K and yi,j > 0

}
.

Then λ0 > 0. Moreover if 0 ≤ λ < λ0 then xi,j − λyi,j > 0 for all (i, j) ∈ K,
and if λ > λ0 then there exists at least one element (i0, j0) of K for which
xi0,j0 − λyi0,j0 < 0. It follows that xi,j − λ0yi,j ≥ 0 for all (i, j) ∈ K, and
xi0,j0 − λ0yi0,j0 = 0.

Thus Zλ0 is a feasible solution of the given Transportation Problem whose
cost does not exceed that of the given feasible solution X. Moreover Zλ0 has
fewer non-zero components than the given feasible solution X.

If Zλ0 is itself a basic feasible solution, then we have found the required
basic feasible solution whose cost does not exceed that of the given feasible
solution. Otherwise we can iterate the process until we arrive at the required
basic feasible solution whose cost does not exceed that of the given feasible
solution.

A given instance of the Transportation Problem has only finitely many
basic feasible solutions. Indeed there are only finitely many bases for the
problem, and any basis is associated with at most one basic feasible solution.
Therefore there exists a basic feasible solution whose cost does not exceed the
cost of any other basic feasible solution. It then follows from Proposition 3.6
that the cost of this basic feasible solution cannot exceed the cost of any other
feasible solution of the given instance of the Transportation Problem. This
basic feasible solution is thus a basic optimal solution of the Transportation
Problem.
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The Transportation Problem determined by the supply vector, demand
vector and cost matrix has only finitely many basic feasible solutions, be-
cause there are only finitely many bases for the problem, and each basis can
determine at most one basic feasible solution. Nevertheless the number of
basic feasible solutions may be quite large.

But it can be shown that the Transportation Problem always has a basic
optimal solution. It can be found using an algorithm that implements the
Simplex Method devised by George B. Dantzig in the 1940s. This algorithm
involves passing from one basis to another, lowering the cost at each stage,
until one eventually finds a basis that can be shown to determine a basic
optimal solution of the Transportation Problem.

3.7 An Example illustrating the Procedure for finding
an Initial Basic Feasible Solution to a Transporta-
tion Problem using the Minimum Cost Method

We discuss the method for finding a basic optimal solution of the Trans-
portation Problem by working through a particular example. First we find
an initial basic feasible solution using a method known as the Minimum Cost
Method. Then we test whether or not this initial basic feasible solution is
optimal. It turns out that, in this example, the initial basic solutions is not
optimal. We then commence an iterative process for finding a basic optimal
solution.

Let ci,j be the coefficient in the ith row and jth column of the cost ma-
trix C, where

C =


8 4 16
3 7 2
13 8 6
5 7 8

 .

and let
s1 = 13, s2 = 8, s3 = 11, s4 = 13,

d1 = 19, d2 = 12, d3 = 14.

We seek to non-negative real numbers xi,j for i = 1, 2, 3, 4 and j = 1, 2, 3

that minimize
4∑
i=1

3∑
j=1

ci,jxi,j subject to the following constraints:

3∑
j=1

xi,j = si for i = 1, 2, 3, 4,
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4∑
i=1

xi,j = dj for j = 1, 2, 3,

and xi,j ≥ 0 for all i and j.
For this problem the supply vector is (13, 8, 11, 13) and the demand vector

is (19, 12, 14). The components of both the supply vector and the demand
vector add up to 45.

In order to start the process of finding an initial basic solution for this
problems, we set up a tableau that records the row sums (or supplies), the
column sums (or demands) and the costs ci,j for the given problem, whilst
leaving cells to be filled in with the values of the non-negative real numbers
xi,j that will specify the initial basic feasible solution. The resultant tableau
is structured as follows:—

ci,j ↘ xi,j 1 2 3 si

1 8 4 16
? ? ? 13

2 3 7 2
? ? ? 8

3 13 8 6
? ? ? 11

4 5 7 8
? ? ? 13

dj 19 12 14 45

We apply the minimum cost method to find an initial basic solution.
The cell with lowest cost is the cell (2, 3). We assign to this cell the

maximum value possible, which is the minimum of s2, which is 8, and d3,
which is 14. Thus we set x2,3 = 8. This forces x2,1 = 0 and x2,2 = 0. The
pair (2, 3) is added to the current basis.

The next undetermined cell of lowest cost is (1, 2). We assign to this cell
the minimum of s1, which is 13, and d2 − x2,2, which is 12. Thus we set
x1,2 = 12. This forces x3,2 = 0 and x4,2 = 0. The pair (1, 2) is added to the
current basis.

The next undetermined cell of lowest cost is (4, 1). We assign to this cell
the minimum of s4−x4,2, which is 13, and d1−x2,1, which is 19. Thus we set
x4,1 = 13. This forces x4,3 = 0. The pair (4, 1) is added to the current basis.

The next undetermined cell of lowest cost is (3, 3). We assign to this
cell the minimum of s3 − x3,2, which is 11, and d3 − x2,3 − x4,3, which is 6
(= 14− 8− 0). Thus we set x3,3 = 6. This forces x1,3 = 0. The pair (3, 3) is
added to the current basis.
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The next undetermined cell of lowest cost is (1, 1). We assign to this cell
the minimum of s1 − x1,2 − x1,3, which is 1, and d1 − x2,1 − x4,1, which is 6.
Thus we set x1,1 = 1. The pair (1, 1) is added to the current basis.

The final undetermined cell is (3, 1). We assign to this cell the common
value of s3 − x3,2 − x3,3 and d1 − x1,1 − x2,1 − x4,1, which is 5. Thus we set
x3,1 = 5. The pair (3, 1) is added to the current basis.

The values of the elements xi,j of the initial basic feasible solution are
tabulated (with basis elements marked by the • symbol) as follows:—

ci,j ↘ xi,j 1 2 3 si

1 8 • 4 • 16
1 12 0 13

2 3 7 2 •
0 0 8 8

3 13 • 8 6 •
5 0 6 11

4 5 • 7 8
13 0 0 13

dj 19 12 14 45

Thus the initial basis is B where

B = {(1, 1), (1, 2), (2, 3), (3, 1), (3, 3), (4, 1)}.
The basic feasible solution is represented by the 6× 5 matrix X, where

X =


1 12 0
0 0 8
5 0 6
13 0 0

 .

The cost of this initial feasible basic solution is

8× 1 + 4× 12 + 2× 8 + 13× 5 + 6× 6

+ 5× 13

= 8 + 48 + 16 + 65 + 36 + 65

= 238.

3.8 An Example illustrating the Procedure for find-
ing a Basic Optimal Solution to a Transportation
Problem

We continue with the study of the optimization problem discussed in the
previous section.
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We seek to determine non-negative real numbers xi,j for i = 1, 2, 3, 4 and

j = 1, 2, 3 that minimize
4∑
i=1

3∑
j=1

ci,jxi,j, where ci,j is the coefficient in the ith

row and jth column of the cost matrix C, where

C =


8 4 16
3 7 2
13 8 6
5 7 8

 .

subject to the constraints

3∑
j=1

xi,j = si (i = 1, 2, 3, 4)

and
4∑
i=1

xi,j = dj (j = 1, 2, 3),

where
s1 = 13, s2 = 8, s3 = 11, s4 = 13,

d1 = 19, d2 = 12, d3 = 14.

We have found an initial basic feasible solution by the Minimum Cost
Method. This solution satisfies xi,j = (X)i,j for all i and j, where

X =


1 12 0
0 0 8
5 0 6
13 0 0

 .

We next determine whether this initial basic feasible solution is an optimal
solution, and, if not, how to adjust the basis to obtain a solution of lower
cost.

We determine u1, u2, u3, u4 and v1, v2, v3 such that ci,j = vj − ui for all
(i, j) ∈ B, where B is the initial basis.

We seek a solution with u1 = 0. We then determine qi,j so that ci,j =
vj − ui + qi,j for all i and j.
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We therefore complete the following tableau:—

ci,j ↘ qi,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 7 2 • ?
? ? 0

3 13 • 8 6 • ?
0 ? 0

4 5 • 7 8 ?
0 ? ?

vj ? ? ?

Now u1 = 0, (1, 1) ∈ B and (1, 2) ∈ B force v1 = 8 and v2 = 4.
Then v1 = 8, (3, 1) ∈ B and (4, 1) ∈ B force u3 = −5 and u4 = 3.
Then u3 = −5 and (3, 3) ∈ B force v3 = 1.
Then v3 = 1 and (2, 3) ∈ B force u2 = −1.
After entering the numbers ui and vj, the tableau is as follows:—

ci,j ↘ qi,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 7 2 • −1
? ? 0

3 13 • 8 6 • −5
0 ? 0

4 5 • 7 8 3
0 ? ?

vj 8 4 1

Computing the numbers qi,j such that ci,j + ui = vj + qi,j, we find that
q1,3 = 15, q2,1 = −6, q2,2 = 2, q3,2 = −1, q4,2 = 6 and q4,3 = 10.
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The completed tableau is as follows:—

ci,j ↘ qi,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 15

2 3 7 2 • −1
−6 2 0

3 13 • 8 6 • −5
0 −1 0

4 5 • 7 8 3
0 6 10

vj 8 4 1

The initial basic feasible solution is not optimal because some of the
quantities qi,j are negative. To see this, suppose that the numbers xi,j for
i = 1, 2, 3, 4 and j = 1, 2, 3 constitute a feasible solution to the given problem.

Then
3∑
j=1

xi,j = si for i = 1, 2, 3 and
4∑
i=1

xi,j = dj for j = 1, 2, 3, 4. It follows

that

4∑
i=1

3∑
j=1

ci,jxi,j =
4∑
i=1

3∑
j=1

(vj − ui + qi,j)xi,j

=
3∑
j=1

vjdj −
4∑
i=1

uisi +
4∑
i=1

3∑
j=1

qi,jxi,j.

Applying this identity to the initial basic feasible solution, we find that∑3
j=1 vjdj −

∑4
i=1 uisi = 238, given that 238 is the cost of the initial ba-

sic feasible solution. Thus the cost C of any feasible solution (xi,j) satisfies

C = 238 + 15x1,3 − 6x2,1 + 2x2,2 − x3,2 + 6x4,2 + 10x4,3.

One could construct feasible solutions with x2,1 < 0 and xi,j = 0 for
(i, j) 6∈ B ∪ {(2, 1)}, and the cost of such feasible solutions would be lower
than that of the initial basic solution. We therefore seek to bring (2, 1) into
the basis, removing some other element of the basis to ensure that the new
basis corresponds to a feasible basic solution.

The procedure for achieving this requires us to determine a 4×3 matrix Y
satisfying the following conditions:—

• y2,1 = 1;

• yi,j = 0 when (i, j) 6∈ B ∪ {(2, 1)};
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• all rows and columns of the matrix Y sum to zero.

Accordingly we fill in the following tableau with those coefficients yi,j of
the matrix Y that correspond to cells in the current basis (marked with the
• symbol), so that all rows sum to zero and all columns sum to zero:—

yi,j 1 2 3

1 ? • ? • 0
2 1 ◦ ? • 0
3 ? • ? • 0
4 ? • 0

0 0 0 0

The constraints that y2,1 = 1, yi,j = 0 when (i, j) 6∈ B and the constraints
requiring the rows and columns to sum to zero determine the values of yi,j
for all yi,j ∈ B. These values are recorded in the following tableau:—

yi,j 1 2 3

1 0 • 0 • 0
2 1 ◦ −1 • 0
3 −1 • 1 • 0
4 0 • 0

0 0 0 0

We now determine those values of λ for whichX+λY is a feasible solution,
where

X + λY =


1 12 0
λ 0 8− λ

5− λ 0 6 + λ
13 0 0

 .

In order to drive down the cost as far as possible, we should make λ as
large as possible, subject to the requirement that all the coefficients of the
above matrix should be non-negative numbers. Accordingly we take λ = 5.
Our new basic feasible solution X is then as follows:—

X =


1 12 0
5 0 3
0 0 11
13 0 0

 .
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We regard X of as the current feasible basic solution.
The cost of the current feasible basic solution X is

8× 1 + 4× 12 + 3× 5 + 2× 3 + 6× 11

+ 5× 13

= 8 + 48 + 15 + 6 + 66 + 65

= 208.

The cost has gone down by 30, as one would expect (the reduction in the
cost being −λq2,1 where λ = 5 and q2,1 = −6).

The current basic feasible solution X is associated with the basis B where

B = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 3), (4, 1)}.

We now compute, for the current feasible basic solution We determine, for
the current basis B values u1, u2, u3, u4 and v1, v2, v3 such that ci,j = vj − ui
for all (i, j) ∈ B. the initial basis.

We seek a solution with u1 = 0. We then determine qi,j so that ci,j =
vj − ui + qi,j for all i and j.

We therefore complete the following tableau:—

ci,j ↘ qi,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 • 7 2 • ?
0 ? 0

3 13 8 6 • ?
? ? 0

4 5 • 7 8 ?
0 ? ?

vj ? ? ?

Now u1 = 0, (1, 1) ∈ B and (1, 2) ∈ B force v1 = 8 and v2 = 4.
Then v1 = 8, (2, 1) ∈ B and (4, 1) ∈ B force u2 = 5 and u4 = 3.
Then u2 = 5 and (3, 3) ∈ B force v3 = 7.
Then v3 = 7 and (3, 3) ∈ B force u3 = 1.
Computing the numbers qi,j such that ci,j + ui = vj + qi,j, we find that

q1,3 = 9, q2,2 = 8, q3,1 = 6, q3,2 = 5, q4,2 = 6 and q4,3 = 4.
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The completed tableau is as follows:—

ci,j ↘ qi,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 9

2 3 • 7 2 • 5
0 8 0

3 13 8 6 • 1
6 5 0

4 5 • 7 8 3
0 6 4

vj 8 4 7

All numbers qi,j are non-negative for the current feasible basic solution.
This solution is therefore optimal. Indeed, arguing as before we find that the
cost C of any feasible solution (xi,j) satisfies

C = 208 + 9x1,3 + 8x2,2 + 6x3,1 + 5x3,2 + 6x4,2 + 4x4,3.

We conclude that X is an basic optimal solution, where

X =


1 12 0
5 0 3
0 0 11
13 0 0

 .
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3.9 A Result concerning the Construction of Bases for
the Transportation Problem

The following general proposition ensures that certain standard methods for
determining an initial basic solution of the Transportation Problem, including
the Northwest Corner Method and the Minimum Cost Method will succeed
in determining a basic feasible solution to the Transportation Problem.

Proposition 3.7 Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, where m
and n are positive integers, let i1, i2, . . . , im+n−1 be elements of I and let
j1, j2, . . . , jm+n−1 be elements of J , and let

B = {(ik, jk) : k = 1, 2, . . . ,m+ n− 1}.

Suppose that there exist subsets I0, I1, . . . , Im+n−1 of I and J0, J1, . . . , Jm+n+1

of J such that I0 = I, J0 = J , and such that, for each integer k between 1
and m+ n− 1, exactly one of the following two conditions is satisfied:—

(i) ik 6∈ Ik, jk ∈ Jk, Ik−1 = Ik ∪ {ik} and Jk−1 = Jk;

(ii) ik ∈ Ik, jk 6∈ Jk, Ik−1 = Ik and Jk−1 = Jk ∪ {jk};

Then, given any real numbers a1, a1, . . . , am and b1, b2, . . . , bn satisfying

m∑
i=1

ai =
n∑
j=1

bj,

there exist uniquely-determined real numbers xi,j for all i ∈ I and j ∈ J such
that

∑
j∈J

xi,j = ai for all i ∈ I,
∑
i∈I
xi,j = bj for all j ∈ J , and xi,j = 0 whenever

(i, j) 6∈ B.

Proof We prove the result by induction on m+ n. The result is easily seen
to be true when m = n = 1. Thus suppose as our inductive hypothesis that
the corresponding results are true when I and J are replaced by I1 and J1,
so that, given any real numbers a′i for i ∈ I1 and b′j for j ∈ J1 satisfying∑
i∈I1

a′i =
∑
j∈J1

b′j, there exist uniquely-determined real numbers xi,j for i ∈ I1

and j ∈ J1 such that
∑
j∈J1

xi,j = ai for all i ∈ I1 and
∑
i∈I1

xi,j = bj for all j ∈ I1.

We prove that the corresponding results are true for the given sets I and J .
Now the conditions in the statement of the Proposition ensure that either

i1 6∈ I1 or else j1 6∈ J1.
Suppose that i1 6∈ I1. Then I = I1 ∪ {i1} and J1 = J . Now Ik and Jk are

subsets of I1 and J1 for k = 1, 2, . . . ,m+n−1. Moreover (ik, jk) ∈ Ik−1×Jk−1
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for all integers k satisfying 1 ≤ k ≤ m + n + 1. It follows that ik ∈ I1 and
therefore ik 6= i1 whenever 2 ≤ k ≤ m. It follows that the conclusions of
the proposition are true if and only if there exist uniquely-determined real
numbers xi,j for i ∈ I and j ∈ I such that

xi1,j1 = ai1 ,

xi1,j = 0 whenever j 6= j1,∑
j∈J

xi,j = ai whenever i 6= i1,∑
i∈I1

xi,j1 = bj1 − ai1 ,∑
i∈I1

xi,j = bj whenever j 6= j1,

xi,j = 0 whenever (i, j) 6∈ B

The induction hypothesis ensures the existence and uniqueness of the real
numbers xi,j for i ∈ I1 and j ∈ J determined so as to satisfy the above
conditions. Thus the induction hypothesis ensures that the required result
is true in the case where i1 6∈ I1.

An analogous argument shows that the required result is true in the case
where j1 6∈ J1. The result follows.

Proposition 3.7 ensures that if I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}
and if a subset B of I × J is determined so as to satisfy the requirements of
Proposition 3.7, then that subset B of I×J is a basis for the Transportation
Problem with m suppliers and n recipients.

The algorithms underlying the Minimal Cost Method and the Northwest
Corner Method give rise to subsets Ik and Jk of I and J respectively for
k = 0, 1, 2, . . . ,m+n− 1 that satisfy the conditions of Proposition 3.7. This
proposition therefore ensures that Minimal Cost Method and the Northwest
Corner Method do indeed determine basic feasible solutions to the Trans-
portation Problem.

Remark One can prove a converse result to Proposition 3.7 which estab-
lishes that, given any basis B for an instance of the Transportation Problem
with m suppliers and n recipients, there exist subsets Ik of I and Jk of J ,
for i = 1, 2, . . . ,m+ n− 1, where I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, so
that these subsets Ik and Jk of I and J are related to one another and to the
basis B in the manner described in the statement of Proposition 3.7.
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3.10 The Minimum Cost Method

We describe the Minimum Cost Method for finding an initial basic feasible
solution to the Transportation Problem.

Consider an instance of the Transportation Problem specified by pos-
itive integers m and n and non-negative real numbers s1, s2, . . . , sm and

d1, d2, . . . , dn, where
m∑
i=1

si =
n∑
j=1

dj. Let I = {1, 2, . . . ,m} and let J =

{1, 2, . . . , n}. A feasible solution consists of an array of non-negative real
numbers xi,j for i ∈ I and j ∈ J with the property that

∑
j∈J

xi,j = si for all

i ∈ I and
∑
i∈I
xi,j = dj for all j ∈ J . The objective of the problem is to find

a feasible solution that minimizes cost, where the cost of a feasible solution
(xi,j : i ∈ I andj ∈ J) is

∑
i∈I

∑
j∈J

ci,jxi,j.

In applying the Minimal Cost Method to find an initial basic solution to
the Transportation we apply an algorithm that corresponds to the determi-
nation of elements (i1, j1), (i2, j2), . . . , (im+n−1, jm+n−1) of I×J and of subsets
I0, I1, . . . , Im+n−1 of I and J0, J1, . . . , Jm+n−1 of J such that the conditions of
Proposition 3.7 are satisfied.

Indeed let I0 = I, J0 = J and B0 = {0}. The Minimal Cost Method
algorithm is accomplished in m+ n− 1 stages.

Let k be an integer satisfying 1 ≤ k ≤ m+n− 1 and that subsets Ik−1 of
I, Jk−1 of J and Bk−1 of I × J have been determined in accordance with the
rules that apply at previous stages of the Minimal Cost algorithm. Suppose
also that non-negative real numbers xi,j have been determined for all ordered
pairs (i, j) in I × J that satisfy either i 6∈ Ik−1 or j 6∈ Jk−1 so as to satisfy
the following conditions:—

•
∑

j∈J\Jk−1

xi,j ≤ si whenever i ∈ Ik−1;

•
∑
j∈J

xi,j = si whenever i 6∈ Ik−1;

•
∑

i∈I\Ik−1

xi,j ≤ dj whenever j ∈ Jk−1;

•
∑
i∈I
xi,j = dj whenever j 6∈ Jk−1.

The Minimal Cost Method specifies that one should choose (ik, jk) ∈ Ik−1 ×
Jk−1 so that

cik,jk ≤ ci,j for all (i, j) ∈ Ik−1 × Jk−1,
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and set Bk = Bk−1 ∪ {(ik, jk)}. Having chosen (ik, jk), the non-negative real
number xik,jk is then determined so that

xik,jk = min

sik − ∑
j∈J\Jk−1

xik,j, djk −
∑

i∈I\Ik−1

xi,jk

 .

The subsets Ik and Jk of I and J respectively are then determined, along
with appropriate values of xi,j, according to the following rules:—

(i) if

sik −
∑

j∈J\Jk−1

xik,j < djk −
∑

i∈I\Ik−1

xi,jk

then we set Ik = Ik−1 \ {ik} and Jk = Jk−1, and we also let xik,j = 0
for all j ∈ Jk−1 \ {jk};

(ii) if

sik −
∑

j∈J\Jk−1

xik,j > djk −
∑

i∈I\Ik−1

xi,jk

then we set Jk = Jk−1 \ {jk} and Ik = Ik−1, and we also let xi,jk = 0
for all i ∈ Ik−1 \ {ik};

(iii) if

sik −
∑

j∈J\Jk−1

xik,j = djk −
∑

i∈I\Ik−1

xi,jk

then we determine Ik and Jk and the corresponding values of xi,j ei-
ther in accordance with the specification in rule (i) above or else in
accordance with the specification in rule (ii) above.

These rules ensure that the real numbers xi,j determined at this stage are all
non-negative, and that the following conditions are satisfied at the conclusion
of the kth stage of the Minimal Cost Method algorithm:—

•
∑

j∈J\Jk
xi,j ≤ si whenever i ∈ Ik;

•
∑
j∈J

xi,j = si whenever i 6∈ Ik;

•
∑

i∈I\Ik
xi,j ≤ dj whenever j ∈ Jk;

•
∑
i∈I
xi,j = dj whenever j 6∈ Jk.
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At the completion of the final stage (for which k = m + n − 1) we have
determined a subset B of I × J , where B = Bm+n−1, together with non-
negative real numbers xi,j for i ∈ I and j ∈ I that constitute a feasible
solution to the given instance of the Transportation Problem. Moreover
Proposition 3.7 ensures that this feasible solution is a basic feasible solution
of the problem with associated basis B.

3.11 The Northwest Corner Method

The Northwest Corner Method for finding a basic feasible solution proceeds
according to the stages of the Minimum Cost Method above, differing only
from that method in the choice of the ordered pair (ik, jk) at the kth stage
of the method. In the Minimum Cost Method, the ordered pair (ik, jk) is
chosen such that (ik, jk) ∈ Ik−1 × Jk−1 and

cik,jk ≤ ci,j for all (i, j) ∈ Ik−1 × Jk−1

(where the sets Ik−1, Jk−1 are determined as in the specification of the Mini-
mum Cost Method). In applying the Northwest Corner Method, costs asso-
ciated with ordered pairs (i, j) in I × J are not taken into account. Instead
(ik, jk) is chosen so that ik is the minimum of the integers in Ik−1 and jk is the
minimum of the integers in Jk−1. Otherwise the specification of the North-
west Corner Method corresponds to that of the Minimum Cost Method, and
results in a basic feasible solution of the given instance of the Transportation
Problem.

3.12 The Iterative Procedure for Solving the Trans-
portation Problem, given an Initial Basic Feasible
Solution

We now describe in general terms the method for solving the Transportation
Problem, in the case where total supply equals total demand.

We suppose that an initial basic feasible solution has been obtained. We
apply an iterative method (based on the general Simplex Method for the
solution of linear programming problems) that will test a basic feasible solu-
tion for optimality and, in the event that the feasible solution is shown not
to be optimal, establishes information that (with the exception of certain
‘degenerate’ cases of the Transportation Problem) enables one to find a basic
feasible solution with lower cost. Iterating this procedure a finite number of
times, one should arrive at a basic feasible solution that is optimal for the
given instance of the the Transportation Problem.
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We suppose that the given instance of the Transportation Problem in-
volves m suppliers and n recipients. The required supplies are specified by
non-negative real numbers s1, s2, . . . , sm, and the required demands are spec-
ified by non-negative real numbers d1, d2, . . . , dn. We further suppose that
m∑
i=1

si =
∑n

j=1 dj. A feasible solution is represented by non-negative real

numbers xi,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, where
n∑
j=1

xi,j = si for

i = 1, 2, . . . ,m and
m∑
i=1

xi,j = dj for j = 1, 2, . . . , n.

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}. A subset B of I × J is a
basis for the Transportation Problem if and only if, given any real numbers
y1, y2, . . . , ym and z1, z2, . . . , zn, there exist uniquely determined real numbers

xi,j for i ∈ I and j ∈ J such that
n∑
j=1

xi,j = yi for i ∈ I,
m∑
i=1

xi,j = zj for j ∈ J ,

where xi,j = 0 whenever (i, j) 6∈ B (see Proposition 3.4).
A feasible solution (xi,j) is said to be a basic feasible solution associated

with the basis B if and only if xi,j = 0 for all i ∈ I and j ∈ J for which
(i, j) 6∈ B.

Let xi,j be a non-negative real number for each i ∈ I and j ∈ J . Sup-
pose that (xi,j) is a basic feasible solution to the Transportation Problem
associated with basis B, where B ⊂ I × J .

The cost associated with a feasible solution (xi,j is given by
m∑
i=1

n∑
j=1

ci,jxi,j,

where the constants ci,j are real numbers for all i ∈ I and j ∈ J . A feasible
solution for the given instance of the Transportation Problems is an optimal
solution if and only if it minimizes cost amongst all feasible solutions to the
problem.

In order to test for optimality of a basic feasible solution (xi,j) associated
with a basis B, we determine real numbers u1, u2, . . . , um and v1, v2, . . . , vn
with the property that ci,j = vj − ui for all (i, j) ∈ B. (Proposition 3.10
below guarantees that, given any basis B, it is always possible to find the
required quantities ui and vj.) Having calculated these quantities ui and vj
we determine the values of qi,j, where qi,j = ci,j − vj + ui for all i ∈ I and
j ∈ J . Then qi,j = 0 whenever (i, j) ∈ B.

We claim that a basic feasible solution (xi,j) associated with the basis B
is optimal if and only if qi,j ≥ 0 for all i ∈ I and j ∈ J . This is a consequence
of the identity established in the following proposition.

Proposition 3.8 Let xi,j, ci,j and qi,j be real numbers defined for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n, and let u1, u2, . . . , um and v1, v2, . . . , vn be real numbers.
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Suppose that
ci,j = vj − ui + qi,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Then

m∑
i=1

n∑
j=1

ci,jxi,j =
m∑
i=1

vjdj −
n∑
j=1

uisi +
m∑
i=1

n∑
j=1

qi,jxi,j,

where si =
∑n

j=1 xi,j for i = 1, 2, . . . ,m and dj =
∑m

i=1 xi,j for j = 1, 2, . . . , n.

Proof The definitions of the relevant quantities ensure that

m∑
i=1

n∑
j=1

ci,jxi,j =
m∑
i=1

n∑
j=1

(vj − ui + qi,j)xi,j

=
n∑
j=1

(
vj

m∑
i=1

xi,j

)
−

m∑
i=1

(
ui

n∑
j=1

xi,j

)

+
m∑
i=1

n∑
j=1

qi,jxi,j

=
m∑
i=1

vjdj −
n∑
j=1

uisi +
m∑
i=1

n∑
j=1

qi,jxi,j,

as required.

Corollary 3.9 Let m and n be integers, and let I = {1, 2, . . . ,m} and J =
{1, 2, . . . , n}. Let xi,j and ci,j be real numbers defined for all i ∈ I and
j ∈ I, and let u1, u2, . . . , um and v1, v2, . . . , vn be real numbers. Suppose that
ci,j = vj − ui for all (i, j) ∈ I × J for which xi,j 6= 0. Then

m∑
i=1

n∑
j=1

ci,jxi,j =
m∑
i=1

djvj −
n∑
j=1

siui,

where si =
n∑
j=1

xi,j for i = 1, 2, . . . ,m and dj =
m∑
i=1

xi,j for j = 1, 2, . . . , n.

Proof Let qi,j = ci,j +ui−vj for all i ∈ I and j ∈ J . Then qi,j = 0 whenever
xi,j 6= 0. It follows from this that

m∑
i=1

n∑
j=1

qi,jxi,j = 0.
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It then follows from Proposition 3.8 that

m∑
i=1

n∑
j=1

ci,jxi,j =
m∑
i=1

n∑
j=1

(vj − ui + qi,j)xi,j =
m∑
i=1

djvj −
n∑
j=1

siui,

as required.

Letm and n be positive integers, let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n},
and let the subset B of I×J be a basis for an instance of the Transportation
Problem with m suppliers and n recipients. Let the cost of a feasible solution

(xi,j) be
m∑
i=1

n∑
j=1

ci,jxi,j. Now
n∑
j=1

xi,j = si and
m∑
i=1

xi,j = dj, where the quanti-

ties si and dj are determined by the specification of the problem and are the
same for all feasible solutions of the problem. Let quantities ui for i ∈ I and
vj for j ∈ J be determined such that ci,j = vj − ui for all (i, j) ∈ B, and let
qi,j = ci,j + ui − vj for all i ∈ I and j ∈ J . Then qi,j = 0 for all (i, j) ∈ B.

It follows from Proposition 3.8 that

m∑
i=1

n∑
j=1

ci,jxi,j =
m∑
i=1

vjdj −
n∑
j=1

uisi +
m∑
i=1

n∑
j=1

qi,jxi,j.

Now if the quantities xi,j for i ∈ I and j ∈ J constitute a basic feasible
solution associated with the basis B then xi,j = 0 whenever (i, j) 6∈ B. It

follows that
m∑
i=1

n∑
j=1

qi,jxi,j = 0, and therefore

m∑
i=1

vjdj −
n∑
j=1

uisi = C,

where

C =
m∑
i=1

n∑
j=1

ci,jxi,j.

The cost C of the feasible solution (xi,j) then satisfies the equation

C =
m∑
i=1

n∑
j=1

ci,jxi,j = C +
m∑
i=1

n∑
j=1

qi,jxi,j.

If qi,j ≥ 0 for all i ∈ I and j ∈ J , then the cost C of any feasible solution
(xi,j) is bounded below by the cost of the basic feasible solution (xi,j). It
follows that, in this case, the basic feasible solution (xi,j) is optimal.
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Suppose that (i0, j0) is an element of I × J for which qi0,j0 < 0. Then
(i0, j0) 6∈ B. There is no basis for the Transportation Problem that includes
the set B∪{(i0, j0)}. A straightforward application of Lemma 3.5 establishes
the existence of quantities yi,j for i ∈ I and j ∈ J such that yi0,j0 = 1 and
yi,j = 0 for all i ∈ I and j ∈ J for which (i, j) 6∈ B ∪ {(i0, j0)}.

Let the m × n matrices X and Y be defined so that (X)i,j = xi,j and
(Y )i,j = yi,j for all i ∈ I and j ∈ J . Suppose that xi,j > 0 for all (i, j) ∈
B. Then the components of X in the basis positions are strictly positive.
It follows that, if λ is positive but sufficiently small, then the components
of the matrix X + λY in the basis positions are also strictly positive, and
therefore the components of the matrix X + λY are non-negative for all
sufficiently small non-negative values of λ. There will then exist a maximum
value λ0 that is an upper bound on the values of λ for which all components
of the matrix X + λY are non-negative. It is then a straightforward exercise
in linear algebra to verify that X + λ0Y is another basic feasible solution
associated with a basis that includes (i0, j0) together with all but one of the
elements of the basis B. Moreover the cost of this new basic feasible solution
is C + λ0qi0,j0 , where C is the cost of the basic feasible solution represented
by the matrix X. Thus if qi0,j0 < 0 then the cost of the new basic feasible
solution is lower than that of the basic feasible solution X from which it was
derived.

Suppose that, for all basic feasible solutions of the given Transportation
problem, the coefficients of the matrix specifying the basic feasible solution
are strictly positive at the basis positions. Then a finite number of iterations
of the procedure discussed above with result in an basic optimal solution of
the given instance of the Transportation Problem. Such problems are said
to be non-degenerate.

However if it turns out that a basic feasible solution (xi,j) associated with
a basis B satisfies xi,j = 0 for some (i, j) ∈ B, then we are in a degenerate
case of the Transportation Problem. The theory of degenerate cases of linear
programming problems is discussed in detail in textbooks that discuss the
details of linear programming algorithms.

We now establish the proposition that guarantees that, given any basis B,
there exist quantities u1, u2, . . . , um and v1, v2, . . . , vn such that the costs ci,j
associated with the given instance of the Transportation Problem satisfy
ci,j = vj − ui for all (i, j) ∈ B. This result is an essential component of
the method described here for testing basic feasible solutions to determine
whether or not they are optimal.

Proposition 3.10 Let m and n be integers, let I = {1, 2, . . . ,m} and J =
{1, 2, . . . , n}, and let B be a subset of I×J that is a basis for the transporta-
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tion problem with m suppliers and n recipients. For each (i, j) ∈ B let ci,j be
a corresponding real number. Then there exist real numbers ui for i ∈ I and
vj for j ∈ J such that ci,j = vj − ui for all (i, j) ∈ B. Moreover if ui and vj
are real numbers for i ∈ I and j ∈ J that satisfy the equations ci,j = vj − ui
for all (i, j) ∈ B, then there exists some real number k such that ui = ui + k
for all i ∈ I and vj = vj + k for all j ∈ J .

Proof Let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑
j=1

(z)j

}
,

let ρ:Mm,n(R) → Rm and σ:Mm,n(R) → Rn be the linear transformations

defined such that ρ(X)i =
n∑
j=1

(X)i,j for i = 1, 2, . . . ,m and σ(X)j =
m∑
i=1

(X)i,j

for j = 1, 2, . . . , n, let

MB = {X ∈Mm,n(R) : (X)i,j = 0 whenever (i, j) 6∈ B},

and let C be the m × n matrix defined such that (C)i,j = ci,j for all i ∈ I
and j ∈ J .

Now, given any element (y, z) of W , there exists a uniquely-determined

m×n matrix X such that
n∑
j=1

(X)i,j = (y)i for i = 1, 2, . . . ,m,
m∑
i=1

(X)i,j = (z)j

for j = 1, 2, . . . , n and (X)i,j = 0 unless (i, j) ∈ B (see Proposition 3.4).
Then X is the unique matrix belonging to MB that satisfies ρ(X) = y and
σ(X) = z. We define

g(y, z) = trace(CTX) =
m∑
i=1

n∑
j=1

ci,j(X)i,j.

We obtain in this way a well-defined function g:W → R characterized by the
property that

g(ρ(X), σ(X)) = trace(CTX)

for all X ∈ MB. Now ρ(λX) = λy and σ(λX) = λz for all real numbers λ.
It follows that

g(λ(y, z)) = λg(y, z)

for all real numbers λ. Also, given elements (y′, z′) and (y′′, z′′) of W , there
exist unique matrices X ′ and X ′′ belonging to MB such that ρ(X ′) = y′,
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ρ(X ′′) = y′′, σ(X ′) = z′ and σ(X ′′) = z′′. Then ρ(X ′ + X ′′) = y′ + y′′ and
σ(X ′ +X ′′) = z′ + z′′, and therefore

g((y′, z′) + (y′′, z′′)) = trace(CT (X ′ +X ′′))

= trace(CTX ′) + trace(CTX ′′)

= g(y′, z′) + g(y′′, z′′).

It follows that the function g:W → R is a linear transformation. It is thus a
linear functional on the real vector space W .

For each integer i between 1 and m, let b(i) denote the vector in Rm whose
ith component is equal to 1 and whose other components are zero, and, for
each integer j between 1 and n, let b(j) denote the vector in Rn whose
jth component is equal to 1 and whose other components are zero. Then
(b(1)−b(i),0) ∈ W for i = 1, 2, . . . ,m and (b(1),b(j)) ∈ W for j = 1, 2, . . . , n.
We define ui = g(b(1) − b(i),0) for i = 1, 2, . . . ,m and vj = g(b(1),b(j)) for
j = 1, 2, . . . , n. Then u1 = 0 and

vj − ui = g(b(1),b(j))− g(b(1) − b(i),0)

= g
(
(b(1),b(j))− (b(1) − b(i),0)

)
= g(b(i),b(j))

for all i ∈ I and j ∈ J .
If (i, j) ∈ B then b(i) = ρ(E(i,j)) and b(j) = σ(E(i,j)), where E(i,j) is the

m × n matrix whose coefficient in the ith row and jth column is equal to 1
and whose other coefficients are zero. Moreover E(i,j) ∈MB for all (i, j) ∈ B.
It follows from the definition of the linear functional g that

vj − ui = g(b(i),b(j)) = trace(CTE(i,j)) = ci,j

for all (i, j) ∈ B.
Now let ui and vj be real numbers for i ∈ I and j ∈ J that satisfy the

equations ci,j = vj − ui for all (i, j) ∈ B. Let

g(y, z) =
n∑
j=1

vj(z)j −
m∑
i=1

ui(y)i

for all y ∈ Rm and z ∈ Rn. Then

g(ρ(E(i,j)), σ(E(i,j))) = g(b(i),b(j)) = vj − ui

for all (i, j) ∈ I × J . It follows that

g(ρ(E(i,j)), σ(E(i,j))) = vj−ui = ci,j = g(ρ(E(i,j)), σ(E(i,j))) for all (i, j) ∈ B.
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Now the matrices E(i,j) for all (i, j) ∈ B constitute a basis of the vector space
MK . It follows that

g(ρ(X), σ(X)) = g(ρ(X), σ(X))

for all X ∈ MB. But every element of the vector space W is of the form
(ρ(X), σ(X)) for some X ∈ MB. (This follows Proposition 3.4, as discussed
earlier in the proof.) Thus

g(y, z) = g(y, z)

for all (y, z) ∈ W . In particular

ui − u1 = g(b(1) − b(i),0) = g(b(1) − b(i),0) = ui − u1

for all i ∈ I, and

vj − u1 = g(b(1),b(j)) = g(b(1),b(j)) = vj − u1

for all j ∈ J . Let k = u1− u1. Then ui = ui + k for all i ∈ I and vj = vj + k
for all j ∈ J , as required.

48


