Module MA3484: Methods of Mathematical Economics Hilary Term 2015

D. R. Wilkins

Copyright © David R. Wilkins 2015

Contents

2	Bas	es of Finite-Dimensional Vector Spaces	6
	2.1	Real Vector Spaces	6
	2.2	Linear Dependence and Bases	6
	2.3	Dual Spaces	9

2 Bases of Finite-Dimensional Vector Spaces

2.1 Real Vector Spaces

Definition A real vector space consists of a set V on which there is defined an operation of vector addition, yielding an element $\mathbf{v} + \mathbf{w}$ of V for each pair \mathbf{v}, \mathbf{w} of elements of V, and an operation of multiplication-by-scalars that yields an element $\lambda \mathbf{v}$ of V for each $\mathbf{v} \in V$ and for each real number λ . The operation of vector addition is required to be commutative and associative. There must exist a zero element $\mathbf{0}_V$ of V that satisfies $\mathbf{v} + \mathbf{0}_V = \mathbf{v}$ for all $\mathbf{v} \in V$, and, for each $\mathbf{v} \in V$ there must exist an element $-\mathbf{v}$ of V for which $\mathbf{v}+(-\mathbf{v})=\mathbf{0}_V$. The following identities must also be satisfied for all $\mathbf{v}, \mathbf{w} \in V$ and for all real numbers λ and μ :

$$(\lambda + \mu)\mathbf{v} = \lambda\mathbf{v} + \mu\mathbf{v}, \quad \lambda(\mathbf{v} + \mathbf{w}) = \lambda\mathbf{v} + \lambda\mathbf{w},$$

$$\lambda(\mu\mathbf{v}) = (\lambda\mu)\mathbf{v}, \quad 1\mathbf{v} = \mathbf{v}.$$

Let n be a positive integer. The set \mathbb{R}^n consisting of all n-tuples of real numbers is then a real vector space, with addition and multiplication-by-scalars defined such that

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

and

$$\lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$$

for all $(x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \in \mathbb{R}$ and for all real numbers λ .

The set $M_{m,n}(\mathbb{R})$ of all $m \times n$ matrices is a real vector space with respect to the usual operations of matrix addition and multiplication of matrices by real numbers.

2.2 Linear Dependence and Bases

Elements $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$ of a real vector space V are said to be *linearly dependent* if there exist real numbers $\lambda_1, \lambda_2, \dots, \lambda_m$, not all zero, such that

$$\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \dots + \lambda_m \mathbf{u}_m = \mathbf{0}_V.$$

If elements $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$ of real vector space V are not linearly dependent, then they are said to be *linearly independent*.

Elements $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ of a real vector space V are said to span V if, given any element \mathbf{v} of V, there exist real numbers $\lambda_1, \lambda_2, \dots, \lambda_n$ such that $\mathbf{v} = \lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \dots + \lambda_n \mathbf{u}_n$.

A vector space is said to be *finite-dimensional* if there exists a finite subset of V whose members span V.

Elements $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ of a finite-dimensional real vector space V are said to constitute a *basis* of V if they are linearly independent and span V.

Lemma 2.1 Elements $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ of a real vector space V constitute a basis of V if and only if, given any element \mathbf{v} of V, there exist uniquely-determined real numbers $\lambda_1, \lambda_2, \dots, \lambda_n$ such that

$$\mathbf{v} = \lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \dots + \lambda_n \mathbf{u}_n.$$

Proof Suppose that $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ is a basis of V. Let \mathbf{v} be an element V. The requirement that $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ span V ensures that there exist real numbers $\lambda_1, \lambda_2, \dots, \lambda_n$ such that

$$v = \lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \dots + \lambda_n \mathbf{u}_n.$$

If $\mu_1, \mu_2, \dots, \mu_n$ are real numbers for which

$$v = \mu_1 \mathbf{u}_1 + \mu_2 \mathbf{u}_2 + \dots + \mu_n \mathbf{u}_n,$$

then

$$(\mu_1 - \lambda_1)\mathbf{u}_1 + (\mu_2 - \lambda_2)\mathbf{u}_2 + \dots + (\mu_n - \lambda_n)\mathbf{u}_n = \mathbf{0}_V.$$

It then follows from the linear independence of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ that $\mu_i - \lambda_i = 0$ for $i = 1, 2, \dots, n$, and thus $\mu_i = \lambda_i$ for $i = 1, 2, \dots, n$. This proves that the coefficients $\lambda_1, \lambda_2, \dots, \lambda_n$ are uniquely-determined.

Conversely suppose that $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ is a list of elements of V with the property that, given any element \mathbf{v} of V, there exist uniquely-determined real numbers $\lambda_1, \lambda_2, \dots, \lambda_n$ such that

$$v = \lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \dots + \lambda_n \mathbf{u}_n.$$

Then $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ span V. Moreover we can apply this criterion when $\mathbf{v} = 0$. The uniqueness of the coefficients $\lambda_1, \lambda_2, \dots, \lambda_n$ then ensures that if

$$\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \dots + \lambda_n \mathbf{u}_n = \mathbf{0}_V$$

then $\lambda_i = 0$ for i = 1, 2, ..., n. Thus $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n$ are linearly independent. This proves that $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n$ is a basis of V, as required.

Proposition 2.2 Let V be a finite-dimensional real vector space, let

$$\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$$

be elements of V that span V, and let K be a subset of $\{1, 2, ..., n\}$. Suppose either that $K = \emptyset$ or else that those elements \mathbf{u}_i for which $i \in K$ are linearly independent. Then there exists a basis of V whose members belong to the list $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n$ which includes all the vectors \mathbf{u}_i for which $i \in K$.

Proof We prove the result by induction on the number of elements in the list $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ of vectors that span V. The result is clearly true when n = 1. Thus suppose, as the induction hypothesis, that the result is true for all lists of elements of V that span V and that have fewer than n members.

If the elements $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ are linearly independent, then they constitute the required basis. If not, then there exist real numbers $\lambda_1, \lambda_2, \dots, \lambda_n$, not all zero, such that

$$\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \dots + \lambda_n \mathbf{u}_n = \mathbf{0}_V.$$

Now there cannot exist real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$, not all zero, such that both $\sum_{i=1}^n \lambda_i \mathbf{u}_i = \mathbf{0}_V$ and also $\lambda_i = 0$ whenever $i \neq K$. Indeed, in the case where $K = \emptyset$, this conclusion follows from the requirement that the real numbers λ_i cannot all be zero, and, in the case where $K \neq \emptyset$, the conclusion follows from the linear independence of those \mathbf{u}_i for which $i \in K$. Therefore there must exist some integer i satisfying $1 \leq i \leq n$ for which $\lambda_i \neq 0$ and $i \notin K$. Without loss of generality, we may suppose that $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ are ordered so that $n \notin K$ and $\lambda_n \neq 0$. Then

$$\mathbf{u}_n = -\sum_{i=1}^{n-1} \frac{\lambda_i}{\lambda_n} \, \mathbf{u}_i.$$

Let **v** be an element of V. Then there exist real numbers $\mu_1, \mu_2, \dots, \mu_n$ such that $\mathbf{v} = \sum_{i=1}^n \mu_i \mathbf{u}_i$, because $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ span V. But then

$$\mathbf{v} = \sum_{i=1}^{n-1} \left(\mu_i - \frac{\mu_n \lambda_i}{\lambda_n} \right) \mathbf{u}_i.$$

We conclude that $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{n-1}$ span the vector space V. The induction hypothesis then ensures that there exists a basis of V consisting of members of this list that includes the linearly independent elements $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$, as required.

Corollary 2.3 Let V be a finite-dimensional real vector space, and let

$$\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$$

be elements of V that span the vector space V. Then there exists a basis of V whose elements are members of the list $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.

Proof This result is a restatement of Proposition 2.2 in the special case where the set K in the statement of that proposition is the empty set.

2.3 Dual Spaces

Definition Let V be a real vector space. A linear functional $\varphi: V \to \mathbb{R}$ on V is a linear transformation from the vector space V to the field \mathbb{R} of real numbers.

Given linear functionals $\varphi: V \to \mathbb{R}$ and $\psi: V \to \mathbb{R}$ on a real vector space V, and given any real number λ , we define $\varphi + \psi$ and $\lambda \varphi$ to be the linear functionals on V defined such that $(\varphi + \psi)(\mathbf{v}) = \varphi(\mathbf{v}) + \psi(\mathbf{v})$ and $(\lambda \varphi)(\mathbf{v}) = \lambda \varphi(\mathbf{v})$ for all $\mathbf{v} \in V$.

The set V^* of linear functionals on a real vector space V is itself a real vector space with respect to the algebraic operations of addition and multiplication-by-scalars defined above.

Definition Let V be a real vector space. The *dual space* V^* of V is the vector space whose elements are the linear functionals on the vector space V.

Now suppose that the real vector space V is finite-dimensional. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be a basis of V, where $n = \dim V$. Given any $\mathbf{v} \in V$ there exist uniquely-determined real numbers $\lambda_1, \lambda_2, \dots, \lambda_n$ such that $\mathbf{v} = \sum_{j=1}^n \lambda_j \mathbf{u}_j$.

It follows that there are well-defined functions $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ from \check{V} to the field \mathbb{R} defined such that

$$\varepsilon_i \left(\sum_{j=1}^n \lambda_j \mathbf{u}_j \right) = \lambda_i$$

for i = 1, 2, ..., n and for all real numbers $\lambda_1, \lambda_2, ..., \lambda_n$. These functions are linear transformations, and are thus linear functionals on V.

Lemma 2.4 Let V be a finite-dimensional real vector space, let

$$\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$$

be a basis of V, and let $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ be the linear functionals on V defined such that

$$\varepsilon_i \left(\sum_{j=1}^n \lambda_j \mathbf{u}_j \right) = \lambda_i$$

for i = 1, 2, ..., n and for all real numbers $\lambda_1, \lambda_2, ..., \lambda_n$. Then $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ constitute a basis of the dual space V^* of V. Moreover

$$\varphi = \sum_{i=1}^{n} \varphi(\mathbf{u_i}) \varepsilon_i$$

for all $\varphi \in V^*$.

Proof Let $\mu_1, \mu_2, \ldots, \mu_n$ be real numbers with the property that $\sum_{i=1}^n \mu_i \varepsilon_i = \mathbf{0}_{V^*}$. Then

$$0 = \left(\sum_{i=1}^{n} \mu_i \varepsilon_i\right) (\mathbf{u}_j) = \sum_{i=1}^{n} \mu_i \varepsilon_i (\mathbf{u}_j) = \mu_j$$

for j = 1, 2, ..., n. Thus the linear functionals $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ on V are linearly independent elements of the dual space V^* .

Now let $\varphi: V \to \mathbb{R}$ be a linear functional on V, and let $\mu_i = \varphi(\mathbf{u}_i)$ for i = 1, 2, ..., n. Now

$$\varepsilon_i(\mathbf{u}_j) = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

It follows that

$$\left(\sum_{i=1}^{n} \mu_{i} \varepsilon_{i}\right) \left(\sum_{j=1}^{n} \lambda_{j} \mathbf{u}_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{i} \lambda_{j} \varepsilon_{i}(\mathbf{u}_{j}) = \sum_{j=1}^{n} \mu_{j} \lambda_{j}$$
$$= \sum_{j=1}^{n} \lambda_{j} \varphi(\mathbf{u}_{j}) = \varphi\left(\sum_{j=1}^{n} \lambda_{j} \mathbf{u}_{j}\right)$$

for all real numbers $\lambda_1, \lambda_2, \dots, \lambda_n$.

It follows that

$$\varphi = \sum_{i=1}^{n} \mu_i \varepsilon_i = \sum_{i=1}^{n} \varphi(\mathbf{u}_i) \varepsilon_i.$$

We conclude from this that every linear functional on V can be expressed as a linear combination of $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$. Thus these linear functionals span V^* . We have previously shown that they are linearly independent. It follows that they constitute a basis of V^* . Moreover we have verified that $\varphi = \sum_{i=1}^n \varphi(\mathbf{u}_i)\varepsilon_i$ for all $\varphi \in V^*$, as required.

Definition Let V be a finite-dimensional real vector space, let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be a basis of V. The corresponding *dual basis* of the dual space V^* of V consists of the linear functionals $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ on V, where

$$\varepsilon_i \left(\sum_{j=1}^n \lambda_j \mathbf{u}_j \right) = \lambda_i$$

for i = 1, 2, ..., n and for all real numbers $\lambda_1, \lambda_2, ..., \lambda_n$.

Corollary 2.5 Let V be a finite-dimensional real vector space, and let V^* be the dual space of V. Then dim $V^* = \dim V$.

Proof We have shown that any basis of V gives rise to a dual basis of V^* , where the dual basis of V has the same number of elements as the basis of V to which it corresponds. The result follows immediately from the fact that the dimension of a finite-dimensional real vector space is the number of elements in any basis of that vector space.

Let V be a real-vector space, and let V^* be the dual space of V. Then V^* is itself a real vector space, and therefore has a dual space V^{**} . Now each element \mathbf{v} of V determines a corresponding linear functional $E_{\mathbf{v}}: V^* \to \mathbb{R}$ on V^* , where $E_{\mathbf{v}}(\varphi) = \varphi(\mathbf{v})$ for all $\varphi \in V^*$. It follows that there exists a function $\iota: V \to V^{**}$ defined so that $\iota(\mathbf{v}) = E_{\mathbf{v}}$ for all $\mathbf{v} \in V$. Then $\iota(\mathbf{v})(\varphi) = \varphi(\mathbf{v})$ for all $\mathbf{v} \in V$ and $\varphi \in V^*$.

Now

$$\iota(\mathbf{v} + \mathbf{w})(\varphi) = \varphi(\mathbf{v} + \mathbf{w}) = \varphi(\mathbf{v}) + \varphi(\mathbf{w}) = (\iota(\mathbf{v}) + \iota(\mathbf{w}))(\varphi)$$

and

$$\iota(\lambda \mathbf{v})(\varphi) = \varphi(\lambda \mathbf{v}) = \lambda \varphi(\mathbf{v}) = (\lambda \iota(\mathbf{v}))(\varphi)$$

for all $\mathbf{v}, \mathbf{w} \in V$ and $\varphi \in V^*$ and for all real numbers λ . It follows that $\iota(\mathbf{v} + \mathbf{w}) = \iota(\mathbf{v}) + \iota(\mathbf{w})$ and $\iota(\lambda \mathbf{v}) = \lambda \iota(\mathbf{v})$ for all $\mathbf{v}, \mathbf{w} \in V$ and for all real numbers λ . Thus $\iota: V \to V^{**}$ is a linear transformation.

Proposition 2.6 Let V be a finite-dimensional real vector space, and let $\iota: V \to V^{**}$ be the linear transformation defined such that $\iota(\mathbf{v})(\varphi) = \varphi(\mathbf{v})$ for all $\mathbf{v} \in V$ and $\varphi \in V^*$. Then $\iota: V \to V^{**}$ is an isomorphism of real vector spaces.

Proof Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be a basis of V, let $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ be the dual basis of V^* , where

$$\varepsilon_i(\mathbf{u}_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

and let $\mathbf{v} \in V$. Then there exist real numbers $\lambda_1, \lambda_2, \dots, \lambda_n$ such that $\mathbf{v} = \sum_{i=1}^n \lambda_i \mathbf{u}_i$.

Suppose that $\iota(\mathbf{v}) = \mathbf{0}_{V^{**}}$. Then $\varphi(\mathbf{v}) = E_{\mathbf{v}}(\varphi) = 0$ for all $\varphi \in V^{*}$. In particular $\lambda_i = \varepsilon_i(\mathbf{v}) = 0$ for i = 1, 2, ..., n, and therefore $\mathbf{v} = \mathbf{0}_V$. We conclude that $\iota: V \to V^{**}$ is injective.

Now let $F: V^* \to \mathbb{R}$ be a linear functional on V^* , let $\lambda_i = F(\varepsilon_i)$ for i = 1, 2, ..., n, let $\mathbf{v} = \sum_{i=1}^n \lambda_i \mathbf{u}_i$, and let $\varphi \in V^*$. Then $\varphi = \sum_{i=1}^n \varphi(\mathbf{u}_i)\varepsilon_i$ (see

Lemma 2.4), and therefore

$$\iota(\mathbf{v})(\varphi) = \varphi(\mathbf{v}) = \sum_{i=1}^{n} \lambda_i \varphi(\mathbf{u}_i) = \sum_{i=1}^{n} F(\varepsilon_i) \varphi(\mathbf{u}_i)$$
$$= F\left(\sum_{i=1}^{n} \varphi(\mathbf{u}_i) \varepsilon_i\right) = F(\varphi).$$

Thus $\iota(\mathbf{v}) = F$. We conclude that the linear transformation $\iota: V \to V^{**}$ is surjective. We have previously shown that this linear transformation is injective. There $\iota: V \to V^{**}$ is an isomorphism between the real vector spaces V and V^{**} as required.

The following corollary is an immediate consequence of Proposition 2.6.

Corollary 2.7 Let V be a finite-dimensional real vector space, and let V^* be the dual space of V. Then, given any linear functional $F: V^* \to \mathbb{R}$, there exists some $\mathbf{v} \in V$ such that $F(\varphi) = \varphi(\mathbf{v})$ for all $\varphi \in V^*$.