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2 Bases of Finite-Dimensional Vector Spaces

2.1 Real Vector Spaces

Definition A real vector space consists of a set V' on which there is defined
an operation of vector addition, yielding an element v +w of V' for each pair
v,w of elements of V', and an operation of multiplication-by-scalars that
yields an element Av of V' for each v € V' and for each real number X\. The
operation of vector addition is required to be commutative and associative.
There must exist a zero element 0y of V that satisfies v + 0y = v for all
v € V, and, for each v € V there must exist an element —v of V' for which
v+(—v) = 0y. The following identities must also be satisfied for all v,w € V'
and for all real numbers A and u:

A+ p)v=Av+uv, Av+w)=Av+Aw,
AMpv) = (A\p)v, 1v=v.

Let n be a positive integer. The set R™ consisting of all n-tuples of real
numbers is then a real vector space, with addition and multiplication-by-
scalars defined such that

(xlal‘%"':xn)+(y17y27"'ayn):<x1+y17x2+y27"'xn+yn)

and
Mz1, T, ., xy) = (Axy, AT, ..., Axy)

for all (1, 2z2,...,20), (Y1,%2,.-.,Ys) € R and for all real numbers \.

The set M,,,(R) of all m x n matrices is a real vector space with respect
to the usual operations of matrix addition and multiplication of matrices by
real numbers.

2.2 Linear Dependence and Bases

Elements uy, us, ..., u,, of a real vector space V are said to be linearly de-
pendent if there exist real numbers A1, Ao, ..., A, not all zero, such that

Aug + Aus + - - -+ Au,, = Oy

If elements uy, us, ..., u,, of real vector space V' are not linearly dependent,
then they are said to be linearly independent.

Elements uy, us,...,u, of a real vector space V' are said to span V if,
given any element v of V, there exist real numbers Ay, Ao, ..., A\, such that
vV =AUy + Xus + -+ Au,.



A vector space is said to be finite-dimensional if there exists a finite
subset of V' whose members span V.

Elements uy,us,...,u, of a finite-dimensional real vector space V are
said to constitute a basis of V' if they are linearly independent and span V.

Lemma 2.1 FElements uy,us,...,u, of a real vector space V' constitute a
basis of V' if and only if, given any element v of V', there exist uniquely-
determined real numbers \i, Aa, ..., A, such that

vV = )\1111 +>\2U2+"'+>\nun.

Proof Suppose that u;,us,...,u, is a basis of V. Let v be an element V.
The requirement that uy,us,...,u, span V ensures that there exist real
numbers Ay, Ao, ..., A\, such that

V= )\1111 + )\2112 + -+ /\nun.
If pq, po, ..., pp, are real numbers for which

U = 10y + folg + -+ Up Uy,
then

(1 — A)ag + (2 — Ao)ug + -+ - + (pn — Ap)u, = Oy
It then follows from the linear independence of uy, us, ..., u, that u;—A; =0
forv=1,2,...,n, and thus y; = \; for © = 1,2,...,n. This proves that the
coefficients A1, Ao, ..., A, are uniquely-determined.
Conversely suppose that uy, us, ..., u, is a list of elements of V' with the

property that, given any element v of V', there exist uniquely-determined
real numbers Aq, Ao, ..., A\, such that

v =AUy + Aug + - + AU,

Then uy,u,,...,u, span V. Moreover we can apply this criterion when
v = 0. The uniqueness of the coefficients A1, X, ..., A, then ensures that if

)\1111 —|—/\2112 + .- +)\nun = OV

then \; =0 for+=1,2,...,n. Thus uj,u,,...,u, are linearly independent.
This proves that uy, us, ..., u, is a basis of V, as required. |}

Proposition 2.2 Let V' be a finite-dimensional real vector space, let
up, Uy, ..., Uy,

be elements of V' that span V', and let K be a subset of {1,2,... ,n}. Suppose
either that K = () or else that those elements u; for which i € K are linearly
independent. Then there exists a basis of V' whose members belong to the list
ug, Uo, ..., u, which includes all the vectors u; for which i € K.
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Proof We prove the result by induction on the number of elements in the
list uy,ug,...,u, of vectors that span V. The result is clearly true when
n = 1. Thus suppose, as the induction hypothesis, that the result is true for
all lists of elements of V' that span V' and that have fewer than n members.

If the elements uy, uy, ..., u, are linearly independent, then they consti-
tute the required basis. If not, then there exist real numbers A, Ao, ..., A,
not all zero, such that

/\1111 + /\2112 + -+ )\nun = Ov.

Now there cannot exist real numbers Ai, Aa, ..., \,, not all zero, such
that both z Aiw; = Oy and also \; = 0 whenever 7 # K. Indeed, in the

case where K (), this conclusion follows from the requirement that the real
numbers \; cannot all be zero, and, in the case where K # (), the conclusion
follows from the linear independence of those u; for which i € K. Therefore
there must exist some integer i satisfying 1 < ¢ < n for which \; # 0 and
1 € K. Without loss of generality, we may suppose that uy,us,...,u, are
ordered so that n € K and A\, # 0. Then

n—1 )\Z
_2 Tu

Let v be an element of V. Then there exist real numbers pq, o, ..., i
n
such that v = >~ pu;, because uy, uy, ..., u, span V. But then
i=1
n—1
s
sz(m_ﬂn Z>u¢-
i=1 n
We conclude that uy,us,...,u,_; span the vector space V. The induction
hypothesis then ensures that there exists a basis of V' consisting of members
of this list that includes the linearly independent elements uy, us, ..., u,,, as

required. |
Corollary 2.3 Let V' be a finite-dimensional real vector space, and let
U, Uy, ..., Uy

be elements of V' that span the vector space V. Then there exists a basis of
V' whose elements are members of the list uy, s, ..., u,.

Proof This result is a restatement of Proposition 2.2 in the special case
where the set K in the statement of that proposition is the empty set. |



2.3 Dual Spaces

Definition Let V' be a real vector space. A linear functional ¢:V — R on
V' is a linear transformation from the vector space V' to the field R of real
numbers.

Given linear functionals ¢: V' — R and v: V' — R on a real vector space V,
and given any real number A\, we define ¢ 4+ ¢ and Ay to be the linear
functionals on V' defined such that (¢ +v)(v) = ¢(v) +¢(v) and (A\p)(v) =
Ap(v) forall veV.

The set V* of linear functionals on a real vector space V is itself a
real vector space with respect to the algebraic operations of addition and
multiplication-by-scalars defined above.

Definition Let V be a real vector space. The dual space V* of V is the
vector space whose elements are the linear functionals on the vector space V.

Now suppose that the real vector space V is finite-dimensional. Let
ug, Us,..., U, be a basis of V, where n = dimV. Given any v € V there

n
exist uniquely-determined real numbers A, Ay, ..., A, such that v = > Aju,.
=1

]7
It follows that there are well-defined functions eq,e9,...,c, from V to the
field R defined such that

E; (Zn: /\jllj) = /\z
j=1

for7:=1,2,...,n and for all real numbers Ay, Ao, ..., \,. These functions are
linear transformations, and are thus linear functionals on V.

Lemma 2.4 Let V be a finite-dimensional real vector space, let

u;,ag,...,0,
be a basis of V', and let e1,¢9,...,&, be the linear functionals on V' defined
such that
& <Z /\jllj) = >\z
j=1
fori=1,2,... n and for all real numbers Ay, Ao, ..., \,. Then e1,e9,...,&,

constitute a basis of the dual space V* of V.. Moreover

= plwe
=1

for all p € V*.



Proof Let p, pa, ..., p, be real numbers with the property that > pe; =
i=1
OV*- Then

0= (Z m&) u;) Zuzsz u;)
i=1

for j =1,2,...,n. Thus the linear funcuonals €1,€9,...,6, on V are linearly
independent elements of the dual space V*.
Now let ¢: V' — R be a linear functional on V, and let p; = ¢(u;) for

1=1,2,...,n. Now
|1 iti=g;
52'(‘”)_{ 0 if i+ .

It follows that

i=1 j=1
= Z/\Jcp (u;) (Z)\ u]>

for all real numbers A;, Ag, ..., \,.

It follows that . .
Y= Zﬂz‘ﬁz‘ = Z 90(111')5
i=1 i=1

We conclude from this that every linear functional on V' can be expressed as

a linear combination of €1, 9, ...,¢,. Thus these linear functionals span V*.

We have previously shown that they are linearly independent. It follows that

they constitute a basis of V*. Moreover we have verified that ¢ = > ¢(u;)e;
i=1

for all p € V* as required. |}

Definition Let V' be a finite-dimensional real vector space, let uy, uy, ..., u,
be a basis of V. The corresponding dual basis of the dual space V* of V
consists of the linear functionals 1, ¢, ...,6, on V', where

E; (Zn: /\jllj) = /\z
j=1

for e =1,2,...,n and for all real numbers A\, \o, ..., \,.

Corollary 2.5 Let V' be a finite-dimensional real vector space, and let V*
be the dual space of V. Then dimV* = dim V.

10



Proof We have shown that any basis of V' gives rise to a dual basis of V*,
where the dual basis of V' has the same number of elements as the basis
of V' to which it corresponds. The result follows immediately from the fact
that the dimension of a finite-dimensional real vector space is the number of
elements in any basis of that vector space. |}

Let V be a real-vector space, and let V* be the dual space of V. Then
V* is itself a real vector space, and therefore has a dual space V**. Now each
element v of V' determines a corresponding linear functional E,:V* — R on
V*, where Ey(p) = ¢(v) for all ¢ € V*. It follows that there exists a function
1: V' — V** defined so that «(v) = Ey for all v.€ V. Then «(v)(¢) = ¢(Vv)
for all ve V and ¢ € V*.

Now

UV + W) (@) = o(v + W) = (V) + p(w) = (1(v) + «(W))(¥)

and
LAV) () = p(AV) = Ap(v) = (Au(v))(p)

for all v,w € V and ¢ € V* and for all real numbers A. It follows that
v+ w) =1uv)+(w) and t(Av) = A\(v) for all v,w € V and for all real
numbers A\. Thus ¢:V — V** is a linear transformation.

Proposition 2.6 Let V' be a finite-dimensional real vector space, and let
1: V. — V** be the linear transformation defined such that (v)(p) = p(v) for
allv eV and ¢ € V*. Then v:V — V** 4s an isomorphism of real vector
spaces.

Proof Let uj,u,,...,u, be a basis of V, let £1,¢5,...,¢e, be the dual basis
of V*, where
1 ifi =y,
eiyy) _{ 0 ifi# 7,
and let v € V. Then there exist real numbers Ai, Ao, ..., A\, such that v =
Z /\Zuz
i=1
Suppose that ¢(v) = Op«. Then p(v) = Ey(p) = 0 for all p € V*. In
particular \; = ¢;(v) = 0 for ¢ = 1,2,...,n, and therefore v.= 0. We

conclude that ¢: V' — V** is injective.
Now let F:V* — R be a linear functional on V*, let \; = F(g;) for

i=1,2,...,n,let v=> Nu, and let ¢ € V*. Then ¢ = > p(u;)e; (see
i=1 i=1
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Lemma 2.4), and therefore
iW)(e) = e(v) =D Nip(w) = 3 Flep(w)

= F (Z 90(1105@') = F(p).

Thus ¢(v) = F. We conclude that the linear transformation ¢: V' — V**
is surjective. We have previously shown that this linear transformation is
injective. There t: V' — V** is an isomorphism between the real vector spaces

V and V** as required. |}

The following corollary is an immediate consequence of Proposition 2.6.

Corollary 2.7 Let V' be a finite-dimensional real vector space, and let V*
be the dual space of V. Then, given any linear functional F:V* — R, there
exists some v € V such that F(p) = @(v) for all ¢ € V*.
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