
Module MA3484: Transportation Problem
Hilary Term 2015

Review of Linear Algebra

D. R. Wilkins

Copyright c© David R. Wilkins 2015

Contents

A Review of Linear Algebra 1
A.1 Real Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . 1
A.2 Linear Dependence and Bases . . . . . . . . . . . . . . . . . . 1
A.3 Subspaces of Real Vector Spaces . . . . . . . . . . . . . . . . . 6
A.4 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . 7
A.5 Dual Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
A.6 Linear Transformations and Matrices . . . . . . . . . . . . . . 15

i



A Review of Linear Algebra

A.1 Real Vector Spaces

Definition A real vector space consists of a set V on which there is defined
an operation of vector addition, yielding an element v +w of V for each pair
v,w of elements of V , and an operation of multiplication-by-scalars that
yields an element λv of V for each v ∈ V and for each real number λ. The
operation of vector addition is required to be commutative and associative.
There must exist a zero element 0V of V that satisfies v + 0V = v for all
v ∈ V , and, for each v ∈ V there must exist an element −v of V for which
v+(−v) = 0V . The following identities must also be satisfied for all v,w ∈ V
and for all real numbers λ and µ:

(λ+ µ)v = λv + µv, λ(v + w) = λv + λw,

λ(µv) = (λµ)v, 1v = v.

Let n be a positive integer. The set Rn consisting of all n-tuples of real
numbers is then a real vector space, with addition and multiplication-by-
scalars defined such that

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . xn + yn)

and
λ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn)

for all (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ R and for all real numbers λ.
The set Mm,n(R) of all m×n matrices is a real vector space with respect

to the usual operations of matrix addition and multiplication of matrices by
real numbers.

A.2 Linear Dependence and Bases

Elements u1,u2, . . . ,um of a real vector space V are said to be linearly de-
pendent if there exist real numbers λ1, λ2, . . . , λm, not all zero, such that

λ1u1 + λ2u2 + · · ·+ λmum = 0V .

If elements u1,u2, . . . ,um of real vector space V are not linearly dependent,
then they are said to be linearly independent.

Elements u1,u2, . . . ,un of a real vector space V are said to span V if,
given any element v of V , there exist real numbers λ1, λ2, . . . , λn such that
v = λ1u1 + λ2u2 + · · ·+ λnun.
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A vector space is said to be finite-dimensional if there exists a finite
subset of V whose members span V .

Elements u1,u2, . . . ,un of a finite-dimensional real vector space V are
said to constitute a basis of V if they are linearly independent and span V .

Lemma A.1 Elements u1,u2, . . . ,un of a real vector space V constitute a
basis of V if and only if, given any element v of V , there exist uniquely-
determined real numbers λ1, λ2, . . . , λn such that

v = λ1u1 + λ2u2 + · · ·+ λnun.

Proof Suppose that u1,u2, . . . ,un is a basis of V . Let v be an element V .
The requirement that u1,u2, . . . ,un span V ensures that there exist real
numbers λ1, λ2, . . . , λn such that

v = λ1u1 + λ2u2 + · · ·+ λnun.

If µ1, µ2, . . . , µn are real numbers for which

v = µ1u1 + µ2u2 + · · ·+ µnun,

then
(µ1 − λ1)u1 + (µ2 − λ2)u2 + · · ·+ (µn − λn)un = 0V .

It then follows from the linear independence of u1,u2, . . . ,un that µi−λi = 0
for i = 1, 2, . . . , n, and thus µi = λi for i = 1, 2, . . . , n. This proves that the
coefficients λ1, λ2, . . . , λn are uniquely-determined.

Conversely suppose that u1,u2, . . . ,un is a list of elements of V with the
property that, given any element v of V , there exist uniquely-determined
real numbers λ1, λ2, . . . , λn such that

v = λ1u1 + λ2u2 + · · ·+ λnun.

Then u1,u2, . . . ,un span V . Moreover we can apply this criterion when
v = 0. The uniqueness of the coefficients λ1, λ2, . . . , λn then ensures that if

λ1u1 + λ2u2 + · · ·+ λnun = 0V

then λi = 0 for i = 1, 2, . . . , n. Thus u1,u2, . . . ,un are linearly independent.
This proves that u1,u2, . . . ,un is a basis of V , as required.

Proposition A.2 Let V be a finite-dimensional real vector space, let

u1,u2, . . . ,un

be elements of V that span V , and let K be a subset of {1, 2, . . . , n}. Suppose
either that K = ∅ or else that those elements ui for which i ∈ K are linearly
independent. Then there exists a basis of V whose members belong to the list
u1,u2, . . . ,un which includes all the vectors ui for which i ∈ K.
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Proof We prove the result by induction on the number of elements in the
list u1,u2, . . . ,un of vectors that span V . The result is clearly true when
n = 1. Thus suppose, as the induction hypothesis, that the result is true for
all lists of elements of V that span V and that have fewer than n members.

If the elements u1,u2, . . . ,un are linearly independent, then they consti-
tute the required basis. If not, then there exist real numbers λ1, λ2, . . . , λn,
not all zero, such that

λ1u1 + λ2u2 + · · ·+ λnun = 0V .

Now there cannot exist real numbers λ1, λ2, . . . , λn, not all zero, such

that both
n∑

i=1

λiui = 0V and also λi = 0 whenever i 6= K. Indeed, in the

case where K = ∅, this conclusion follows from the requirement that the real
numbers λi cannot all be zero, and, in the case where K 6= ∅, the conclusion
follows from the linear independence of those ui for which i ∈ K. Therefore
there must exist some integer i satisfying 1 ≤ i ≤ n for which λi 6= 0 and
i 6∈ K. Without loss of generality, we may suppose that u1,u2, . . . ,un are
ordered so that n 6∈ K and λn 6= 0. Then

un = −
n−1∑
i=1

λi
λn

ui.

Let v be an element of V . Then there exist real numbers µ1, µ2, . . . , µn

such that v =
n∑

i=1

µiui, because u1,u2, . . . ,un span V . But then

v =
n−1∑
i=1

(
µi −

µnλi
λn

)
ui.

We conclude that u1,u2, . . . ,un−1 span the vector space V . The induction
hypothesis then ensures that there exists a basis of V consisting of members
of this list that includes the linearly independent elements u1,u2, . . . ,um, as
required.

Corollary A.3 Let V be a finite-dimensional real vector space, and let

u1,u2, . . . ,un

be elements of V that span the vector space V . Then there exists a basis of
V whose elements are members of the list u1,u2, . . . ,un.
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Proof This result is a restatement of Proposition A.2 in the special case
where the set K in the statement of that proposition is the empty set.

Proposition A.4 Let V be a finite-dimensional real vector space with basis
u1,u2, . . . ,un, let w be an element of V , and let λ1, λ2, . . . , λn be the unique

real numbers for which w =
n∑

i=1

λiui. Suppose that λj 6= 0 for some integer j

between 1 and n. Then the element w of V and those elements ui of the
given basis for which i 6= j together constitute a basis of V .

Proof We result follows directly when n = 1. Thus it suffices to prove the
result when n > 1. We may suppose, without loss of generality, that the
basis elements u1,u2, . . . ,un are ordered so that j = n. We must then show
that w,u1,u2, . . . ,un−1 is a basis of V . Now

w =
n−1∑
i=1

λiui + λnun,

where λn 6= 0, and therefore

un =
1

λn
w −

n−1∑
i=1

λi
λn

un−1.

Let v be an element of V . Then there exist real numbers µ1, µ2, . . . , µn

such that v =
n∑

i=1

µiui. Then

v =
µn

λn
w +

n−1∑
i=1

(
µi −

λiµn

λn

)
ui.

We conclude from this that the vectors w,u1, . . . ,un−1 span the vector
space V .

Now let ρ0, ρ1, . . . , ρn−1 be real numbers with the property that

ρ0w +
n−1∑
i=1

ρiui = 0V .

Then
n−1∑
i=1

(ρi + ρ0λi)ui + ρ0λnun = 0V .

It then follows from the linear independence of u1,u2, . . . ,un that ρi+ρ0λi =
0 for i = 1, 2, . . . , n−1 and ρ0λn = 0. But λn 6= 0. It follows that ρ0 = 0. But
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then ρi = −ρ0λi = 0 for i = 1, 2, . . . , n− 1. This proves that w,u1, . . . ,un−1
are linearly independent. These vectors therefore constitute a basis of the
vector space V , as required.

Proposition A.5 Let V be a finite-dimensional real vector space. Suppose
that elements u1,u2, . . . ,un of V span the vector space V and that elements
w1,w2, . . . ,wm of V are linearly independent. Then m ≤ n, and there exists
a basis of V consisting of the elements w1,w2, . . . ,wm together with not more
than n−m elements belonging to the list u1,u2, . . . ,un.

Proof If the elements u1,u2, . . . ,un spanning V are not linearly independent
then it follows from Corollary A.3 that we may remove elements from this
list so as to obtain a basis for the vector space V . We may therefore assume,
without loss of generality, that the elements u1,u2, . . . ,un constitute a basis
of V with n elements.

Suppose that m ≥ 1. It then follows from Proposition A.4 that there
exists a basis of V consisting of w1 together with n− 1 members of the list
u1,u2, . . . ,un.

Suppose that, for some integer k satisfying 1 ≤ k < m and k < n, there
exist distinct integers j1, j2, . . . , jk between 1 and n such that the elements wi

for 1 ≤ i ≤ k together with the elements ui for i 6∈ {j1, j2, . . . , jk} together
constitute a basis of the vector space V . Then there exist real numbers
ρ1, ρ2, . . . , ρk and λ1, λ2, . . . , λn such that

wk+1 =
k∑

s=1

ρsws +
n∑

i=1

λiui

and
λi = 0 for i = j1, j2, . . . , jk.

If it were the case that λi = 0 for all integers i satisfying 1 ≤ i ≤ n then
wk+1 would be expressible as a linear combination of w1,w2, . . . ,wk, and
therefore the elements w1,w2, . . . ,wk+1 of V would be linearly dependent.
But these elements are linearly independent. It follows that λjk+1

6= 0 for
some integer jk+1 between 1 and n. Moreover the integers j1, j2, . . . , jk+1 are
then distinct, and it follows from Proposition A.4 that the elements wi for
1 ≤ i ≤ k+ 1 together with the elements ui for i 6∈ {j1, j2, . . . , jk+1} together
constitute a basis of the vector space V .

It then follows by repeated applications of this result that if m0 is the
minimum of m and n then there exists a basis of V consisting of the elements
wi for 1 ≤ i ≤ m0 together with n−m0 members of the list u1,u2, . . . ,un.
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If it were the case that n < m then the n elements w1,w2, . . . ,wn would
be a basis of V , and thus the elements w1,w2, . . . ,wm would not be linearly
independent. Therefore n ≥ m, and there exists a basis of V consisting of
the elements wi for 1 ≤ i ≤ m together with n − m members of the list
u1,u2, . . . ,un, as required.

Corollary A.6 Any two bases of a finite-dimensional real vector space con-
tain the same number of elements.

Proof It follows from Proposition A.5 that the number of members in a list
of linearly independent elements of a finite-dimensional real vector space V
cannot exceed the number of members in a list of elements of V that spans
V . The members of a basis of V are linearly independent and also span V .
Therefore the number of members of one basis of V cannot exceed the number
of members of another. The result follows.

Definition The dimension of a finite-dimensional real vector space V is the
number of members of any basis of V .

The dimension of a real vector space V is denoted by dimV .

It follows from Corollary A.3 that every finite-dimensional real vector
space V has a basis. It follows from Corollary A.6 that any two bases of that
vector space have the same number of elements. These results ensure that
every finite-dimensional real vector space has a well-defined dimension that
is equal to the number of members of any basis of that vector space.

A.3 Subspaces of Real Vector Spaces

Definition Let V be a finite-dimensional vector space. A subset U of V is
said to be a subspace of V if the following two conditions are satisfied:—

• v + w ∈ U for all v,w ∈ U ;

• λv ∈ U for all v ∈ U and for all real numbers λ.

Every subspace of a real vector space is itself a real vector space.

Proposition A.7 Let V be a finite-dimensional vector space, and let U be
a subspace of V . Then U is itself a finite-dimensional vector space, and
dimU ≤ dimV .
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Proof It follows from Proposition A.5 the number of members of any list
of linearly independent elements of U cannot exceed the dimension dimV of
the real vector space V . Let m be the maximum number of members in any
list of linearly independent elements of U , and let w1,w2, . . . ,wm be a list
consisting of m linearly independent elements of U . We claim that this list
constitutes a basis of U .

Let v ∈ U . Then the maximality of m ensures that the members of the
list v,w1,w2, . . . ,wm must be linearly dependent. Therefore there exist a
real number ρ and real numbers λ1, . . . , λm, where these real numbers ρ and
λi are not all zero, such that

ρv +
m∑
i=1

λiwi = 0V .

But then ρ 6= 0, because otherwise the elements w1,w2, . . . ,wm would be
linearly dependent. It then follows that

v = −
m∑
i=1

λi
ρ

wi.

This shows that the linearly independent elements w1,w2, . . . ,wm of U span
U and therefore constitute a basis of U . Thus U is a finite-dimensional
vector space, and dimU = m. But m ≤ n. It follows that dimU ≤ dimV ,
as required.

A.4 Linear Transformations

Definition Let V and W be real vector spaces. A function θ:V → W from
V to W is said to be a linear transformation if it satisfies the following two
conditions:—

• θ(v + w) = θ(v) + θ(w) for all v,w ∈ V ;

• θ(λv) = λθ(v) for all v ∈ V and for all real numbers λ.

Definition The image of a linear transformation θ:V → W between real
vector spaces V and W is the subspace θ(V ) of W defined such that

θ(V ) = {θ(v) : v ∈ V }.

Definition The rank of a linear transformation θ:V → W between real
vector spaces V and W is the dimension of the image θ(V ) of θ.
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A linear transformation θ:V → W is surjective if and only if θ(V ) = W .
Thus the linear transformation θ:V → W is surjective if and only if its rank
is equal to the dimension dimW of the codomain W .

Definition The kernel of a linear transformation θ:V → W between real
vector spaces V and W is the subspace ker θ of V defined such that

ker θ = {v ∈ V : θ(v) = 0}.

Definition The nullity of a linear transformation θ:V → W between real
vector spaces V and W is the dimension of the kernel ker θ of θ.

A linear transformation θ:V → W is injective if and only if ker θ = {0V }.
Indeed let v and v′ be elements of V satisfying θ(v) = θ(v′). Tnen

θ(v − v′) = θ(v)− θ(v′) = 0W ,

and therefore v − v′ ∈ ker θ. It follows that if ker θ = {0W} and if elements
v and v′ of V satisfy θ(v) = θ(v′) then v − v′ = 0V , and therefore v = v′.
Thus if ker θ = {0V } then the linear transformation θ:V → W is injective.
The converse is immediate. It follows that θ:V → W is injective if and only
if ker θ = {0W}.

A linear transformation θ:V → W between vector spaces V and W is an
isomorphism if and only if it is both injective and surjective.

Proposition A.8 Let V and W be finite-dimensional real vector spaces, let
u1,u2, . . . ,un be a basis of the vector space V , let θ:V → W be a linear
transformation from V to W , and let θ(V ) be the image of this linear trans-
formation. Let I = {1, 2, . . . , n}, and let K and L be a subsets of I satisfying
K ⊂ L that satisfy the following properties:—

• the elements θ(ui) for which i ∈ K are linearly independent;

• the elements θ(ui) for which i ∈ L span the vector space θ(V ).

Then there exists a subset B of I satisfying K ⊂ B ⊂ L such that the
elements θ(ui) for which i ∈ B constitute a basis for the vector space θ(V ).

Proof The elements θ(ui) for which i ∈ L span the real vector space θ(V ).
The result therefore follows immediately on applying Proposition A.2.
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Lemma A.9 Let V and W be finite-dimensional real vector spaces, and let
θ:V → W be a linear transformation from V to W . Let u1,u2, . . . ,un be a
basis of the vector space V , let I = {1, 2, . . . , n}, and let B be a subset of
I. Suppose that the elements θ(ui) for which i ∈ B constitute a basis of the
image θ(V ) of the linear transformation θ. Then, for each j ∈ I \ B, there
exist uniquely-determined real numbers κi,j for all i ∈ B such that

uj −
∑
i∈B

κi,jui ∈ ker θ.

Proof The elements θ(ui) of θ(V ) for which i ∈ B constitute a basis of
θ(V ). Therefore, for each j ∈ I \ B, the element θ(uj) may be expressed as
a linear combination

∑
i∈B

κi,jθ(ui) of the basis elements. Moreover the linear

independence of the basis elements ensures that the real numbers κi,j that
occur as coefficients in this expression of θ(uj) as a linear combination of
basis elements are uniquely determined. But then

θ

(
uj −

∑
i∈B

κi,jui

)
= θ(uj)−

∑
i∈B

κi,jθ(ui) = 0W ,

and thus uj −
∑
i∈B

κi,jui ∈ ker θ, as required.

Proposition A.10 Let V and W be finite-dimensional real vector spaces,
and let θ:V → W be a linear transformation from V to W . Let u1,u2, . . . ,un

be a basis of the vector space V , and let B be a subset of I, where I =
{1, 2, . . . , n}, with the property that the elements θ(ui) for which i ∈ B con-
stitute a basis of the image θ(V ) of the linear transformation θ. Let

gj = uj −
∑
i∈B

κi,jui,

for all j ∈ I \B, where κi,j are the unique real numbers for which

uj −
∑
i∈B

κi,jui ∈ ker θ.

Then the elements ui for i ∈ B and gj for j ∈ I \ B together constitute a
basis for the vector space V .

Proof Let λi for i ∈ B and µj for j ∈ I \ B are real numbers with the
property that ∑

i∈B

λiui +
∑
j∈I\B

µjgj = 0V .
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Then ∑
i∈B

λi − ∑
j∈I\B

κi,jµj

ui +
∑
j∈I\B

µjuj = 0V .

It then follows from the linear independence of u1,u2, . . . ,un that λi −∑
j∈I\B

κi,jµj = 0 for all i ∈ B and µj = 0 for all j ∈ I \ B. But then

λi = 0 for all i ∈ B. This shows that the elements ui for i ∈ B and gj for
j ∈ I \B are linearly independent.

Let v ∈ V . Then there exist real numbers λ1, λ2, . . . , λn such that v =
n∑

i=1

λiui. But then

v =
∑
i∈B

λi +
∑
j∈I\B

κi,jλi

ui +
∑
j∈I\B

λjgj.

It follows that the elements ui for i ∈ B and gj for j ∈ I \B span the vector
space V . We have shown that these elements are linearly independent. It
follows that they constitute a basis for the vector space V , as required.

Corollary A.11 Let V and W be finite-dimensional real vector spaces, let
u1,u2, . . . ,un be a basis of the vector space V , let θ:V → W be a linear
transformation from V to W , let B be a subset of I, where I = {1, 2, . . . , n},
with the property that the elements θ(ui) for which i ∈ B constitute a basis
of the image θ(V ) of the linear transformation θ, and let

gj = uj −
∑
i∈B

κi,jui,

for all j ∈ I \ B, where κi,j are the unique real numbers for which uj −∑
i∈B

κi,jui ∈ ker θ. Then the elements gj for j ∈ I \ B constitute a basis for

ker θ.

Proof We have shown that the elements ui for i ∈ B and gj for j ∈ I \ B
together constitute a basis for the vector space B (Proposition A.10). It
follows that the elements gj for which j ∈ I \B are linearly independent.

Let v ∈ ker θ. Then there exist real numbers λi for i ∈ B and µj for
j ∈ I \B such that

v =
∑
i∈B

λiui +
∑
j∈I\B

µigj.
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Now θ(gj) = 0W for all j ∈ I \ B, because gj ∈ ker θ. Also θ(v) = 0W ,
because v ∈ ker θ. It follows that

0W = θ(v) =
∑
i∈B

λiθ(ui).

However the subset B of I has the property that the elements θ(ui) for
i ∈ B constitute a basis of the vector space θ(V ). It follows that λi = 0 for
all i ∈ B. Thus

v =
∑
j∈I\B

µigj.

This proves that the elements gj for j ∈ I \ B span the kernel ker θ of
the linear transformation θ:V → W . This elements have been shown to
be linearly independent. It follows that they constitute a basis for ker θ, as
required.

Corollary A.12 Let V and W be finite-dimensional vector spaces, let θ:V →
W be a linear transformation from V to W , and let rank(θ) and nullity(θ)
denote the rank and nullity respectively of the linear transformation θ. Then

rank(θ) + nullity(θ) = dimV.

Proof Let u1,u2, . . . ,un be a basis of the vector space V . Then there exists
a subset B of I, where I = {1, 2, . . . , n}, with the property that the elements
θ(ui) for which i ∈ B constitute a basis of the image θ(V ) of the linear
transformation θ (see Proposition A.8). Let

gj = uj −
∑
i∈B

κi,jui,

for all j ∈ I \B, where κi,j are the unique real numbers for which

uj −
∑
i∈B

κi,jui ∈ ker θ.

Then the elements gj for j ∈ I \B constitute a basis for ker θ.
Now the rank of the linear transformation θ is by definition the dimension

of the real vector space θ(V ), and is thus equal to the number of elements
in any basis of that vector space. The elements θ(ui) for i ∈ B constitute a
basis of that vector space. Therefore rank(θ) = |B|, where |B| denotes the
number of integers belonging to the finite set B. Similarly the nullity of θ
is by definition the dimension of the kernel ker θ of θ. The elements gj for
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j ∈ I \ B constitute a basis of ker θ. Therefore nullity(θ) = |I \ B|, where
|I \B| denotes the number of integers belonging to the finite set I \B.

Now |B|+ |I \B| = n. It follows that

rank(θ) + nullity(θ) = n = dimV,

as required.

A.5 Dual Spaces

Definition Let V be a real vector space. A linear functional ϕ:V → R on
V is a linear transformation from the vector space V to the field R of real
numbers.

Given linear functionals ϕ:V → R and ψ:V → R on a real vector space V ,
and given any real number λ, we define ϕ + ψ and λϕ to be the linear
functionals on V defined such that (ϕ+ψ)(v) = ϕ(v) +ψ(v) and (λϕ)(v) =
λϕ(v) for all v ∈ V .

The set V ∗ of linear functionals on a real vector space V is itself a
real vector space with respect to the algebraic operations of addition and
multiplication-by-scalars defined above.

Definition Let V be a real vector space. The dual space V ∗ of V is the
vector space whose elements are the linear functionals on the vector space V .

Now suppose that the real vector space V is finite-dimensional. Let
u1,u2, . . . ,un be a basis of V , where n = dimV . Given any v ∈ V there

exist uniquely-determined real numbers λ1, λ2, . . . , λn such that v =
n∑

j=1

λjuj.

It follows that there are well-defined functions ε1, ε2, . . . , εn from V to the
field R defined such that

εi

(
n∑

j=1

λjuj

)
= λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn. These functions are
linear transformations, and are thus linear functionals on V .

Lemma A.13 Let V be a finite-dimensional real vector space, let

u1,u2, . . . ,un
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be a basis of V , and let ε1, ε2, . . . , εn be the linear functionals on V defined
such that

εi

(
n∑

j=1

λjuj

)
= λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn. Then ε1, ε2, . . . , εn
constitute a basis of the dual space V ∗ of V . Moreover

ϕ =
n∑

i=1

ϕ(ui)εi

for all ϕ ∈ V ∗.

Proof Let µ1, µ2, . . . , µn be real numbers with the property that
n∑

i=1

µiεi =

0V ∗ . Then

0 =

(
n∑

i=1

µiεi

)
(uj) =

n∑
i=1

µiεi(uj) = µj

for j = 1, 2, . . . , n. Thus the linear functionals ε1, ε2, . . . , εn on V are linearly
independent elements of the dual space V ∗.

Now let ϕ:V → R be a linear functional on V , and let µi = ϕ(ui) for
i = 1, 2, . . . , n. Now

εi(uj) =

{
1 if i = j;
0 if i 6= j.

It follows that(
n∑

i=1

µiεi

)(
n∑

j=1

λjuj

)
=

n∑
i=1

n∑
j=1

µiλjεi(uj) =
n∑

j=1

µjλj

=
n∑

j=1

λjϕ(uj) = ϕ

(
n∑

j=1

λjuj

)
for all real numbers λ1, λ2, . . . , λn.

It follows that

ϕ =
n∑

i=1

µiεi =
n∑

i=1

ϕ(ui)εi.

We conclude from this that every linear functional on V can be expressed as
a linear combination of ε1, ε2, . . . , εn. Thus these linear functionals span V ∗.
We have previously shown that they are linearly independent. It follows that

they constitute a basis of V ∗. Moreover we have verified that ϕ =
n∑

i=1

ϕ(ui)εi

for all ϕ ∈ V ∗, as required.
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Definition Let V be a finite-dimensional real vector space, let u1,u2, . . . ,un

be a basis of V . The corresponding dual basis of the dual space V ∗ of V
consists of the linear functionals ε1, ε2, . . . , εn on V , where

εi

(
n∑

j=1

λjuj

)
= λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn.

Corollary A.14 Let V be a finite-dimensional real vector space, and let V ∗

be the dual space of V . Then dimV ∗ = dimV .

Proof We have shown that any basis of V gives rise to a dual basis of V ∗,
where the dual basis of V has the same number of elements as the basis
of V to which it corresponds. The result follows immediately from the fact
that the dimension of a finite-dimensional real vector space is the number of
elements in any basis of that vector space.

Let V be a real-vector space, and let V ∗ be the dual space of V . Then
V ∗ is itself a real vector space, and therefore has a dual space V ∗∗. Now each
element v of V determines a corresponding linear functional Ev:V ∗ → R on
V ∗, where Ev(ϕ) = ϕ(v) for all ϕ ∈ V ∗. It follows that there exists a function
ι:V → V ∗∗ defined so that ι(v) = Ev for all v ∈ V . Then ι(v)(ϕ) = ϕ(v)
for all v ∈ V and ϕ ∈ V ∗.

Now

ι(v + w)(ϕ) = ϕ(v + w) = ϕ(v) + ϕ(w) = (ι(v) + ι(w))(ϕ)

and
ι(λv)(ϕ) = ϕ(λv) = λϕ(v) = (λι(v))(ϕ)

for all v,w ∈ V and ϕ ∈ V ∗ and for all real numbers λ. It follows that
ι(v + w) = ι(v) + ι(w) and ι(λv) = λι(v) for all v,w ∈ V and for all real
numbers λ. Thus ι:V → V ∗∗ is a linear transformation.

Proposition A.15 Let V be a finite-dimensional real vector space, and let
ι:V → V ∗∗ be the linear transformation defined such that ι(v)(ϕ) = ϕ(v) for
all v ∈ V and ϕ ∈ V ∗. Then ι:V → V ∗∗ is an isomorphism of real vector
spaces.

Proof Let u1,u2, . . . ,un be a basis of V , let ε1, ε2, . . . , εn be the dual basis
of V ∗, where

εi(uj) =

{
1 if i = j,
0 if i 6= j,

14



and let v ∈ V . Then there exist real numbers λ1, λ2, . . . , λn such that v =
n∑

i=1

λiui.

Suppose that ι(v) = 0V ∗∗ . Then ϕ(v) = Ev(ϕ) = 0 for all ϕ ∈ V ∗. In
particular λi = εi(v) = 0 for i = 1, 2, . . . , n, and therefore v = 0V . We
conclude that ι:V → V ∗∗ is injective.

Now let F :V ∗ → R be a linear functional on V ∗, let λi = F (εi) for

i = 1, 2, . . . , n, let v =
n∑

i=1

λiui, and let ϕ ∈ V ∗. Then ϕ =
n∑

i=1

ϕ(ui)εi (see

Lemma A.13), and therefore

ι(v)(ϕ) = ϕ(v) =
n∑

i=1

λiϕ(ui) =
n∑

i=1

F (εi)ϕ(ui)

= F

(
n∑

i=1

ϕ(ui)εi

)
= F (ϕ).

Thus ι(v) = F . We conclude that the linear transformation ι:V → V ∗∗

is surjective. We have previously shown that this linear transformation is
injective. There ι:V → V ∗∗ is an isomorphism between the real vector spaces
V and V ∗∗ as required.

The following corollary is an immediate consequence of Proposition A.15.

Corollary A.16 Let V be a finite-dimensional real vector space, and let V ∗

be the dual space of V . Then, given any linear functional F :V ∗ → R, there
exists some v ∈ V such that F (ϕ) = ϕ(v) for all ϕ ∈ V ∗.

Definition Let V and W be real vector spaces, and let θ:V → W be a linear
transformation from V to W . The adjoint θ∗:W ∗ → V ∗ of the linear trans-
formation θ:V → W is the linear transformation from the dual space W ∗ of
W to the dual space V ∗ of V defined such that (θ∗η)(v) = η(θ(v)) for all
v ∈ V and η ∈ W ∗.

A.6 Linear Transformations and Matrices

Let V and V ′ be finite-dimensional vector spaces, let u1,u2, . . . ,un be a basis
of V , and let u′1,u

′
2, . . . ,u

′
n′ be a basis of V ′. Then every linear transformation

θ:V → V ′ can be represented with respect to these bases by an n′×n matrix,
where n = dimV and n′ = dimV ′. The basic formulae are presented in the
following proposition.
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Proposition A.17 Let V and V ′ be finite-dimensional vector spaces, and
let θ:V → V ′ be a linear transformation from V to V ′. Let u1,u2, . . . ,un

be a basis of V , and let u′1,u
′
2, . . . ,u

′
n′ be a basis of V ′. Let A be the n′ × n

matrix whose coefficients (A)k,j are determined such that θ(uj) =
m∑
k=1

(A)k,ju
′
k

for k = 1, 2, . . . , n′. Then

θ

(
n∑

j=1

λjuj

)
=

m∑
k=1

µku
′
k,

where µk =
n∑

j=1

(A)k,jλj for k = 1, 2, . . . , n′.

Proof This result is a straightforward calculation, using the linearity of
θ:V → V ′. Indeed

θ

(
n∑

j=1

λjuj

)
=

n∑
j=1

λjθ(uj)

=
n∑

j=1

n′∑
k=1

(A)k,jλju
′
k.

It follows that θ

(
n∑

j=1

λjuj

)
=

n′∑
k=1

µku
′
k, where µk =

n∑
j=1

(A)k,jλj for k =

1, 2, . . . , n′, as required.

Corollary A.18 Let V , V ′ and V ′′ be finite-dimensional vector spaces, and
let θ:V → V ′ be a linear transformation from V to V ′ and let ψ:V ′ → V ′′

be a linear transformation from V ′ to V ′′. Let A and B be the matrices
representing the linear transformations θ and ψ respectively with respect to
chosen bases of V , V ′ and V ′′. Then the matrix representing the composition
ψ ◦ θ of the linear transformations θ and ψ is the product BA of the matrices
representing those linear transformations.

Proof Let u1,u2, . . . ,un be a basis of V , let u′1,u
′
2, . . . ,u

′
n′ be a basis of V ′,

and let u′′1,u
′′
2, . . . ,u

′′
n′′ be a basis of V ′′. Let A and B be the matrices whose

coefficients (A)k,j and (B)i,k are determined such that θ(uj) =
n′∑
k=1

(A)k,ju
′
k

for k = 1, 2, . . . , n′ and ψ(u′k) =
p∑

i=1

(B)i,ku
′′
i . Then

ψ

(
θ

(
n∑

j=1

λjuj

))
=

p∑
i=1

νiu
′′
i ,
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where

νi =
n∑

j=1

(
n′∑
k=1

(B)l,k(A)k,j

)
λj

for l = 1, 2, . . . , p. Thus the composition ψ ◦ θ of the linear transformations
θ:V → V ′ and ψ:V ′ → V ′′ is represented by the product BA of the matrix B
representing ψ and the matrix A representing A with respect to the chosen
bases of V , V ′ and V ′′, as required.

Lemma A.19 Let V and W be finite-dimensional real vector spaces, and
let θ:V → W be a linear transformation from V to W . Let u1,u2, . . . ,un

be a basis of V , let ε1, ε2, . . . , εn be the corresponding dual basis of the dual
space V ∗ of V , let u′1,u

′
2, . . . ,u

′
n′ be a basis of W , and let ε′1, ε

′
2, . . . , ε

′
n be

the corresponding dual basis of the dual space W ∗ of W . Then the matrix
representing the adjoint θ∗:W ∗ → V ∗ of θ:V → W with respect to the dual
bases of W ∗ and V ∗ is the transpose of the matrix representing θ:V → W
with respect to the chosen bases of V and W .

Proof Let A be the n′ × n matrix representing the linear transformation

θ:V → W with respect to the chosen bases. Then ϕ(uj) =
n′∑
i=1

(A)i,ju
′
i for

j = 1, 2, . . . , n. Let v ∈ V and η ∈ W ∗, let v =
n∑

i=1

λivi, let η =
n′∑
j=1

ciε
′
i,

where λ1, λ2, . . . , λn and c1, c2, . . . , cn′ are real numbers. Then

(θ∗η)(v) = η(θ(v)) = η

(
n∑

j=1

λjθ(uj)

)

=
n∑

j=1

λjη((θ(uj)) =
n∑

j=1

λjη

(
n′∑
i=1

(A)i,ju
′
i

)

=
n′∑
i=1

n∑
j=1

(A)i,jλjη(u′i) =
n′∑
i=1

n∑
j=1

(A)i,jλjci.

Thus if

η =
n′∑
j=1

ciε
′
i,

where c1, c2, . . . , cn are real numbers, then

θ∗η =
n∑

i=1

hjεj,
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where

hj =
n′∑
i=1

(A)i,jci =
n′∑
i=1

(AT )j,ici

for j = 1, 2, . . . , n, and where AT is the transpose of the matrix A, defined
so that (AT )j,i = Ai,j for i = 1, 2, . . . , n′ and j = 1, 2, . . . , n. It follows from
this that the matrix that represents the adjoint θ∗ with respect to the dual
bases on W ∗ and V ∗ is the transpose of the matrix A that represents θ with
respect to the chosen bases on V and W , as required.
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