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A Review of Linear Algebra

A.1 Real Vector Spaces

Definition A real vector space consists of a set V' on which there is defined
an operation of vector addition, yielding an element v +w of V' for each pair
v,w of elements of V', and an operation of multiplication-by-scalars that
yields an element Av of V' for each v € V' and for each real number X\. The
operation of vector addition is required to be commutative and associative.
There must exist a zero element 0y of V that satisfies v + 0y = v for all
v € V, and, for each v € V there must exist an element —v of V' for which
v+(—v) = 0y. The following identities must also be satisfied for all v,w € V'
and for all real numbers A and u:

A+ p)v=Av+uv, Av+w)=Av+Aw,
AMpv) = (A\p)v, 1v=v.

Let n be a positive integer. The set R™ consisting of all n-tuples of real
numbers is then a real vector space, with addition and multiplication-by-
scalars defined such that

(xlal‘%"':xn)+(y17y27"'ayn):<x1+y17x2+y27"'xn+yn)

and
Mz1, T, ., xy) = (Axy, AT, ..., Axy)

for all (1, 2z2,...,20), (Y1,%2,.-.,Ys) € R and for all real numbers \.

The set M,,,(R) of all m x n matrices is a real vector space with respect
to the usual operations of matrix addition and multiplication of matrices by
real numbers.

A.2 Linear Dependence and Bases

Elements uy, us, ..., u,, of a real vector space V are said to be linearly de-
pendent if there exist real numbers A1, Ao, ..., A, not all zero, such that

Aug + Aus + - - -+ Au,, = Oy

If elements uy, us, ..., u,, of real vector space V' are not linearly dependent,
then they are said to be linearly independent.

Elements uy, us,...,u, of a real vector space V' are said to span V if,
given any element v of V, there exist real numbers Ay, Ao, ..., A\, such that
vV =AUy + Xus + -+ Au,.



A vector space is said to be finite-dimensional if there exists a finite
subset of V' whose members span V.

Elements uy,us,...,u, of a finite-dimensional real vector space V are
said to constitute a basis of V' if they are linearly independent and span V.

Lemma A.1 Elements uy,us,...,u, of a real vector space V constitute a
basis of V' if and only if, given any element v of V', there exist uniquely-
determined real numbers \i, Aa, ..., A\, such that

vV = )\1111 +>\2U2+"'+>\nun.

Proof Suppose that u;,us,...,u, is a basis of V. Let v be an element V.
The requirement that uy,us,...,u, span V' ensures that there exist real
numbers Ay, Ao, ..., A\, such that

V= )\1111 + )\2112 + -+ /\nun.
If pq, po, ..., pup, are real numbers for which

U = 10y + folg + -+ lp Uy,
then

(1 — A)ag + (2 — Ao)ug + -+ - + (pn — Ap)u, = Oy
It then follows from the linear independence of uy, us, ..., u, that u;—A\; =0
forv=1,2,...,n, and thus y; = \; for © = 1,2,...,n. This proves that the
coefficients A1, Ao, ..., A, are uniquely-determined.
Conversely suppose that uy, us, ..., u, is a list of elements of V' with the

property that, given any element v of V', there exist uniquely-determined
real numbers A{, Ao, ..., A\, such that

v =AU+ Aug + - + AU,

Then uy,u,,...,u, span V. Moreover we can apply this criterion when
v = 0. The uniqueness of the coefficients A1, \o, ..., A, then ensures that if

)\1111 —|—/\2112 + .- +)\nun = OV

then \; =0 forv=1,2,...,n. Thus uj,u,,...,u, are linearly independent.
This proves that uy, us, ..., u, is a basis of V, as required. |}

Proposition A.2 Let V' be a finite-dimensional real vector space, let
up, Uy, ..., Uy,

be elements of V' that span V', and let K be a subset of {1,2,... ,n}. Suppose
either that K = () or else that those elements u; for which i € K are linearly
independent. Then there exists a basis of V' whose members belong to the list
ug, Uo, ..., u, which includes all the vectors u; for which i € K.



Proof We prove the result by induction on the number of elements in the
list uy,ug,...,u, of vectors that span V. The result is clearly true when
n = 1. Thus suppose, as the induction hypothesis, that the result is true for
all lists of elements of V' that span V' and that have fewer than n members.

If the elements uy, uy, ..., u, are linearly independent, then they consti-
tute the required basis. If not, then there exist real numbers A, Ao, ..., A,
not all zero, such that

/\1111 + )\2112 + -+ )\nun = Ov.

Now there cannot exist real numbers A;, Ag,..., A,, not all zero, such

that both > Aju; = 0y and also \; = 0 whenever i # K. Indeed, in the
i=1

case where K = (), this conclusion follows from the requirement that the real
numbers \; cannot all be zero, and, in the case where K # (), the conclusion
follows from the linear independence of those u; for which ¢ € K. Therefore
there must exist some integer i satisfying 1 < ¢ < n for which \; # 0 and
i ¢ K. Without loss of generality, we may suppose that u;,us, ..., u, are
ordered so that n € K and A\, # 0. Then

n—1 )\Z
u, = — —u;.
=1 )\n
Let v be an element of V. Then there exist real numbers p1, o, ...,
n
such that v = > pu;, because uy, uy, ..., u, span V. But then
i=1
n—1
V=X (e
=1
We conclude that uy,us,...,u,_ 1 span the vector space V. The induction
hypothesis then ensures that there exists a basis of V' consisting of members
of this list that includes the linearly independent elements uy, uo, ..., u,,, as

required. ||
Corollary A.3 Let V be a finite-dimensional real vector space, and let
ug, Uz, ..., U,

be elements of V' that span the vector space V. Then there exists a basis of
V' whose elements are members of the list uy, g, ..., u,.



Proof This result is a restatement of Proposition A.2 in the special case
where the set K in the statement of that proposition is the empty set. |

Proposition A.4 Let V be a finite-dimensional real vector space with basis

U, U, ..., U,, let w be an element of V', and let \i, \o, ..., A\, be the unique

real numbers for which w = Y \ju,. Suppose that \; # 0 for some integer j
i=1

between 1 and n. Then the element w of V and those elements u; of the

giwen basis for which i # j together constitute a basis of V.

Proof We result follows directly when n = 1. Thus it suffices to prove the
result when n > 1. We may suppose, without loss of generality, that the

basis elements uy, uy, ..., u, are ordered so that 7 = n. We must then show
that w,u;,us,...,u,_1 is a basis of V. Now
n—1

W = Z /\lul + )\nun,

i=1

where A\, # 0, and therefore

-1
1 Y
vk B
Let v be an element of V. Then there exist real numbers py, ua, ..., iy,
such that v = > u;u;. Then
i=1
’L/"I’TL
Wt z (1= 22
We conclude from this that the vectors w,uy,...,u,_; span the vector

space V.
Now let po, p1,- .., pn_1 be real numbers with the property that

n—1

PoW + Z piu; = Oy.
i—1

Then .
Z(Pi + poi)u; + poA,u, = Oy
i=1
It then follows from the linear independence of uy, u,, ..., u, that p;+poA; =

0fori=1,2,...,n—1and pgA, = 0. But \,, # 0. It follows that py = 0. But
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then p; = —poA; =0 for e =1,2,...,n— 1. This proves that w,uy,...,u,_
are linearly independent. These vectors therefore constitute a basis of the
vector space V', as required. |}

Proposition A.5 Let V be a finite-dimensional real vector space. Suppose
that elements uy, g, ..., u, of V span the vector space V' and that elements
Wi, Wa, ..., W, of V are linearly independent. Then m < n, and there exists
a basis of V' consisting of the elements wy, Wo, ..., Wy, together with not more
than n —m elements belonging to the list u,us, ..., u,.

Proof If the elements uy, u,, ..., u, spanning V' are not linearly independent
then it follows from Corollary A.3 that we may remove elements from this
list so as to obtain a basis for the vector space V. We may therefore assume,
without loss of generality, that the elements uy, u,, ..., u, constitute a basis
of V' with n elements.

Suppose that m > 1. It then follows from Proposition A.4 that there
exists a basis of V' consisting of w; together with n — 1 members of the list
ug, Us, ..., U,.

Suppose that, for some integer k satisfying 1 < k < m and k < n, there
exist distinct integers ji, jo, . . ., jx between 1 and n such that the elements w;
for 1 < i < k together with the elements u; for i & {j1,J2,...,jx} together
constitute a basis of the vector space V. Then there exist real numbers
P1, P2y -5 P and Ay, Ag, ..., A, such that

k n
Wiyl = E PsWs + E A
s=1 i=1

and

)\iIOfOIi:jl,jQ,...,]k.

If it were the case that \; = 0 for all integers ¢ satisfying 1 < i < n then
w1 would be expressible as a linear combination of wi, wy, ..., Wy, and
therefore the elements wi, wy, ..., w1 of V would be linearly dependent.
But these elements are linearly independent. It follows that A; , # 0 for
some integer jxy1 between 1 and n. Moreover the integers ji, jo, ..., Jri1 are
then distinct, and it follows from Proposition A.4 that the elements w; for
1 <i < k+1 together with the elements u; for i & {j1,j2, ..., jrr1} together
constitute a basis of the vector space V.

It then follows by repeated applications of this result that if mg is the
minimum of m and n then there exists a basis of V' consisting of the elements

w; for 1 < i < mg together with n — my members of the list uy, us, ..., u,.



If it were the case that n < m then the n elements wq, wo, ..., w, would
be a basis of V', and thus the elements wy, ws, ..., w,, would not be linearly
independent. Therefore n > m, and there exists a basis of V' consisting of
the elements w; for 1 < ¢ < m together with n — m members of the list
up, U, ..., U,, as required. [

Corollary A.6 Any two bases of a finite-dimensional real vector space con-
tain the same number of elements.

Proof It follows from Proposition A.5 that the number of members in a list
of linearly independent elements of a finite-dimensional real vector space V'
cannot exceed the number of members in a list of elements of V' that spans
V. The members of a basis of V' are linearly independent and also span V.
Therefore the number of members of one basis of V' cannot exceed the number
of members of another. The result follows. |}

Definition The dimension of a finite-dimensional real vector space V' is the
number of members of any basis of V.
The dimension of a real vector space V' is denoted by dim V.

It follows from Corollary A.3 that every finite-dimensional real vector
space V has a basis. It follows from Corollary A.6 that any two bases of that
vector space have the same number of elements. These results ensure that
every finite-dimensional real vector space has a well-defined dimension that
is equal to the number of members of any basis of that vector space.

A.3 Subspaces of Real Vector Spaces

Definition Let V' be a finite-dimensional vector space. A subset U of V is
said to be a subspace of V' if the following two conditions are satisfied:—

e v+weU forall v,w e U,

e \v e U for all v € U and for all real numbers .
Every subspace of a real vector space is itself a real vector space.

Proposition A.7 Let V be a finite-dimensional vector space, and let U be

a subspace of V. Then U is itself a finite-dimensional vector space, and
dimU < dimV.



Proof It follows from Proposition A.5 the number of members of any list
of linearly independent elements of U cannot exceed the dimension dim V' of
the real vector space V. Let m be the maximum number of members in any
list of linearly independent elements of U, and let wy,w»,...,w,, be a list
consisting of m linearly independent elements of U. We claim that this list
constitutes a basis of U.

Let v € U. Then the maximality of m ensures that the members of the
list v, wy, W, ..., W, must be linearly dependent. Therefore there exist a
real number p and real numbers Ay,..., \,,, where these real numbers p and
A; are not all zero, such that

1% + i )\zwz = Ov.
=1

But then p # 0, because otherwise the elements wy, ws, ..., w,, would be
linearly dependent. It then follows that

i=1

This shows that the linearly independent elements wy, wo, ..., w,, of U span
U and therefore constitute a basis of U. Thus U is a finite-dimensional
vector space, and dimU = m. But m < n. It follows that dimU < dimV/,
as required. |}

A.4 Linear Transformations

Definition Let V and W be real vector spaces. A function 6:V — W from
V to W is said to be a linear transformation if it satisfies the following two
conditions:—

e d(v+w)=0(v)+0(w) for all v,w € V;

e J(Av) = Md(v) for all v € V and for all real numbers .

Definition The image of a linear transformation 6:V — W between real
vector spaces V' and W is the subspace 0(V) of W defined such that

o) ={0(v):v eV}

Definition The rank of a linear transformation 0:V — W between real
vector spaces V' and W is the dimension of the image 6(V) of 6.



A linear transformation 6: V' — W is surjective if and only if (V) = W.
Thus the linear transformation 6: V' — W is surjective if and only if its rank
is equal to the dimension dim W of the codomain W.

Definition The kernel of a linear transformation 6:V — W between real
vector spaces V and W is the subspace ker 6 of V' defined such that

kerf = {v e V:0(v) =0}

Definition The nullity of a linear transformation 6: V' — W between real
vector spaces V and W is the dimension of the kernel ker 6 of 6.

A linear transformation 0: V' — W is injective if and only if ker § = {0y }.
Indeed let v and v’ be elements of V' satisfying 6(v) = 0(v’). Tnen

O(v—v')=0(v)—0(W") =0y,

and therefore v — v’ € ker 6. It follows that if ker # = {Oy } and if elements
v and v’ of V satisfy (v) = 0(v') then v — v/ = 0y, and therefore v = v'.
Thus if ker = {0y} then the linear transformation #:V — W is injective.
The converse is immediate. It follows that : V' — W is injective if and only
if ker @ = {Ow }.

A linear transformation 0: V' — W between vector spaces V and W is an
isomorphism if and only if it is both injective and surjective.

Proposition A.8 Let V and W be finite-dimensional real vector spaces, let
Ui, Uy, ..., u, be a basis of the vector space V', let 0:V — W be a linear
transformation from V to W, and let §(V') be the image of this linear trans-
formation. Let I = {1,2,...,n}, and let K and L be a subsets of I satisfying
K C L that satisfy the following properties:—

e the elements O(w;) for which i € K are linearly independent;
e the elements 6(w;) for which i € L span the vector space (V).

Then there exists a subset B of I satisfying K C B C L such that the
elements 6(w;) for which i € B constitute a basis for the vector space O(V').

Proof The elements 0(u;) for which ¢ € L span the real vector space 6(V).
The result therefore follows immediately on applying Proposition A.2. |}



Lemma A.9 Let V and W be finite-dimensional real vector spaces, and let
0:V — W be a linear transformation from V to W. Let uj,us,...,u, be a
basis of the vector space V', let I = {1,2,...,n}, and let B be a subset of
I. Suppose that the elements 0(u;) for which i € B constitute a basis of the
image O(V') of the linear transformation 0. Then, for each j € I\ B, there
exist uniquely-determined real numbers k;; for all @ € B such that

u; — Z Ri U5 € ker 6.

1€B

Proof The elements §(u;) of 6(V) for which i € B constitute a basis of
6(V'). Therefore, for each j € I\ B, the element 6(u;) may be expressed as

a linear combination ) k;;6(u;) of the basis elements. Moreover the linear
i€B

independence of the basis elements ensures that the real numbers ; ; that

occur as coefficients in this expression of §(u;) as a linear combination of

basis elements are uniquely determined. But then

0 (LIj — Z Iiz‘yjlli) = Q(Uj) — Z limé’(ui) = Ow,

i€B i€B

and thus u; — ) k;;u; € ker 0, as required. |
i€B

Proposition A.10 Let V and W be finite-dimensional real vector spaces,
and let :V — W be a linear transformation from'V to W. Letuy,us,...,u,
be a basis of the vector space V', and let B be a subset of I, where I =
{1,2,...,n}, with the property that the elements 0(u;) for which i € B con-
stitute a basis of the image O(V') of the linear transformation 0. Let

g = uj — Z Kij W,
ieB
for all j € I'\ B, where k;; are the unique real numbers for which
u; — Z KijW; € ker 6.
icB

Then the elements u; for i € B and g; for j € 1\ B together constitute a
basis for the vector space V.

Proof Let \; for ¢ € B and p; for j € I\ B are real numbers with the

property that
Z)\iui + Z 18 = Ov-.

i€B jENB

9



Then

Z /\z — Z Rijls | U + Z nia; = Ov.

i€B jEI\B JEI\B

It then follows from the linear independence of uj,us,...,u, that A\, —
> Kijp; = 0forall i € Band p; = 0 for all j € I\ B. But then
jel\B
Ai = 0 for all ¢ € B. This shows that the elements u; for ¢« € B and g; for
j € I'\ B are linearly independent.
Let v € V. Then there exist real numbers A\, Ao, ..., A, such that v =
Z )\Zul But then

=1

VvV = Z /\1 + Z /’fi,j>\i u; + Z )\jgj-

ieB jel\B jel\B

It follows that the elements u; for i € B and g; for j € I\ B span the vector
space V. We have shown that these elements are linearly independent. It
follows that they constitute a basis for the vector space V', as required. |}

Corollary A.11 Let V and W be finite-dimensional real vector spaces, let
ui, Uy, ..., U, be a basis of the vector space V', let :V — W be a linear
transformation from V to W, let B be a subset of I, where I = {1,2,...,n},
with the property that the elements O(w;) for which i € B constitute a basis
of the image O(V') of the linear transformation 0, and let

gj — W — § :’fz‘,juzv

i€B

for all j € I\ B, where k;; are the unique real numbers for which u; —

> kiju; € ker@. Then the elements g; for j € I\ B constitute a basis for
i€B

ker 6.

Proof We have shown that the elements u; for i € B and g; for j € I \ B

together constitute a basis for the vector space B (Proposition A.10). It

follows that the elements g; for which j € I\ B are linearly independent.
Let v € kerf. Then there exist real numbers \; for i € B and p; for

j € I'\ B such that
VZZ/\iUmL Z Hi8j-

i€B JEN\B

10



Now 6(g;) = Ow for all j € I\ B, because g; € kerf. Also §(v) = Oy,
because v € kerf. It follows that

O =0(v) =>_ Af(w,).

i€B

However the subset B of I has the property that the elements 6(u;) for
i € B constitute a basis of the vector space (V). It follows that \; = 0 for

all ¢ € B. Thus
V=) g

jENB

This proves that the elements g; for j € I\ B span the kernel ker 6 of
the linear transformation #:V — W. This elements have been shown to
be linearly independent. It follows that they constitute a basis for ker 6, as
required. |

Corollary A.12 LetV and W be finite-dimensional vector spaces, let 0:V —
W be a linear transformation from V to W, and let rank(f) and nullity(6)
denote the rank and nullity respectively of the linear transformation 6. Then

rank(6) + nullity () = dim V.

Proof Let uy,uy,...,u, be a basis of the vector space V. Then there exists
a subset B of I, where I = {1,2,...,n}, with the property that the elements
6(u;) for which i € B constitute a basis of the image 6(V) of the linear
transformation 6 (see Proposition A.8). Let

g; = uj — E Ki,j Wi,

1€B

for all j € I'\ B, where k; ; are the unique real numbers for which

u; — Z KRijU; € ker 6.

i€B

Then the elements g; for j € I\ B constitute a basis for ker 6.

Now the rank of the linear transformation 6 is by definition the dimension
of the real vector space #(V'), and is thus equal to the number of elements
in any basis of that vector space. The elements #(u;) for i € B constitute a
basis of that vector space. Therefore rank(f) = |B|, where |B| denotes the
number of integers belonging to the finite set B. Similarly the nullity of 6
is by definition the dimension of the kernel ker ¢ of §. The elements g; for

11



j € I\ B constitute a basis of ker . Therefore nullity(d) = |I \ B|, where
|I'\ B| denotes the number of integers belonging to the finite set I\ B.
Now |B| + |I \ B| = n. It follows that

rank(6) + nullity(f) = n = dim V,

as required. |}

A.5 Dual Spaces

Definition Let V' be a real vector space. A linear functional ¢:V — R on
V is a linear transformation from the vector space V to the field R of real
numbers.

Given linear functionals ¢: V' — R and ¢: V' — R on a real vector space V/,
and given any real number )\, we define ¢ 4+ ¢ and Ay to be the linear
functionals on V' defined such that (¢ +v¢)(v) = ¢(v) +¢(v) and (Ap)(v) =
Ap(v) forall veV.

The set V* of linear functionals on a real vector space V is itself a
real vector space with respect to the algebraic operations of addition and
multiplication-by-scalars defined above.

Definition Let V be a real vector space. The dual space V* of V is the
vector space whose elements are the linear functionals on the vector space V.

Now suppose that the real vector space V is finite-dimensional. Let
ug, Us,..., U, be a basis of V, where n = dim V. Given any v € V there

exist uniquely-determined real numbers A, Ag, ..., A, such that v = > Aju,.
j=1

It follows that there are well-defined functions €1, ¢e,,...,&, from V to the

field R defined such that

&; <i /\jllj) = /\z
j=1

fort:=1,2,...,n and for all real numbers Ay, Ao, ..., \,. These functions are
linear transformations, and are thus linear functionals on V.

Lemma A.13 Let V be a finite-dimensional real vector space, let

U, Uy, ..., Uy

12



be a basis of V', and let €1,¢e4,...,&, be the linear functionals on V defined

such that
E; (Z )\jllj) = /\z
j=1

fori=1,2,...,n and for all real numbers A1, Xo, ..., \,. Then e1,ea,..., 6,
constitute a basis of the dual space V* of V.. Moreover

o= p(u)e
i=1
for all p € V*.

Proof Let p, pa, ..., pu, be real numbers with the property that > pe; =
i=1
OV*~ Then

0= (Z m&) u;) Zuzsz u;)
i=1

for j = 1,2,...,n. Thus the linear functlonals €1,€9,...,6, on V are linearly
independent elements of the dual space V*.
Now let ¢: V' — R be a linear functional on V', and let u; = ¢(u;) for

1=1,2,...,n. Now
|1 iti=g;
52(“”‘{ 0 ifi+ ;.

It follows that

=1 j=1
= Z)\]@ u;) <Z)\ uj>

for all real numbers Aq, Ag, ..., A,.

It follows that . .
P = Zuz& = Z p(u;)e
i=1 i=1

We conclude from this that every linear functional on V' can be expressed as
a linear combination of €1, es,...,,. Thus these linear functionals span V*.
We have previously shown that they are linearly independent. It follows that

they constitute a basis of V*. Moreover we have verified that ¢ = > ¢(u;)e;
i=1
for all p € V* as required. |}
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Definition Let V be a finite-dimensional real vector space, let uy, us, ..., u,
be a basis of V. The corresponding dual basis of the dual space V* of V

consists of the linear functionals €1, ¢9,...,€, on V, where
n
& <Z /\jllj) = >\z
j=1
for i =1,2,...,n and for all real numbers A\i, \o, ..., \,.

Corollary A.14 Let V be a finite-dimensional real vector space, and let V*
be the dual space of V. Then dimV* = dim V.

Proof We have shown that any basis of V' gives rise to a dual basis of V*,
where the dual basis of V' has the same number of elements as the basis
of V' to which it corresponds. The result follows immediately from the fact
that the dimension of a finite-dimensional real vector space is the number of
elements in any basis of that vector space. |}

Let V' be a real-vector space, and let VV* be the dual space of V. Then
V* is itself a real vector space, and therefore has a dual space V**. Now each
element v of V' determines a corresponding linear functional E,: V* — R on
V*, where E,(p) = p(v) for all ¢ € V*. It follows that there exists a function
1: V' — V** defined so that «(v) = Ey for all v.€ V. Then «(v)(¢) = ¢(Vv)
for all ve V and ¢ € V*.

Now

Uv+w)(p) = p(v+w) = o(v) +o(w) = (L(v) + 1(W))(¢)
and
LAV)(p) = e(Av) = Ap(v) = (Au(v)) ()
for all v,w € V and ¢ € V* and for all real numbers A. It follows that

v+ w) =1uv)+(w) and t(Av) = A(v) for all v,w € V and for all real
numbers A. Thus ¢:V — V** is a linear transformation.

Proposition A.15 Let V be a finite-dimensional real vector space, and let
1: V' — V** be the linear transformation defined such that 1(v)(p) = p(v) for
allv e V and ¢ € V*. Then 1v:V — V** is an isomorphism of real vector
spaces.

Proof Let uj,uy,...,u, be a basis of V', let €1, ¢e9,...,e, be the dual basis
of V*, where
1 iti=,
5“”‘{01M¢%
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and let v € V. Then there exist real numbers Aj, Ao, ..., A\, such that v =

Z )\Zl_lZ
i=1

Suppose that ¢(v) = Oy«. Then ¢(v) = Ey(p) = 0 for all ¢ € V*. In
particular \; = g;(v) = 0 for i = 1,2,...,n, and therefore v.= 0y. We
conclude that ¢: V' — V** is injective.

Now let F:V* — R be a linear functional on V*, let \; = F(g;) for
i=1,2,...,n,let v=> Nu, and let ¢ € V*. Then ¢ = > p(u;)e; (see

i=1 i=1
Lemma A.13), and therefore

(W)@) = olv) =3 hp(w) = 3 Fleie(u)

= F (Z @(ui)&') = F(p).

Thus ¢(v) = F. We conclude that the linear transformation ¢: V' — V**
is surjective. We have previously shown that this linear transformation is

injective. There ¢: V' — V** is an isomorphism between the real vector spaces
V and V** as required. |}

The following corollary is an immediate consequence of Proposition A.15.

Corollary A.16 Let V be a finite-dimensional real vector space, and let V*
be the dual space of V. Then, given any linear functional F:V* — R, there
exists some v € V' such that F(p) = @(v) for all ¢ € V*.

Definition Let V and W be real vector spaces, and let #: V' — W be a linear
transformation from V' to W. The adjoint 6*: W* — V* of the linear trans-
formation 6: V — W is the linear transformation from the dual space W* of
W to the dual space V* of V defined such that (0*n)(v) = n(6(v)) for all
veVand ne W*

A.6 Linear Transformations and Matrices

Let V and V' be finite-dimensional vector spaces, let uy, us, ..., u, be a basis
of V,and let uj, uj, ..., u), be abasis of V'. Then every linear transformation
0:V — V' can be represented with respect to these bases by an n’ X n matrix,
where n = dim V' and n’ = dim V’. The basic formulae are presented in the
following proposition.
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Proposition A.17 Let V and V' be finite-dimensional vector spaces, and
let 0:V — V' be a linear transformation from V to V'. Let uj,us,...,u,
be a basis of V, and let uj,u}, ... 0, be a basis of V'. Let A be the n’ x n

matriz whose coefficients (A)y,; are determined such that 0(u;) = > (A)y ju),

fork=1,2,....n'. Then
(3] =S
j=1 k=1

where p, = > (A)p ;A fork=1,2,...,n.

Jj=1

Proof This result is a straightforward calculation, using the linearity of
0:V — V'. Indeed

9<i>\juj> = i%ﬂ(uj)
= D) (A

j=1 k=1

n

It follows that 6 (Z )\juj> = > puuy, where pup = > (A) A\ for k =
j=1 k=1

J=1
, :
1,2,...,n/, as required. |}

Corollary A.18 Let V, V' and V" be finite-dimensional vector spaces, and
let 0:V — V' be a linear transformation from V to V' and let : V' — V"
be a linear transformation from V' to V". Let A and B be the matrices
representing the linear transformations 6 and 1 respectively with respect to
chosen bases of V., V' and V". Then the matrix representing the composition
1 ob of the linear transformations 0 and 1) is the product BA of the matrices
representing those linear transformations.

Proof Let uj,uy,...,u, be a basis of V, let uj, u),...,u}, be a basis of V|
and let uf,uf,...,u’, be a basis of V". Let A and B be the matrices whose
n/

coefficients (A); and (B); are determined such that 6(u;) = > (A)x u)
k=1

p
for k=1,2,...,n and ¢(u}) = > (B);xu}. Then

=1

¢ <0 (zn: )\jllj)) = zp: Viu;/,
j=1 i=1
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where

j=1 \k=1

for [ =1,2,...,p. Thus the composition ¢ o 6 of the linear transformations
0:V — V' and ¢: V! — V" is represented by the product BA of the matrix B
representing ¢ and the matrix A representing A with respect to the chosen
bases of V, V' and V", as required. |}

Lemma A.19 Let V and W be finite-dimensional real vector spaces, and

let 0:V — W be a linear transformation from V to W. Let uj,us,...,u,
be a basis of V, let e1,¢9,...,6, be the corresponding dual basis of the dual
space V* of V, let u,ui,...,ul, be a basis of W, and let €},¢}, ... €, be

the corresponding dual basis of the dual space W* of W. Then the matrix
representing the adjoint 0*: W* — V* of 6: V. — W with respect to the dual
bases of W* and V* is the transpose of the matrixz representing 6:V — W
with respect to the chosen bases of V. and W.

Proof Let A be the n’ X n matrix representing the linear transformation

nl

6:V — W with respect to the chosen bases. Then ¢(u;) = > (A);,u} for

=1
n n’
j=1,2,...,n. Let ve Vandne W* let v.=> \v;, let n = > ¢gel,
i=1 j=1
where A\, Xy, ..., A\, and ¢, s, ..., ¢, are real numbers. Then

@"n)(v) = n(0(v)) =n (Z Aﬂ(ﬂj))

= > (0w = > A (Z(A»,ju;)

i=1

= SN @ahn) = 373 (A) e

i=1 j=1 i=1 j=1
Thus if
n/
_ /
n= Ci&;s
=1
where ¢q, ¢s, ..., ¢, are real numbers, then

9*77 = Z hjéj,
i=1
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where

n/

hyj =Y (A)ijei = (A")jic
i=1 i=1
for j = 1,2,...,n, and where A” is the transpose of the matrix A, defined
so that (AT);; = A;; fori=1,2,...,n" and j = 1,2,...,n. It follows from
this that the matrix that represents the adjoint #* with respect to the dual
bases on W* and V* is the transpose of the matrix A that represents 6 with
respect to the chosen bases on V' and W, as required. |}
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