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1.1

Introduction to Linear Programming

A Furniture Retailing Problem

A retail business is planning to devote a number of retail outlets to the sale
of armchairs and sofas.

The retail prices of armchairs and sofas are determined by fierce compe-
tition in the furniture retailing business. Armchairs sell for €700 and sofas
sell for €1000.

However

the amount of floor space (and warehouse space) available for stocking
the sofas and armchairs is limited;

the amount of capital available for purchasing the initial stock of sofas
and armchairs is limited;

market research shows that the ratio of armchairs to sofas in stores
should neither be too low nor too high.

Specifically:

there are 1000 square metres of floor space available for stocking the
initial purchase of sofas and armchairs;

each armchair takes up 1 square metre;
each sofa takes up 2 square metres;

the amount of capital available for purchasing the initial stock of arm-
chairs and sofas is €351,000;

the wholesale price of an armchair is €400;
the wholesale price of a sofa is €600;

market research shows that between 4 and 9 armchairs should be in
stock for each 3 sofas in stock.

We suppose that the retail outlets are stocked with x armchairs and y

sofas.

The armchairs (taking up 1 sq. metre each) and the sofas (taking up 2
sq. metres each) cannot altogether take up more than 1000 sq. metres of
floor space. Therefore

x4+ 2y < 1000 (Floor space constraint).
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The cost of stocking the retail outlets with armchairs (costing €400 each)
and sofas (costing €600 each) cannot exceed the available capital of €351000.
Therefore

4x 4+ 6y < 3510 (Capital constraint).

Consumer research indicates that x and y should satisfy
4y <3z <9y (Armchair/Sofa ratio).

An ordered pair (x,y) of real numbers is said to specify a feasible solution
to the linear programming problem if this pair of values meets all the relevant
constraints.

An ordered pair (z,y) constitutes a feasible solution to the the Furniture
Retailing problem if and only if all the following constraints are satisfied:

r—3y < 0

4y — 3z < 0
r+2y < 1000;
dr + 6y < 3510;

z > 0

y = 0

The feasible region for the Furniture Retailing problem is depicted below:
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We identify the vertices (or corners) of the feasible region for the Furni-
ture Retailing problem. There are four of these:

e there is a vertex at (0,0);

e there is a vertex at (400, 300) where the line 4y = 3x intersects the line
x + 2y = 1000;



e there is a vertex at (510,245) where the line z + 2y = 1000 intersects
the line 4z + 6y = 3510;

e there is a vertex at (585,195) where the line 3y = x intersects the line
4z + 6y = 3510.

These vertices are identified by inspection of the graph that depicts the
constraints that determine the feasible region.

The furniture retail business obviously wants to confirm that the business
will make a profit, and will wish to determine how many armchairs and sofas
to purchase from the wholesaler to maximize expected profit.

There are fixed costs for wages, rental etc., and we assume that these are
independent of the number of armchairs and sofas sold.

The gross margin on the sale of an armchair or sofa is the difference
between the wholesale and retail prices of that item of furniture.

Armchairs cost €400 wholesale and sell for €700, and thus provide a gross
margin of €300.

Sofas cost €600 wholesale and sell for €1000, and thus provide a gross
margin of €400.

In a typical linear programming problem, one wishes to determine not
merely feasible solutions to the problem. One wishes to determine an optimal
solution that maximizes some objective function amongst all feasible solutions
to the problem.

The objective function for the Furniture Retailing problem is the gross
profit that would accrue from selling the furniture in stock. This gross profit
is the difference between the cost of purchasing the furniture from the whole-
saler and the return from selling that furniture.

This objective function is thus f(z,y), where

f(z,y) = 300z + 400y.

We should determine the maximum value of this function on the feasible
region.

Because the objective function f(z,y) = 300x + 400y is linear in x and
Yy, its maximum value on the feasable region must be achieved at one of the
vertices of the region.

Clearly this function is not maximized at the origin (0, 0)!

Now the remaining vertices of the feasible region are located at (400, 300),
(510, 245) and (585, 195), and

£(400,300) = 240,000,
£(510,245) = 251,000,



£(585,195) = 253,500.

It follows that the objective function is maximized at (585, 195).

The furniture retail business should therefore use up the available capital,
stocking 3 armchairs for every sofa, despite the fact that this will not utilize
the full amount of floor space available.

1.2 Linear Programming Problems in Von Neumann
Maximizing Form

A linear programming problem may be presented in Von Neumann maximiz-
ing form as follows:

given real numbers ¢;, A;; and b; for

1=1,2,....mand j=1,2,...,n,

find real numbers x1,xo,...,x, so as to

mazrimize c1xy + Coxa + - -+ + CpTn

subject to constraints

x; >0 forj=1,2,...,n, and

Airxy + Aipzo+ -+ Ajpn, < b fori=1,2,...,m.

The furniture retailing problem may be presented in von Neumann max-
imizing form with n =2, m = 4,

(1, ¢2) = (300, 400),

1 -3 by 0

[ -3 4 by | | 0
A=t 10 2 | e |7 1000
4 6 by 3510

Here A represents the m x n whose coefficient in the ith row and jth
column is A, ;.

Linear programming problems may be presented in matrix form. We
adopt the following notational conventions with regard to transposes, row
and column vectors and vector inequalities:—

e vectors in R™ and R"™ are represented as column vectors;



e we denote by M7T the n x m matrix that is the transpose of an m x n
matrix M,

e in particular, given b € R™ and ¢ € R", where b and ¢ are represented as
column vectors, we denote by b and ¢' the corresponding row vectors
obtained on transposing the column vectors representing b and ¢;

e given vectors u and v in R"™ for some positive integer n, we write u < v
(and v > w) if and only if u; <wv; for j =1,2,...,n.

A linear programming problem in von Neumann maximizing form may
be presented in matrix notation as follows:—
Given an m X n matriz A with real coefficients,
and given column vectors b € R™ and c € R",
find x € R™ so as to
i T
maximize ¢ x

subject to constraints Ax < b and x > 0.



2 Bases of Finite-Dimensional Vector Spaces

2.1 Real Vector Spaces

Definition A real vector space consists of a set V' on which there is defined
an operation of vector addition, yielding an element v +w of V' for each pair
v,w of elements of V', and an operation of multiplication-by-scalars that
yields an element Av of V' for each v € V' and for each real number X\. The
operation of vector addition is required to be commutative and associative.
There must exist a zero element 0y of V that satisfies v + 0y = v for all
v € V, and, for each v € V there must exist an element —v of V' for which
v+(—v) = 0y. The following identities must also be satisfied for all v,w € V'
and for all real numbers A and u:

A+ p)v=Av+uv, Av+w)=Av+Aw,
AMpv) = (A\p)v, 1v=v.

Let n be a positive integer. The set R™ consisting of all n-tuples of real
numbers is then a real vector space, with addition and multiplication-by-
scalars defined such that

(xlal‘%"':xn)+(y17y27"'ayn):<x1+y17x2+y27"'xn+yn)

and
Mz1, T, ., xy) = (Axy, AT, ..., Axy)

for all (1, 2z2,...,20), (Y1,%2,.-.,Ys) € R and for all real numbers \.

The set M,,,(R) of all m x n matrices is a real vector space with respect
to the usual operations of matrix addition and multiplication of matrices by
real numbers.

2.2 Linear Dependence and Bases

Elements uy, us, ..., u,, of a real vector space V are said to be linearly de-
pendent if there exist real numbers A1, Ao, ..., A, not all zero, such that

Aug + Aus + - - -+ Au,, = Oy

If elements uy, us, ..., u,, of real vector space V' are not linearly dependent,
then they are said to be linearly independent.

Elements uy, us,...,u, of a real vector space V' are said to span V if,
given any element v of V, there exist real numbers Ay, Ao, ..., A\, such that
vV =AUy + Xus + -+ Au,.



A vector space is said to be finite-dimensional if there exists a finite
subset of V' whose members span V.

Elements uy,us,...,u, of a finite-dimensional real vector space V are
said to constitute a basis of V' if they are linearly independent and span V.

Lemma 2.1 FElements uy,us,...,u, of a real vector space V' constitute a
basis of V' if and only if, given any element v of V', there exist uniquely-
determined real numbers \i, Aa, ..., A, such that

vV = )\1111 +>\2U2+"'+>\nun.

Proof Suppose that u;,us,...,u, is a basis of V. Let v be an element V.
The requirement that uy,us,...,u, span V ensures that there exist real
numbers Ay, Ao, ..., A\, such that

V= )\1111 + )\2112 + -+ /\nun.
If pq, po, ..., pp, are real numbers for which

U = 10y + folg + -+ Up Uy,
then

(1 — A)ag + (2 — Ao)ug + -+ - + (pn — Ap)u, = Oy
It then follows from the linear independence of uy, us, ..., u, that u;—A; =0
forv=1,2,...,n, and thus y; = \; for © = 1,2,...,n. This proves that the
coefficients A1, Ao, ..., A, are uniquely-determined.
Conversely suppose that uy, us, ..., u, is a list of elements of V' with the

property that, given any element v of V', there exist uniquely-determined
real numbers Aq, Ao, ..., A\, such that

v =AUy + Aug + - + AU,

Then uy,u,,...,u, span V. Moreover we can apply this criterion when
v = 0. The uniqueness of the coefficients A1, X, ..., A, then ensures that if

)\1111 —|—/\2112 + .- +)\nun = OV

then \; =0 for+=1,2,...,n. Thus uj,u,,...,u, are linearly independent.
This proves that uy, us, ..., u, is a basis of V, as required. |}

Proposition 2.2 Let V' be a finite-dimensional real vector space, let
up, Uy, ..., Uy,

be elements of V' that span V', and let K be a subset of {1,2,... ,n}. Suppose
either that K = () or else that those elements u; for which i € K are linearly
independent. Then there exists a basis of V' whose members belong to the list
ug, Uo, ..., u, which includes all the vectors u; for which i € K.
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Proof We prove the result by induction on the number of elements in the
list uy,ug,...,u, of vectors that span V. The result is clearly true when
n = 1. Thus suppose, as the induction hypothesis, that the result is true for
all lists of elements of V' that span V' and that have fewer than n members.

If the elements uy, uy, ..., u, are linearly independent, then they consti-
tute the required basis. If not, then there exist real numbers A, Ao, ..., A,
not all zero, such that

/\1111 + /\2112 + -+ )\nun = Ov.

Now there cannot exist real numbers Ai, Aa, ..., \,, not all zero, such
that both z Aiw; = Oy and also \; = 0 whenever 7 # K. Indeed, in the

case where K (), this conclusion follows from the requirement that the real
numbers \; cannot all be zero, and, in the case where K # (), the conclusion
follows from the linear independence of those u; for which i € K. Therefore
there must exist some integer i satisfying 1 < ¢ < n for which \; # 0 and
1 € K. Without loss of generality, we may suppose that uy,us,...,u, are
ordered so that n € K and A\, # 0. Then

n—1 )\Z
_2 Tu

Let v be an element of V. Then there exist real numbers pq, o, ..., i
n
such that v = >~ pu;, because uy, uy, ..., u, span V. But then
i=1
n—1
s
sz(m_ﬂn Z>u¢-
i=1 n
We conclude that uy,us,...,u,_; span the vector space V. The induction
hypothesis then ensures that there exists a basis of V' consisting of members
of this list that includes the linearly independent elements uy, us, ..., u,,, as

required. |
Corollary 2.3 Let V' be a finite-dimensional real vector space, and let
U, Uy, ..., Uy

be elements of V' that span the vector space V. Then there exists a basis of
V' whose elements are members of the list uy, s, ..., u,.

Proof This result is a restatement of Proposition 2.2 in the special case
where the set K in the statement of that proposition is the empty set. |



2.3 Dual Spaces

Definition Let V' be a real vector space. A linear functional ¢:V — R on
V' is a linear transformation from the vector space V' to the field R of real
numbers.

Given linear functionals ¢: V' — R and v: V' — R on a real vector space V,
and given any real number A\, we define ¢ 4+ ¢ and Ay to be the linear
functionals on V' defined such that (¢ +v)(v) = ¢(v) +¢(v) and (A\p)(v) =
Ap(v) forall veV.

The set V* of linear functionals on a real vector space V is itself a
real vector space with respect to the algebraic operations of addition and
multiplication-by-scalars defined above.

Definition Let V be a real vector space. The dual space V* of V is the
vector space whose elements are the linear functionals on the vector space V.

Now suppose that the real vector space V is finite-dimensional. Let
ug, Us,..., U, be a basis of V, where n = dimV. Given any v € V there

n
exist uniquely-determined real numbers A, Ay, ..., A, such that v = > Aju,.
=1

]7
It follows that there are well-defined functions eq,e9,...,c, from V to the
field R defined such that

E; (Zn: /\jllj) = /\z
j=1

for7:=1,2,...,n and for all real numbers Ay, Ao, ..., \,. These functions are
linear transformations, and are thus linear functionals on V.

Lemma 2.4 Let V be a finite-dimensional real vector space, let

u;,ag,...,0,
be a basis of V', and let e1,¢9,...,&, be the linear functionals on V' defined
such that
& <Z /\jllj) = >\z
j=1
fori=1,2,... n and for all real numbers Ay, Ao, ..., \,. Then e1,e9,...,&,

constitute a basis of the dual space V* of V.. Moreover

= plwe
=1

for all p € V*.



Proof Let p, pa, ..., p, be real numbers with the property that > pe; =
i=1
OV*- Then

0= (Z m&) u;) Zuzsz u;)
i=1

for j =1,2,...,n. Thus the linear funcuonals €1,€9,...,6, on V are linearly
independent elements of the dual space V*.
Now let ¢: V' — R be a linear functional on V, and let p; = ¢(u;) for

1=1,2,...,n. Now
|1 iti=g;
52'(‘”)_{ 0 if i+ .

It follows that

i=1 j=1
= Z/\Jcp (u;) (Z)\ u]>

for all real numbers A;, Ag, ..., \,.

It follows that . .
Y= Zﬂz‘ﬁz‘ = Z 90(111')5
i=1 i=1

We conclude from this that every linear functional on V' can be expressed as

a linear combination of €1, 9, ...,¢,. Thus these linear functionals span V*.

We have previously shown that they are linearly independent. It follows that

they constitute a basis of V*. Moreover we have verified that ¢ = > ¢(u;)e;
i=1

for all p € V* as required. |}

Definition Let V' be a finite-dimensional real vector space, let uy, uy, ..., u,
be a basis of V. The corresponding dual basis of the dual space V* of V
consists of the linear functionals 1, ¢, ...,6, on V', where

E; (Zn: /\jllj) = /\z
j=1

for e =1,2,...,n and for all real numbers A\, \o, ..., \,.

Corollary 2.5 Let V' be a finite-dimensional real vector space, and let V*
be the dual space of V. Then dimV* = dim V.
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Proof We have shown that any basis of V' gives rise to a dual basis of V*,
where the dual basis of V' has the same number of elements as the basis
of V' to which it corresponds. The result follows immediately from the fact
that the dimension of a finite-dimensional real vector space is the number of
elements in any basis of that vector space. |}

Let V be a real-vector space, and let V* be the dual space of V. Then
V* is itself a real vector space, and therefore has a dual space V**. Now each
element v of V' determines a corresponding linear functional E,:V* — R on
V*, where Ey(p) = ¢(v) for all ¢ € V*. It follows that there exists a function
1: V' — V** defined so that «(v) = Ey for all v.€ V. Then «(v)(¢) = ¢(Vv)
for all ve V and ¢ € V*.

Now

UV + W) (@) = o(v + W) = (V) + p(w) = (1(v) + «(W))(¥)

and
LAV) () = p(AV) = Ap(v) = (Au(v))(p)

for all v,w € V and ¢ € V* and for all real numbers A. It follows that
v+ w) =1uv)+(w) and t(Av) = A\(v) for all v,w € V and for all real
numbers A\. Thus ¢:V — V** is a linear transformation.

Proposition 2.6 Let V' be a finite-dimensional real vector space, and let
1: V. — V** be the linear transformation defined such that (v)(p) = p(v) for
allv eV and ¢ € V*. Then v:V — V** 4s an isomorphism of real vector
spaces.

Proof Let uj,u,,...,u, be a basis of V, let £1,¢5,...,¢e, be the dual basis
of V*, where
1 ifi =y,
eiyy) _{ 0 ifi# 7,
and let v € V. Then there exist real numbers Ai, Ao, ..., A\, such that v =
Z /\Zuz
i=1
Suppose that ¢(v) = Op«. Then p(v) = Ey(p) = 0 for all p € V*. In
particular \; = ¢;(v) = 0 for ¢ = 1,2,...,n, and therefore v.= 0. We

conclude that ¢: V' — V** is injective.
Now let F:V* — R be a linear functional on V*, let \; = F(g;) for

i=1,2,...,n,let v=> Nu, and let ¢ € V*. Then ¢ = > p(u;)e; (see
i=1 i=1

11



Lemma 2.4), and therefore
iW)(e) = e(v) =D Nip(w) = 3 Flep(w)

= F (Z 90(1105@') = F(p).

Thus ¢(v) = F. We conclude that the linear transformation ¢: V' — V**
is surjective. We have previously shown that this linear transformation is
injective. There t: V' — V** is an isomorphism between the real vector spaces

V and V** as required. |}

The following corollary is an immediate consequence of Proposition 2.6.

Corollary 2.7 Let V' be a finite-dimensional real vector space, and let V*
be the dual space of V. Then, given any linear functional F:V* — R, there
exists some v € V such that F(p) = @(v) for all ¢ € V*.
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3 The Transportation Problem

3.1 Transportation in the Dairy Industry

We discuss an example of the Transportation Problem of Linear Program-
ming, as it might be applied to optimize transportation costs in the dairy
industry.

A food business has milk-processing plants located in various towns in a
small country. We shall refer to these plants as dairies. Raw milk is supplied
by numerous farmers with farms located throughout that country, and is
transported by milk tanker from the farms to the dairies. The problem is
to determine the catchment areas of the dairies so as to minimize transport
costs.

We suppose that there are m farms, labelled by integers from 1 to m that
supply milk to n dairies, labelled by integers from 1 to n. Suppose that, in
a given year, the ith farm has the capacity to produce and supply a s; litres
of milk for ¢ = 1,2,...,m, and that the jth dairy needs to receive at least d;
litres of milk for j = 1,2,...,n to satisfy the business obligations.

The quantity Y s; then represents that total supply of milk, and the

=1
n

quantity ) d; represents the total demand for milk.
j=1
We suppose that z; ; litres of milk are to be transported from the ith farm
to the jth dairy, and that ¢; ; represents the cost per litre of transporting this
milk.

Then the total cost of transporting milk from the farms to the dairies is

m n

E :E :Cl}jxi,j'

i=1 j=1

The quantities x; ; of milk to be transported from the farms to the dairies
should then be determined for ¢ = 1,2,...,m and j = 1,2,...,n so as to
minimize the total cost of transporting milk.

However the ith farm can supply no more than s; litres of milk in a given
year, and that jth dairy requires at least d; litres of milk in that year. It
follows that the quantities x;; of milk to be transported between farms and
dairy are constrained by the requirements that

n
megsi fori=1,2,...,m

j=1

13



and

inJZd]’ forj:1,2,...,m.
i=1

3.2 The General Transportation Problem

The Transportation Problem can be expressed generally in the following
form. Some commodity is supplied by m suppliers and is transported from
those suppliers to n recipients. The 7¢th supplier can supply at most to s;
units of the commodity, and the jth recipient requires at least d; units of the
commodity. The cost of transporting a unit of the commodity from the ith
supplier to the jth recipient is ¢; ;.

The total transport cost is then

m n
i=1 j=1
where z; ; denote the number of units of the commodity transported from

the 7th supplier to the jth recipient.
The Transportation Problem can then be presented as follows:

determine x; j fori=1,2,...,mand j =1,2,...,n s0 as
minimize )y c; ;x; ; subject to the constraints x;; > 0 for all i
i?j
n m
and j, > x;i; <s; and Y x;; > dj, where s; > 0 for all 1,
j=1 i=1

d; >0 for alli, and ) s; > > d;.
i=1 j=1
3.3 Transportation Problems in which Total Supply
equals Total Demand
Consider an instance of the Transportation Problem with m suppliers and
n recipients. The following proposition shows that a solution to the Trans-

portation Problem can only exist if total supply of the relevant commodity
exceeds total demand for that commodity.

Proposition 3.1 Let s1,S9,...,8, and di,ds,...,d, be non-negative real
numbers. Suppose that there exist non-negative real numbers x; ; be for i =
1,2,....m and j =1,2,...,n that satisfy the inequalities

n m
E T S S; and E X 5 Z dj.
j=1 i=1

14



Then

Z:: s

||M3

Moreover if it is the case that

3
3

Zdj :Zsi.

j=1 i=1
then
n
g ;=38 fori=1,2...,m
Jj=1

and

in,j:dj fo‘rjzl,Q,...,n.

i=1
Proof The inequalities satisfied by the non-negative real numbers x; ; ensure

that
Zd <sz” <Zsz

=1 j=1
Thus the total supply must equal or exceed the total demand.

If it is the case that Z x;; < s; for at least one value of ¢ then Z Z Tij
Jj=1 1=1j5=1

>, s;. Similarly if it is the case that Z x;; > d; for at least one value of

i=1
j then Z wa > Z]  d

i=1j=
It follows that if total supply equals total demand, so that

m n
E S; = E dj,
i=1 j=1

then .
me:si fori=1,2,...,m

and

Zl‘i,j:dj for j=1,2,...,n,
i=1

as required. |
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We analyse the Transportation Problem in the case where total supply
equals total demand. The optimization problem in this case can then be
stated as follows:—

determine x; j fori=1,2,...,mand j =1,2,...,n s0 as
minimize y . ¢; ;jx; ; subject to the constraints x; ; > 0 for all i
i’j

n m
and j, Y x;; =s; and Y x;; = d;j, where s; >0 and d; > 0 for
j=1 i=1

alli and j, and ) s; =) d;.
j=1

i=1

Definition A feasible solution to the Transportation Problem (with equality
of total supply and total demand) takes the form of real numbers x; ;, where

[ ) Q:i,jZOfori:1727"'7mandj:172".'7n;

n
° > wij =i
j=1

m
® > xi;=d;
=1

Definition A feasible solution (z; ;) of the Transportation Problem is said
to be optimal if it minimizes cost amongst all feasible solutions of the Trans-
portation Problem.

3.4 Row Sums and Column Sums of Matrices

We commence the analysis of the Transportation Problem by studying the
interrelationships between the various real vector spaces and linear trans-
formations that arise naturally from the statement of the Transportation
Problem.

The quantities z; ; to be determined are coefficients of an m x n matrix X.
This matrix X is represented as an element of the real vector space M, ,,(R)
that consists of all m x n matrices with real coefficients.

The non-negative quantities s, sg,..., S, that specify the sums of the
coefficients in the rows of the unknown matrix X are the components of a
supply vector s belonging to the m-dimensional real vector space R™.

Similarly the non-negative quantities dy, ds, ..., d, that specify the sums
of the coefficients in the columns of the unknown matrix X are the compo-
nents of a demand vector d belonging to the n-dimensional space R™.
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The requirement that total supply equals total demand translates into a
m

requirement that the sum > (s); of the components of the supply vector s
i=1

n
must equal the sum ) (d); of the components of the demand vector d.
7j=1
Accordingly we introduce a real vector space |44 conswtmg of all ordered

pairs (y,z) for which y € R, z € R” and Z( )i = Z(z)j.

j=1
Lemma 3.2 Let m and n be positive integers, and let
W= {(y,z) ER™ X R": ) (y); = Z(z)]} .
i=1 j=1
Then the dimension of the real vector space W ism+n—1. |}

Proof It is easy to see that the vector space W is isomorphic to R™ when
n = 1. The result then follows directly in the case when n = 1. Thus suppose
that n > 1.

Given real numbers yq, 9o, ..., 4, and z1, 2o, ..., z,_1, there exists exactly
one element (y,z) of W that satisfies (y); = y; for i = 1,2,...,m and
(z); = #; for j = 1,2,...,n — 1. The remaining component (z), of the

n-dimensional vector z is then determined by the equation

m m—1
SIS S
i=1 j=1
It follows from this that dim W = m +n — 1, as required. |}

The supply and demand constraints on the sums of the rows and columns
of the unknown matrix X can then be specified by means of linear transfor-

mations

p: My, n(R) — R™
and

o: My, ,(R) = R",

where, for each X € M,,,(R), the components of the m-dimensional vector
p(X) are the sums of the coefficients along each row of X, and the components
of the n-dimensional vector o(X) are the sums of the coefficients along each
column of X.
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Let X € M,;, »(R). Then the ith component p(X); of the vector p(X) is
determined by the equation

p(X); = Z(X)” fori=1,2,...,m,

i=1

for i =1,2,...,m, and the jth component o(X); of o(X) is determined by

the equation
m

o(X); = Z(X)” for j =1,2,...,n.
i=1
for y=1,2,...,n.
The costs ¢; ; are the components of an m x n matrix C, the cost matriz,
that in turn determines a linear functional

fiMpn(R) =R
on the vector space M, ,(R) defined such that
F(X) = trace(CTX) =Y > (C)i; Xy,
i=1 j=1

for all X € M, ,(R).

An instance of the problem is specified by specifying a supply vector s,
demand vector d and cost matrix C. The components of s and d are required
to be non-negative real numbers. Moreover (s,d) € W, where W is the real
vector space consisting of all ordered pairs (s,d) with s € R™ and d € R"
for which the sum of the components of the vector s equals the sum of the
components of the vector d.

A feasible solution of the Transportation Problem with given supply vec-
tor s, demand vector d and cost matrix C'is represented by an m xn matrix X
satisfying the following three conditions:—

e The coefficients of X are all non-negative;
o p(X)=s;
e o(X)=d.
The cost functional f: M, ,,(R) — R is defined so that
f(X) = trace(CT X)
for all X € M, ,(R).

A feasible solution X of the Transportation problem is optimal if and
only if f(X) < f(X) for all feasible solutions X of that problem.
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Lemma 3.3 Let M,,,(R) be the real vector space consisting of all m x n
matrices with real coefficients, let p: My, n(R) — R™ and o: My, n,(R) — R”
be the linear transformations defined so that the ith component p(X); of p(X)

satisfies
n

p(X); = Z(X)” fori=1,2,...,m,

j=1
fori=1,2,...,m, and the jth component o(X); of o(X) satisfies
o(X); = Z(X>i,j forj=1,2,...,n.
i=1

forj=1,2,....n. Then (p(X),0(X)) € W for all X € M,,,(R), where

W = {(y,Z) ER™ XR": ) (y)i= Z(Z)j}-

Proof Let X € M, ,,(R). Then

n

Zp(X)i = ZZ(X)” = ZO(X)j'

i=1 j=1 j=1

It follows that (p(X),o(X)) € W for all X € M,,,(R), as required. |

3.5 Bases for the Transportation Problem

The real vector space M,, ,(R) consisting of all m x n matrices with real coef-
ficients has a natural basis consisting of the matrices E®9) for i = 1,2,...,m
and j = 1,2,...,n, where, for each i and j, the coefficient of the matrix £
in the ith row and jth column has the value 1, and all other coefficients are

zero. Indeed
m n

DI
i=1 j=1
for all X € M, ,(R).
Let p: My n(R) — R™ and o: M,, ,(R) — R™ be the linear transforma-
tions defined such that (p(X)); = > (X)), fori=1,2,...,mand (¢(X)); =
j=1

(X);; for j =1,2,...,n. Then p(E®)) = bW for i = 1,2,...,m, where

AlNNgE

x|

(@) denotes the ith vector in the standard basis of R™, defined such that
=i 1 ifi=Fk;

@)y, — ’
(™) { 0 if i+ k.
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Similarly o(E®)) = b for j = 1,2,...,n, where b¥) denotes the jth vector
in the standard basis of R", defined such that

. 1 ifj=1;
@)y, — J=45
(b )l_{o if j # 1.

Now (p(X),0(X)) € W for all X € M,,,(R), where

W= {(y,z) ER™ X R": ) (y)i = Z(z)]}.

i=1 j=1
Let I ={1,2,...,m} and J ={1,2,...,n}, and let
BUI) = (B(i) b(j))

for all (i,5) € I x J. Then the elements 3 span the vector space W. It
follows from basic linear algebra that there exist subsets B of I x J such that
the elements 347 of W for which (i,j) € B constitute a basis of the real
vector space W (see Corollary 2.3).

Definition Let I = {1,2,...,m} and J = {1,2,...,n}, where m and n are
positive integers, let

W {<y,z> _— z<y>i:z<z>3}7

i=1 j=1

and, for each (i,7) € I x J, let 8+ = (b bl)), where b®) € R™ and b\ ¢
R” are defined so that the ith component of b and that jth component
of b are equal to 1 and the other components of these vectors are zero.
A subset B of I x J is said to be a basis for the Transportation Problem
with m suppliers and n recipients if and only if the elements 5¢) for which
(i,7) € B constitute a basis of the real vector space W.

The real vector space W is of dimension m+n — 1, where m is the number
of suppliers and n is the number of recipients. It follows that any basis for
the Transportation Problem with m suppliers and n recipients has m+n —1
members.

Proposition 3.4 Let I = {1,2,...,m} and J = {1,2,...,n}, where m

and n are positive integers. Then a subset B of I x J is a basis for the

transportation problem if and only if, given any vectors y € R™ and z € R”

satisfying > (¥)m = Y_(z)n, there exists a unique m X n matriz X with real
i=1 j=1

coefficients satisfying the following properties:—
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(i) é(X)m- —(y)i fori=1,2,...,m;

(i) i(){)m —(z), forj=1,2,....n;
(it) (X);; =0 unless (i,7) € B.

Proof For each (i,j) € I x J, let E()) denote the matrix whose coefficient
in the ¢th row and jth column are equal to 1 and whose other coefficients are
zero, and let p(X) € R™ and o(X) € R” be defined for all m x n matrices X

with real coefficients so that (p(X)); = > (X);; and (o(X)); = > (X)i,-
j=1 i=1
Then p(E®)) = bW for i = 1,2,...,m, where b(®) denotes the vector in R™
whose ith component is equal to 1 and whose other components are zero.
Similarly o(E@)) = bW for j = 1,2,...,n, where b} denotes the vector
in R™ whose jth component is equal to 1 and whose other components are
ZEro.
Let

W = {(y,z) ER™ X R": ) (y); = Z(z)j}.

i=1 j=1

Then (p(X),0(X)) € W for all X € M, ,,(R), and
(p(EED), g(EG)) = gl
for all (¢,7) € I x J where
369 — (B, b)),

Let B be a subset of I x J, let y and z be elements of R™ and R”
respectively that satisfy (y,z) € W, and let X be an m x n matrix with real
coefficients with the property that (X);; = 0 unless (¢, j) € B. Then

pX)= Y (XappE) = 3 (X)a,b"

(3,7)€B (i,7)€B

and

and therefore

(p(X), o(X)) = 3 (X)e8.
(

i,j)€B
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Suppose that, given any y € R™ and z € R" for which (y,z) € W, there
exists a unique m xn matrix X such that y = p(X), z = ¢(X) and (X);; =0
for all (7, j) € B. Then the elements 37) of W for which (i, j) € B must span
W and must also be linearly independent. These elements must therefore
constitute a basis for the vector space B. It then follows that the subset B
of I x J must be a basis for the Transportation Problem.

Conversely if B is a basis for the Transportation Problem then, given any

(v,z) € W, there must exist a unique m x n matrix X with real coefficients

such that (y,z) = > (X);;8®) and (X);; = 0 unless (i,j) € B. The
(i.)eB

result follows. |}

Lemma 3.5 Let m and n be positive integers, let I = {1,2,...,m} and
J=A{1,2,...,n}, and let K be a subset of I x J. Suppose that there is no
basis B of the Transportation Problem for which K C B. Then there exists
a non-zero m x n matriz Y with real coefficients which satisfies the following
conditions:

M-

Il
i

(Y); =0 fori=1,2,...,m;

J

=

&
Il
—

(Y)i; =0 forj=1,2,...,n;

—

Y)i; =0 when (i,j) ¢ K.

Proof Let

W {<y,z> _— z<y>i=z<z>]},

i=1 j=1

let b b ... b be the standard basis of R™ and let b®) b® ... b
be the standard basis of R”, where the ith component of b(® and the jth
component of bY) are equal to 1 and the other components of these vectors
are zero, and let 30 = (b® bWW) for all (i,5) € I x J.

Now follows from Proposition 2.2 that if the elements S for which
(i,7) € K were linearly independent then there would exist a subset B of
I x J satisfying K C B such that the elements 3%7) for which (i,5) € B
would constitute a basis of W. This subset B of I x J would then be a
basis for the Transportation Problem. But the subset K is not contained in
any basis for the Transportation Problem. It follows that the elements 50+
for which (i,j) € K must be linearly dependent. Therefore there exists a
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non-zero m X n matrix Y with real coefficients such that (Y);; = 0 when
(i,7) ¢ K and

D (V)85 = 0w
=1

j=1

Now B9 = (b bW)) for all i € I and j € J. It follows that

(2

m n

i=1 j=1

and
and therefore
and

as required. |

3.6 Basic Feasible Solutions of Transportation Prob-
lems

Consider the Transportation Problem with m suppliers and n recipients,
where the ith supplier can provide at most s; units of some given commod-
ity, where s; > 0, and the jth recipient requires at least d; units of that
commodity, where d; > 0. We suppose also that total supply equals total

demand, so that
m n
IR SN
i=1 j=1

The cost of transporting the commodity from the ith supplier to the jth
recipient 1S ¢; ;.

The concept of a basis for the Transportation Problem was introduced in
Subsection 3.5. We recall some results established in that subsection.

Let I ={1,2,...,m}and J = {1,2,... ,n}. Asubset Bof Ix.Jisa basis
for the Transportation Problem if and only if, given any vectors y € R™ and
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z € R" satisfying > (y); = Y_(z);, there exists a unique matrix X with real
i=1 j=1
coefficients such that > (X);; = (y); fori=1,2,....,m, > (X);; = (z), for
j=1 i=1
j=1,2,...,nand (X);; = 0 unless (¢,j) € B (see Proposition 3.4). A basis
for the transportation problem has m + n — 1 elements.
Also if K is a subset of I x J that is not contained in any basis for the

Transportation Problem then there exists a non-zero m x n matrix Y such
that > (Y),; =0fori=1,2,....,m, > (X);; =0for j =1,2,...,n and
j=1 1=1

(Y);; =0 unless (i,7) € K (see Lemma_3.5).
Definition A feasible solution (x; ;) of a Transportation Problem is said to

be basic if there exists a basis B for that Transportation Problem such that
z;; = 0 whenever (i,7) ¢ B.

Example Consider the instance of the Transportation Problem where m =
n:2, 81:8, 52:3, d1:2, d2:9, 0171:2, 6172:3, 02,1:4and02,2:1.
A feasible solution takes the form of a 2 x 2 matrix

T11 T12
To1 T22

with non-negative components which satisfies the two matrix equations
Ti1 L1 1y (8
To1 Tap 1) \3

(1 1)("51’1 J"1’2):(2 9).

To1 T22

and

A basic feasible solution will have at least one component equal to zero.
There are four matrices with at least one zero component which satisfy the
required equations. They are the following:—

(27) (59) (53) (5'0)

The first and third of these matrices have non-negative components.
These two matrices represent basic feasible solutions to the problem, and
moreover they are the only basic feasible solutions.

The costs associated with the components of the matrices are ¢;; = 2,
cio2 =3, ¢ =4and cpo = 1.
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The cost of the basic feasible solution ( (2) ? ) is

86172 + 26271 + Coo = 24+8+1=33.

The cost of the basic feasible solution ( g g > is

201’1 -+ 6C1’2 -+ 36272 =4+ 18+ 3 = 25.

11 T12
T21 T22

T11 T12 1 . 8
To1 Tap 1) \3)

() (B ne ) (2 )

Ta21 T22

Now any 2 x 2 matrix ( ) satisfying the two matrix equations

must be of the form

11 T12 . A 8— A\
Ta1 Xeo ) \2—=X 14X
for some real number .
. A 8= . .
But the matrix 29X 14\ has non-negative components if and
only if 0 < X < 2. It follows that the set of feasible solutions of this instance
of the transportation problem is

A 8— A
{(2_)\ 1+)\).)\€Rand0§/\§2}.

The costs associated with the components of the matrices are ¢;; = 2,
c12 =3, ca1 = 4 and ¢y 5 = 1. Therefore, for each real number \ satisfying
. . A 8=X). .
0 < X < 2, the cost f(\) of the feasible solution ( 9\ 14\ ) is given
by
FOA)=2X24+38—=XN)+4(2—-X)+(1+ ) =33 -4\

2

0 g is the optimal solution
of this instance of the Transportation Problem. The cost of this optimal
solution is 25.

Cost is minimized when A = 2, and thus

25



Proposition 3.6 Given any feasible solution of the Transportation Problem,
there exists a basic feasible solution with whose cost does not exceed that of
the given solution.

Proof Let m and n be positive integers, and let s and d be elements of

R™ and R™ respectively that satisfy (s); > 0 for i = 1,2,...,m, (d); > 0

for j =1,2,...,n and Y (s); = >_(d);, let C' be an m x n matrix whose
i=1 j=1

components are non-negative real numbers, and let X be a feasible solution

of the resulting instance of the Transportation Problem with cost matrix C'.

Let S; = (S)Z’, dj = (d)j, Ty = (X)Lj and Cij = (O)i,j for i = 1,2, o,

and j = 1,2,...,n. Then z;; > 0 for all ¢ and j, > x;; = s; for i =
j=1

1,2,...,m and ) w;; = d; for j = 1,2,...,n. The cost of the feasible
i=1

solution X is then > > ¢z ;.
i=1j=1
If the feasible solu]tion X is itself basic then there is nothing to prove.
Suppose therefore that X is not a basic solution. We show that there then
exists a feasible solution X with fewer non-zero components than the given
feasible solution.
Let I ={1,2,...,m} and J ={1,2,...,n}, and let

K:{(’L,j)GIXJZL‘Z7J>0}

Because X is not a basic solution to the Transportation Problem, there does
not exist any basis B for the Transportation Problem satisfying K C B. It
therefore follows from Lemma 3.5 that there exists a non-zero m xn matrix Y’
which satisfies the following conditions:—

=

Il
—_

(YV),;=0fori=1,2,...,m;
j

=

@
Il
—

(Y),;=0forj=1,2,...,n;
L4 (Y)i,j = 0 when (Z,]) g K.

We can assume without loss of generality that > > ¢ ;(Y);; > 0, be-
i=1j=1
cause otherwise we can replace Y with —Y.
Let Zy = X — AY for all real numbers A. Then (Z));; = x;; — Ay;; for
i=1,2,...,mand j =1,2,...,n, where z; ; = (X);; and y; ; = (Y); .
Moreover the matrix Z, has the following properties:—
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n

o > (Z2)ij = si;
j=1
. ;(ZA) g =dj;
e (Z))i; =0 whenever (i,j) ¢ K;
° iicm(z\ )ij < ZZCH )i.j Whenever A > 0.

i=1 j=1 =1 j=1

Now the matrix Y is a non-zero matrix whose rows and columns all sum
to zero. It follows that at least one of its coefficients must be strictly positive.
Thus there exists at least one ordered pair (7, 7) belonging to the set K for
which y; ; > 0. Let

Ao = minimum {% :(4,7) € K and y; ; > O} .
i,j

Then Ag > 0. Moreover if 0 < A < Xg then z; ; — Ay, ; > 0 for all (4,5) € K,

and if A > Xy then there exists at least one element (ig, jo) of K for which

Lig,jo — )‘yio,jo < 0. It follows that Tij — )\Ogli,j > 0 for all (Z,]) < K, and

Lig,jo — Aoyio,jo =0.

Thus Z), is a feasible solution of the given Transportation Problem whose
cost does not exceed that of the given feasible solution X. Moreover Zy, has
fewer non-zero components than the given feasible solution X.

If Z,, is itself a basic feasible solution, then we have found the required
basic feasible solution whose cost does not exceed that of the given feasible
solution. Otherwise we can iterate the process until we arrive at the required
basic feasible solution whose cost does not exceed that of the given feasible
solution. |

A given instance of the Transportation Problem has only finitely many
basic feasible solutions. Indeed there are only finitely many bases for the
problem, and any basis is associated with at most one basic feasible solution.
Therefore there exists a basic feasible solution whose cost does not exceed the
cost of any other basic feasible solution. It then follows from Proposition 3.6
that the cost of this basic feasible solution cannot exceed the cost of any other
feasible solution of the given instance of the Transportation Problem. This
basic feasible solution is thus a basic optimal solution of the Transportation
Problem.
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The Transportation Problem determined by the supply vector, demand
vector and cost matrix has only finitely many basic feasible solutions, be-
cause there are only finitely many bases for the problem, and each basis can
determine at most one basic feasible solution. Nevertheless the number of
basic feasible solutions may be quite large.

But it can be shown that the Transportation Problem always has a basic
optimal solution. It can be found using an algorithm that implements the
Simplex Method devised by George B. Dantzig in the 1940s. This algorithm
involves passing from one basis to another, lowering the cost at each stage,
until one eventually finds a basis that can be shown to determine a basic
optimal solution of the Transportation Problem.

3.7 An Example illustrating the Procedure for finding
an Initial Basic Feasible Solution to a Transporta-
tion Problem using the Minimum Cost Method

We discuss the method for finding a basic optimal solution of the Trans-
portation Problem by working through a particular example. First we find
an initial basic feasible solution using a method known as the Minimum Cost
Method. Then we test whether or not this initial basic feasible solution is
optimal. It turns out that, in this example, the initial basic solutions is not
optimal. We then commence an iterative process for finding a basic optimal
solution.

Let ¢; ; be the coefficient in the ith row and jth column of the cost ma-
trix C', where

8 4 16
3 7 2
¢= 13 8 6
5 7 8

and let
S1 = 13, So = 8, S3 = 1]., S4 = ]_3,
di =19, dy =12, d3=14.
We seek to non-negative real numbers z;; for ¢« = 1,2,3,4 and j = 1,2,3
4 3

that minimize ) ) ¢; ;x;; subject to the following constraints:
i=1j=1

3
Y wy=s for i=1,234,
j=1
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4
in’j = d]' for j = 1,2,3,
i=1

and z; ; > 0 for all ¢ and j.

For this problem the supply vector is (13, 8,11, 13) and the demand vector
is (19,12,14). The components of both the supply vector and the demand
vector add up to 45.

In order to start the process of finding an initial basic solution for this
problems, we set up a tableau that records the row sums (or supplies), the
column sums (or demands) and the costs ¢; ; for the given problem, whilst
leaving cells to be filled in with the values of the non-negative real numbers
x; ; that will specify the initial basic feasible solution. The resultant tableau
is structured as follows:—

C@j \‘ .CL};J H 1 ‘ 2 ‘ 3 H S;
1 8 4 16
? ? ? 113
2 3 7 2
? ? ? 8
3 13 8 6
? ? ? |11
4 5 7 8
? ? ? 113
d; 19] 12 14 | 45

We apply the minimum cost method to find an initial basic solution.

The cell with lowest cost is the cell (2,3). We assign to this cell the
maximum value possible, which is the minimum of sy, which is 8, and ds,
which is 14. Thus we set z33 = 8. This forces x9; = 0 and x25 = 0. The
pair (2,3) is added to the current basis.

The next undetermined cell of lowest cost is (1,2). We assign to this cell
the minimum of s;, which is 13, and dy — 292, which is 12. Thus we set
212 = 12. This forces 32 = 0 and 245 = 0. The pair (1, 2) is added to the
current basis.

The next undetermined cell of lowest cost is (4, 1). We assign to this cell
the minimum of s, — 45, which is 13, and dy — 221, which is 19. Thus we set
241 = 13. This forces x4 3 = 0. The pair (4, 1) is added to the current basis.

The next undetermined cell of lowest cost is (3,3). We assign to this
cell the minimum of s3 — 39, which is 11, and d3 — x93 — 243, Which is 6
(=14 —8—0). Thus we set x33 = 6. This forces x1 3 = 0. The pair (3,3) is
added to the current basis.
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The next undetermined cell of lowest cost is (1,1). We assign to this cell
the minimum of s; — 219 — 13, which is 1, and d; — x2; — 24,1, which is 6.
Thus we set x1; = 1. The pair (1,1) is added to the current basis.

The final undetermined cell is (3,1). We assign to this cell the common
value of s3 — 39 — 233 and d; — x11 — T21 — 41, Which is 5. Thus we set
x31 = 5. The pair (3, 1) is added to the current basis.

The values of the elements z;; of the initial basic feasible solution are
tabulated (with basis elements marked by the e symbol) as follows:—

Cij \(Ii,j H 1 ‘2 ‘ 3 H S;
1 § e |4 e |16
1 12 013
2 3 7 2 o
0 0 8| 8
3 13 e |8 6 e
3 0 6 || 11
4 5 e |7 8
13 0 0|13
d; | 19] 12] 1445

Thus the initial basis is B where

B:{(171)7 (172)7 (2’?))7 (371)’ (373)v (471)}'

The basic feasible solution is represented by the 6 x 5 matrix X, where

1 12 0
0 0 8
X = 5 0 6
13 0 0

The cost of this initial feasible basic solution is
8X14+4x124+2x8+13x5+6x%x6
+5x 13
= 8448+ 16+ 65+ 36 4+ 65
= 238.

3.8 An Example illustrating the Procedure for find-

ing a Basic Optimal Solution to a Transportation
Problem

We continue with the study of the optimization problem discussed in the
previous section.
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We seek to determine non-negative real numbers xz; ; for i = 1,2, 3,4 and

4 3

J = 1,2,3 that minimize ) ) ¢; ;x;;, where ¢; ; is the coefficient in the ith
i=1j=1

row and jth column of the cost matrix C', where

8 4 16
3 7 2
=113 38 ¢
5 7 8

subject to the constraints

3
Y wig=s (i=1,2,3,4)
j=1

and
4
S wmy=d; (j=1,2,3),
i=1
where
s1 =13, s9=38, s3=11, s4 =13,
di =19, dy =12, d3 = 14.

We have found an initial basic feasible solution by the Minimum Cost
Method. This solution satisfies x; ; = (X);; for all ¢ and j, where

ot O =
—_
[\]

1

w
o O O
O O 00 O

We next determine whether this initial basic feasible solution is an optimal
solution, and, if not, how to adjust the basis to obtain a solution of lower
cost.

We determine uy, ug, us, us and vy, v, v3 such that ¢;; = v; — u; for all
(i,7) € B, where B is the initial basis.

We seek a solution with u; = 0. We then determine ¢; ; so that ¢;; =
vj —u; + q;; for all ¢ and j.
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We therefore complete the following tableau:—

Ciyj N iy H 1 ‘ 2 ‘ 3 ‘ U;

1 8 e|4 o] 16 0
0 ?
2 3 7 2 e ?
? ? 0
3 13 o |8 6 e 7
0 ? 0
4 5 e|7 8 ?
0 ? ?
Uj ? ? ?

Now u; =0, (1,1) € B and (1,2) € B force v; = 8 and vy = 4.
Then v; =8, (3,1) € B and (4,1) € B force u3 = —5 and uy = 3.
Then ug = —5 and (3,3) € B force vz = 1.

Then vs = 1 and (2,3) € B force ug = —1.

After entering the numbers u; and v;, the tableau is as follows:—

Cij \( qi.j H 1 ‘ 2 ‘ 3 ‘ U;
1

8§ e|4 e]16 0
0 0 ?
2 3 7 2 eo|—1
? ? 0
3 13 |8 6 e|—5
0 ? 0
4 5 |7 8 3
0 ? ?
(% 8 4 1

Computing the numbers ¢; ; such that ¢; ; +u; = v; + ¢; j, we find that
C]L3 = 15, qu = —67 q272 = 2, Q372 = —17 Q472 = 6 and Q4’3 = 10

32



The completed tableau is as follows:—

Ci j \( qi.j H 1 ‘ 2 ‘ 3 ‘ U;
8 e |4 e |16 0

0 0 15
2 3 7 2 e | —1

—6 2 0
3 13 e |8 6 e |—5

0 -1 0
4 5 e |7 8 3

0 6 10

Uj 8 4 1

The initial basic feasible solution is not optimal because some of the
quantities g;; are negative. To see this, suppose that the numbers 7; ; for
1=1, 2 3,4and j = 1,2, 3 constitute a feasible solution to the given problem.

Then me—slforz—l ,3 and Zx”—d for 7 =1,2,3,4. It follows

j=1 =
that

4 3 4 3
> iy = D> (05— i+ qi))Tiy
=1

=1 j=1 i=1 j=1

= Z vid; — Z w;S; + Z Z Qi jTi ;-

i=1 j=1

Applying this identity to the initial basic feasible solution, we find that
25:1 vid; — Zle u;s; = 238, given that 238 is the cost of the initial ba-
sic feasible solution. Thus the cost C of any feasible solution (z; ;) satisfies

C =238 + 15T, 3 — 6T + 2Ton — T3 + 6T4g + 10743

One could construct feasible solutions with Z>; < 0 and z;; = 0 for
(1,7) € BU{(2,1)}, and the cost of such feasible solutions would be lower
than that of the initial basic solution. We therefore seek to bring (2,1) into
the basis, removing some other element of the basis to ensure that the new
basis corresponds to a feasible basic solution.

The procedure for achieving this requires us to determine a 4 x 3 matrix Y
satisfying the following conditions:—

® Yo = 1;
e yi; =0 when (i,7) € BU{(2,1)};
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e all rows and columns of the matrix Y sum to zero.

Accordingly we fill in the following tableau with those coefficients y; ; of
the matrix Y that correspond to cells in the current basis (marked with the
e symbol), so that all rows sum to zero and all columns sum to zero:—

vig |1 ]2 |3 |

1 |7 |7 e 0

2 |1 o 7 o0

37 e ? 0

4 |7 e 0
[o Jo fo o

The constraints that yo; = 1, y; ; = 0 when (4, j) ¢ B and the constraints
requiring the rows and columns to sum to zero determine the values of y; ;
for all y; ; € B. These values are recorded in the following tableau:—

vig | 1 ]2 |3 |
1 0O |0 e 0
2 1 o —1 |0
3 ||—1 e 1 o]0
4 0 e 0
fo Jo Jo o

We now determine those values of A for which X+\Y is a feasible solution,
where

1 12 0
A0 8—)

XFA =15y 0 642
13 0 0

In order to drive down the cost as far as possible, we should make A as
large as possible, subject to the requirement that all the coefficients of the
above matrix should be non-negative numbers. Accordingly we take \ = 5.
Our new basic feasible solution X is then as follows:—

1 12 0
5 0 3
X = 0 0 11
13 0 0
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We regard X of as the current feasible basic solution.
The cost of the current feasible basic solution X is

8X14+4x124+3x5+2x34+6x11
+5x 13

= 8448+ 15+6+ 66+ 65

= 208.

The cost has gone down by 30, as one would expect (the reduction in the
cost being —Agq1 where A =5 and ¢z = —6).
The current basic feasible solution X is associated with the basis B where

B={11), (1,2), (2,1), (2,3), (3,3), (4 1)},

We now compute, for the current feasible basic solution We determine, for
the current basis B values uy, ug, uz, uqy and vy, v9, v3 such that ¢; ; = v; — u;
for all (7, j) € B. the initial basis.

We seek a solution with u; = 0. We then determine ¢; ; so that ¢;; =
v; — u; + q;; for all 7 and j.

We therefore complete the following tableau:—

Cij "\ Gij H 1 ‘ 2 ‘ 3 ‘ U;

1 8 e e |16 0
0 0 ?

2 3 e|7 2 e 7
0 ? 0

3 13 8 6 eof?7
? ? 0

4 5 e|7 8 ?
0 ? ?

V; ? ? ?

Now u; =0, (1,1) € B and (1,2) € B force v; = 8 and vy = 4.

Then v, =8, (2,1) € B and (4,1) € B force uy = 5 and uy = 3.

Then uy =5 and (3,3) € B force vy = 7.

Then vs =7 and (3,3) € B force ug = 1.

Computing the numbers ¢, ; such that ¢; ; + u; = v; + ¢;;, we find that
013=9,q2=28,q31 =06, q32 =5, qu2 =06 and g4 3 = 4.
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The completed tableau is as follows:—

Ciyj N iy H 1 ‘ 2 ‘ 3 ‘ U;

1 e e |16 0
0 0 9

2 3 e|7 2 e| 5
0 8 0

3 13 8 6 eof 1
6 ) 0

4 5 e|7 8 3
0 6 4

Uj 8 4 7

All numbers ¢; ; are non-negative for the current feasible basic solution.
This solution is therefore optimal. Indeed, arguing as before we find that the
cost C' of any feasible solution (7; ;) satisfies

C =208+ 9713 + 8Ta2 + 6T31 + 5T32 + 6Ty 0 + 474 3.

We conclude that X is an basic optimal solution, where

1 12 0
5 0 3
X = 0 0 11
13 0 0

36



3.9 A Result concerning the Construction of Bases for
the Transportation Problem

The following general proposition ensures that certain standard methods for
determining an initial basic solution of the Transportation Problem, including
the Northwest Corner Method and the Minimum Cost Method will succeed
in determining a basic feasible solution to the Transportation Problem.

Proposition 3.7 Let I = {1,2,...,m} and J = {1,2,...,n}, where m
and n are positive integers, let i1,19,...,imin_1 be elements of I and let
J15J2s -+ -y Jman—1 be elements of J, and let

B={(ix,jx) : k=1,2,...,m+n—1}.

Suppose that there exist subsets Iy, Iy, ..., Iin_1 of I and Jo, J1, ..., Jmint1
of J such that Iy = I, Jy = J, and such that, for each integer k between 1
and m +n — 1, exactly one of the following two conditions is satisfied:—

(1) ix & I, Jx € Ji, L1 = I Ui} and Ji—1 = Ji;

(i4) ix € Iy, jr & Jiy Te—1 = Ix and Jp_1 = Jp U {jr};
Then, given any real numbers ay,ay, ..., ay, and by, by, ... b, satisfying

m

D =) b
j=1

1=1

there exist uniquely-determined real numbers x; ; for alli € I and j € J such
that > x;; = a; foralli € I, Y x;; =0b; forallj € J, and x; ; = 0 whenever
jeJ iel

(i,J) € B.

Proof We prove the result by induction on m + n. The result is easily seen
to be true when m = n = 1. Thus suppose as our inductive hypothesis that
the corresponding results are true when I and J are replaced by I; and Ji,
so that, given any real numbers a; for i € I, and b for j € J; satisfying

> a; = ) b, there exist uniquely-determined real numbers x; ; for i € I
ieh jen
and j € Jy such that ) x;; =a;foralli e [y and ) x;; =b; forall j € I;.
JjeN iclqy
We prove that the corresponding results are true for the given sets I and J.
Now the conditions in the statement of the Proposition ensure that either
le Q Il or else jl € Jl.
Suppose that iy € I. Then I = I; U{i1} and J; = J. Now [ and J, are
subsets of I1 and J; for k = 1,2,...,m+n—1. Moreover (i, jx) € Ip_1 X Jp_1
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for all integers k satisfying 1 < k < m +n + 1. It follows that ¢, € I; and
therefore iy, # i1 whenever 2 < k < m. It follows that the conclusions of
the proposition are true if and only if there exist uniquely-determined real
numbers z; ; for ¢ € I and j € I such that

Tiygji = Qigs

zi,; = 0 whenever j # j;,
E x;; = a; whenever i # iy,
jed
E :xZJI = bjl - ail’
i€l
E x” = b; whenever j # j,
i€l

z;; = 0 whenever (i,j) € B

The induction hypothesis ensures the existence and uniqueness of the real
numbers x;; for ¢ € I; and j € J determined so as to satisfy the above
conditions. Thus the induction hypothesis ensures that the required result
is true in the case where i; & I;.

An analogous argument shows that the required result is true in the case

where j; & J;. The result follows. |}

Proposition 3.7 ensures that if I = {1,2,...,m} and J = {1,2,...,n}
and if a subset B of I x J is determined so as to satisfy the requirements of
Proposition 3.7, then that subset B of I x J is a basis for the Transportation
Problem with m suppliers and n recipients.

The algorithms underlying the Minimal Cost Method and the Northwest
Corner Method give rise to subsets I and J; of I and J respectively for
k=0,1,2,...,m+n—1 that satisfy the conditions of Proposition 3.7. This
proposition therefore ensures that Minimal Cost Method and the Northwest
Corner Method do indeed determine basic feasible solutions to the Trans-
portation Problem.

Remark One can prove a converse result to Proposition 3.7 which estab-
lishes that, given any basis B for an instance of the Transportation Problem
with m suppliers and n recipients, there exist subsets I, of I and .J; of J,
fori=1,2,... . m4+n—1, where I ={1,2,...,m} and J = {1,2,...,n}, so
that these subsets I, and J; of I and J are related to one another and to the
basis B in the manner described in the statement of Proposition 3.7.
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3.10 The Minimum Cost Method

We describe the Minimum Cost Method for finding an initial basic feasible
solution to the Transportation Problem.
Consider an instance of the Transportation Problem specified by pos-

itive integers m and n and non-negative real numbers sy, ss,...,S, and
m

di,da,...,d,, where > s; = > d;. Let I = {1,2,...,m} and let J =
i=1 j=1
{1,2,...,n}. A feasible solution consists of an array of non-negative real
numbers z; ; for i € I and j € J with the property that ) z;; = s; for all
jed
i€l and ) x;,; =d; for all j € J. The objective of the problem is to find
i€l
a feasible S(e)lution that minimizes cost, where the cost of a feasible solution
(Jii’j rel andj S J) is Z Z Cij i j-
i€l jeJ

In applying the Minimal Cost Method to find an initial basic solution to
the Transportation we apply an algorithm that corresponds to the determi-
nation of elements (i1, j1), (2, 72); - - -y (fmtn—1, Jmin—1) of I X J and of subsets
Iy, I, ..., Lyyipn_1 of I and Jy, J1, ..., Jyin_1 of J such that the conditions of
Proposition 3.7 are satisfied.

Indeed let Iy = I, Jy = J and By = {0}. The Minimal Cost Method
algorithm is accomplished in m +n — 1 stages.

Let k£ be an integer satisfying 1 < k < m+n — 1 and that subsets I, _; of
I, J,_q1 of J and By_; of I x J have been determined in accordance with the
rules that apply at previous stages of the Minimal Cost algorithm. Suppose
also that non-negative real numbers z; ; have been determined for all ordered
pairs (i,7) in I x J that satisfy either ¢ € Iy_1 or j & Ji_1 so as to satisfy
the following conditions:—

e > x;; <s; wheneveri € I;_i;
JEINIk-1

e > z;;=s; whenever i € I}_q;
jEJ

e > x;; <dj whenever j € Jy_q;
(ST AV P

e > u;; = d; whenever j & Jj_;.
il

The Minimal Cost Method specifies that one should choose (i, jx) € Ix_1 X
Ji—1 so that
Cirge < Ciy forall (4,5) € Iy1 X Jy1,
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and set By = By_1 U {(ix, jx)}- Having chosen (i, jx), the non-negative real
number z;, j, is then determined so that

Ty, = MIN | S — E Ty gy djp — E Tijy

JENTk-1 i€l\Ip_1

The subsets I, and J, of I and J respectively are then determined, along
with appropriate values of z; ;, according to the following rules:—

(i)

(iii)

if
Siy — E Ty g < dyj, — E T,
JEIN\Jk—1 1€I\Ij,_1

then we set [, = I \ {ix} and J, = Jy_1, and we also let z;, ; =0
for all j € Jr_1 \ {x};

if
Sip — E Ty g > dy, — E | Tig,

JENIK—1 ieIl\I_q
then we set Jy = Jr—1 \ {jx} and I = [;_1, and we also let z;;, =0
for all i € I, 1 \ {ix};
if
Siy, — Z Tipj = djy, — Z i ju
J€NIR—1 ieIl\Ip_q

then we determine I and Jj; and the corresponding values of z; ; ei-
ther in accordance with the specification in rule (i) above or else in
accordance with the specification in rule (ii) above.

These rules ensure that the real numbers x; ; determined at this stage are all
non-negative, and that the following conditions are satisfied at the conclusion
of the kth stage of the Minimal Cost Method algorithm:—

> x;; <s; whenever i € I;
JEIN Ik

> x;j = s; whenever i & I;
jET

> x;; <d; whenever j € Ji;
iEI\Ik

> x;j = d; whenever j & Jj.

el
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At the completion of the final stage (for which &k = m + n — 1) we have
determined a subset B of I x J, where B = B,,,,_1, together with non-
negative real numbers x;; for ¢« € I and j € I that constitute a feasible
solution to the given instance of the Transportation Problem. Moreover
Proposition 3.7 ensures that this feasible solution is a basic feasible solution
of the problem with associated basis B.

3.11 The Northwest Corner Method

The Northwest Corner Method for finding a basic feasible solution proceeds
according to the stages of the Minimum Cost Method above, differing only
from that method in the choice of the ordered pair (i, jx) at the kth stage
of the method. In the Minimum Cost Method, the ordered pair (i, jx) is
chosen such that (i, jx) € Ix_1 X Jx_1 and

Cik,dk < Ci,j for all (17]) € Ik—l X Jk—l

(where the sets I_1, Jx_1 are determined as in the specification of the Mini-
mum Cost Method). In applying the Northwest Corner Method, costs asso-
ciated with ordered pairs (7, 7) in I x J are not taken into account. Instead
(ix, jx) is chosen so that iy is the minimum of the integers in I and ji is the
minimum of the integers in J;_;. Otherwise the specification of the North-
west Corner Method corresponds to that of the Minimum Cost Method, and
results in a basic feasible solution of the given instance of the Transportation
Problem.

3.12 The Iterative Procedure for Solving the Trans-
portation Problem, given an Initial Basic Feasible
Solution

We now describe in general terms the method for solving the Transportation
Problem, in the case where total supply equals total demand.

We suppose that an initial basic feasible solution has been obtained. We
apply an iterative method (based on the general Simplex Method for the
solution of linear programming problems) that will test a basic feasible solu-
tion for optimality and, in the event that the feasible solution is shown not
to be optimal, establishes information that (with the exception of certain
‘degenerate’ cases of the Transportation Problem) enables one to find a basic
feasible solution with lower cost. Iterating this procedure a finite number of
times, one should arrive at a basic feasible solution that is optimal for the
given instance of the the Transportation Problem.
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We suppose that the given instance of the Transportation Problem in-
volves m suppliers and n recipients. The required supplies are specified by
non-negative real numbers s, sg, ..., Sy, and the required demands are spec-
iﬁed by non-negative real numbers dy,ds, ..., d,. We further suppose that

Z s = Y- i1 dj A feasible solution is represented by non-negative real

n
numbers z;; for i = 1,2,...,m and j = 1,2,...,n, where ) z;; = s; for
Jj=1

1=1,2,.. mande”—d for j=1,2,.

Let I = {1,2,.. m} and J = {1,2,. n} A subset B of I x J is a
basis for the Transportatlon Problem if and only if, given any real numbers
Y1, Y2, -y Ym and 21, 2o, . . ., Zn, there exist uniquely determmed real numbers

x”forzelandJGJsuChthat lex”—ylforzel Zx”—zj for j € J,
J 1=

where 7; ; = 0 whenever (i, j) € B (see Proposition 3.4).

A feasible solution (z; ;) is said to be a basic feasible solution associated
with the basis B if and only if x;; = 0 for all ¢« € I and j € J for which
(i,7) & B.

Let z;; be a non-negative real number for each ¢ € I and j € J. Sup-
pose that (z;;) is a basic feasible solution to the Transportation Problem
associated with basis B, where B C I x J.

m n
The cost associated with a feasible solution (z; ; is given by > >~ ¢; jz; ;,
i=1j=1
where the constants ¢; ; are real numbers for all 7 € I and j € J. jA feasible
solution for the given instance of the Transportation Problems is an optimal
solution if and only if it minimizes cost amongst all feasible solutions to the
problem.

In order to test for optimality of a basic feasible solution (z; ;) associated
with a basis B, we determine real numbers uq, us, ..., u,, and vy, vs,...,v,
with the property that ¢;; = v; — w; for all (4,j) € B. (Proposition 3.10
below guarantees that, given any basis B, it is always possible to find the
required quantities u; and v;.) Having calculated these quantities u; and v;
we determine the values of ¢; ;, where ¢; ; = ¢;; —v; +u; for all ¢ € I and
j € J. Then ¢, ; = 0 whenever (i, j) € B.

We claim that a basic feasible solution (x; ;) associated with the basis B
is optimal if and only if ¢;; > O for all ¢ € I and j € J. This is a consequence
of the identity established in the following proposition.

Proposition 3.8 Letz,; ;, c¢;; and g;; be real numbers defined fori =1,2, ...
and 7 =1,2,...,n, and let uy,us, ..., Uy, and vi,vq,...,v, be real numbers.
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Suppose that
Cij = Uj — Ui + Qij

foro=1,2....mandj=1,2,...,n. Then

m n
E g Ci,jxi] E vjd - E U;S; + E E Q'L,sz,p
i=1 j=1 =1 j=1

where s; = Y0 iy fori=1,2,....,mandd; =3" x;; forj=1,2,...,n.

Proof The definitions of the relevant quantities ensure that

m n m n
YD) SIS 3) pURIEERE
i=1 j=1 i=1 j=1

— Z ( led> — Z (uZsz,;)

= = =1
+ Qi,szj
=1 jfl
= Z’U] Zu,s, + Z Z Qi,j i 5,
=1 j5=1

as required. |}

Corollary 3.9 Let m and n be integers, and let I = {1,2,...,m} and J =
{1,2,...,n}. Let x;; and c;; be real numbers defined for all i € I and

7 €1, and let uy, us, ..., Uy, and vy, vy, ..., v, be real numbers. Suppose that
¢ij =v; —u; for all (i,5) € I x J for which xz; ; # 0. Then

m n m n
> D cigrig =y dvy— Y s,
i=1 j=1 i—1 =

n m
where s; = Y x;j fori=1,2,... mandd; =) x;; forj=1,2,....n
=1 i=1

Proof Let ¢;; = ¢; j+u;—wv; forall7 € I and j € J. Then ¢;; = 0 whenever
x;; 7 0. It follows from this that

Z Z ¢ijri; =0

i=1 j=1
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It then follows from Proposition 3.8 that

chiijiyj = ZZ( —U; + QZ] X5 = Zd vj — Zsiuz‘,

i=1 j=1 i=1 j=1 j=1
as required. |}

Let m and n be positive integers, let I = {1,2,... ,m}and J = {1,2,...,n},
and let the subset B of I x J be a basis for an instance of the Transportation
Problem Wlth m suppliers and n recipients. Let the cost of a feasible solution

(T; ) be Z Z ¢ ;Tij. Now Z T;; = s; and Z T;; = d;, where the quanti-
i=1j=
ties s; and d; are determmed by the speaﬁcatlon of the problem and are the

same for all feasible solutions of the problem. Let quantities u; for ¢+ € I and
vj for j € J be determined such that ¢;; = v; — u; for all (,j) € B, and let
¢ij=C¢C;+u —v;foralieland je J. Then ¢;; =0 for all (i, j) € B.

It follows from Proposition 3.8 that

>3 ety = Y Zu D3 T
=1

i=1 j=1 =1 j=1

Now if the quantities z;; for ¢ € I and j € J constitute a basic feasible
solution associated with the basis B then x;; = 0 whenever (i,j) ¢ B. It

follows that Y > ¢; ;7;; = 0, and therefore

i=1j=1

m n
E ’Ujdj — E U;S; = C,
=1 j=1

where
m n
C=> > i
i=1 j=1

The cost C of the feasible solution (7; ;) then satisfies the equation
m n m n
=D > T =C+ Y D 6Ty
i=1 j=1 i=1 j=1

If g; > 0forallic I andj e J,then the cost C' of any feasible solution
(%; ;) is bounded below by the cost of the basic feasible solution (z;;). It
follows that, in this case, the basic feasible solution (z; ;) is optimal.
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Suppose that (i, jo) is an element of I x J for which g;,,;, < 0. Then
(i0, o) € B. There is no basis for the Transportation Problem that includes
the set BU{(ig, jo)}. A straightforward application of Lemma 3.5 establishes
the existence of quantities y; ; for ¢« € I and j € J such that y;, j, = 1 and
y;; =0 for all i € I and j € J for which (¢,7) € B U {(i,70)}-

Let the m x n matrices X and Y be defined so that (X);; = z;,; and
(Y)ij = y;j forall i € I and j € J. Suppose that x;; > 0 for all (z,7) €
B. Then the components of X in the basis positions are strictly positive.
It follows that, if A is positive but sufficiently small, then the components
of the matrix X + AY in the basis positions are also strictly positive, and
therefore the components of the matrix X 4+ AY are non-negative for all
sufficiently small non-negative values of A. There will then exist a maximum
value )¢ that is an upper bound on the values of A\ for which all components
of the matrix X 4+ \Y are non-negative. It is then a straightforward exercise
in linear algebra to verify that X + A\gY is another basic feasible solution
associated with a basis that includes (i, jo) together with all but one of the
elements of the basis B. Moreover the cost of this new basic feasible solution
is C'+ XoGi,jo, Where C' is the cost of the basic feasible solution represented
by the matrix X. Thus if ¢, ;, < 0 then the cost of the new basic feasible
solution is lower than that of the basic feasible solution X from which it was
derived.

Suppose that, for all basic feasible solutions of the given Transportation
problem, the coefficients of the matrix specifying the basic feasible solution
are strictly positive at the basis positions. Then a finite number of iterations
of the procedure discussed above with result in an basic optimal solution of
the given instance of the Transportation Problem. Such problems are said
to be non-degenerate.

However if it turns out that a basic feasible solution (z; ;) associated with
a basis B satisfies z;; = 0 for some (i, j) € B, then we are in a degenerate
case of the Transportation Problem. The theory of degenerate cases of linear
programming problems is discussed in detail in textbooks that discuss the
details of linear programming algorithms.

We now establish the proposition that guarantees that, given any basis B,
there exist quantities uy, us, ..., u,, and vy, vs, ..., v, such that the costs ¢; ;
associated with the given instance of the Transportation Problem satisfy
¢;; = v; —u; for all (4,5) € B. This result is an essential component of
the method described here for testing basic feasible solutions to determine
whether or not they are optimal.

Proposition 3.10 Let m and n be integers, let I = {1,2,...,m} and J =
{1,2,...,n}, and let B be a subset of I x J that is a basis for the transporta-
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tion problem with m suppliers and n recipients. For each (i,j) € B let ¢; ; be
a corresponding real number. Then there exist real numbers u; for v € I and
vj for j € J such that ¢; j = vj —w; for all (i,7) € B. Moreover if ; and v,
are real numbers for i € I and j € J that satisfy the equations ¢; ; = U; — u;
for all (i,j) € B, then there exists some real number k such that u; = u; + k
foralli e I and v; =v; +k for all j € J.

Proof Let
W = {(y,z) ER™ x R": f(y)i = Zn?(Z)j} :

let p: My, n(R) — R™ and o: My, ,(R) — R” be the linear transformations

m

defined such that p(X); = Z( )ijfori=1,2 ..., mando(X); = > (X):;

= i=1

for j=1,2,...,n, let
Mp ={X € M, »,(R) : (X);; = 0 whenever (i,j) ¢ B},

and let C' be the m x n matrix defined such that (C);; = ¢;; for all € I
and j € J.

Now, given any element (y,z) of W, there exists a uniquely-determined
m xn matrix X such that > (X),;; = (y);fori =1,2,....,m, > (X);; = (2);

j=1 i=1

for j = 1,2,...,n and (X);; = 0 unless (i,j) € B (see Proposition 3.4).
Then X is the unique matrix belonging to Mp that satisfies p(X) = y and
o(X) = z. We define

m

g(y,z) = trace(CTX) = Z Z ci;(X

=1 j5=1

We obtain in this way a well-defined function g: W — R characterized by the
property that
9(p(X),0(X)) = trace(C" X)
for all X € Mp. Now p(AX) = Ay and o(AX) = Az for all real numbers A.
It follows that
9(My,z)) = Agly, z)

for all real numbers A. Also, given elements (y’,z’) and (y”,z") of W, there
exist unique matrices X’ and X" belonging to Mp such that p(X') =y,
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p(X") =y", o(X') =2 and 0(X") = 2". Then p(X'+ X") =y’ +y” and
o(X'+ X") =2+ 2", and therefore

gy, 2) + (y",2")) = trace(CT(X' + X"))
= trace(CTX') + trace(CTX")
— g(y/’zl) +g(y//,Z//>‘

It follows that the function g: W — R is a linear transformation. It is thus a
linear functional on the real vector space W.

For each integer i between 1 and m, let b® denote the vector in R™ whose
1th component is equal to 1 and whose other components are zero, and, for
each integer j between 1 and n, let b¥) denote the vector in R™ whose
jth component is equal to 1 and whose other components are zero. Then
(b —b® 0) e Wfori=1,2,...,mand (b, b)) c Wforj=1,2,...,n.
We define u; = g(b® — b® 0) for i = 1,2,...,m and v; = g(b®™, b)) for
j=12,...,n. Then u; =0 and

Vj —U; = 9(5(1)7 b(])) - g(B(l) - B(Z)v O)
= g ((E(l)’ b@) — (bM — b, 0))
g(B(i)’ b(j))
foralli eI and j € J.
If (i,j) € B then b® = p(E9)) and bW = ¢(E@)), where E@) is the
m X n matrix whose coefficient in the ith row and jth column is equal to 1

and whose other coefficients are zero. Moreover E() € Mp for all (i, j) € B.
It follows from the definition of the linear functional g that

v — u; = g(B(i), b(j)) = trace(C’TE(i’j)) = Cij

for all (4, ) € B.
Now let w; and 7; be real numbers for ¢ € I and j € J that satisfy the
equations ¢;; = 7; — u; for all (4,7) € B. Let

9(y,z) = Z%’(Z)j - Zuz’(}’)i

for all y € R™ and z € R". Then

g(p(E(i’j)), U(E(i’j))) — §<B(i)7 b(j)) T

I
2|
<

for all (,j) € I x J. It follows that

g(p(EW),0(B™)) =7;—1; = ¢iy = g(p(E), o(EWY))  for all (i, j) € B.
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Now the matrices E®7) for all (i, ) € B constitute a basis of the vector space
My . It follows that

9(p(X),0(X)) = g(p(X),0(X))

for all X € Mp. But every element of the vector space W is of the form
(p(X),0(X)) for some X € Mpg. (This follows Proposition 3.4, as discussed

earlier in the proof.) Thus
9(y,2) = 9(y,2)
for all (y,z) € W. In particular
4 — i = b — b, 0) = g(bY — b, 0) = u; — uy
for all i € I, and

T~y = g(E(l)’ b(j)) — g(B(l), b(j)) = —u

forall j€ J. Let k =4, —u;. Thenw; =u; +kforalli € [ and v; =v; +k
for all j € J, as required. |}
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4 The Simplex Method

4.1 Vector Inequalities and Notational Conventions

Let v be an element of the real vector space R". We denote by (v); the jth
component of the vector v. The vector v can be represented in the usual
fashion as an n-tuple (v, vs,...,v,), where v; = (v); for j = 1,2,...,n.
However where an n-dimensional vector appears in matrix equations it will
usually be considered to be an n x 1 column vector. The row vector corre-
sponding to an element v of R" will be denoted by v’ because, considered as
a matrix, it is the transpose of the column vector representing v. We denote
the zero vector (in the appropriate dimension) by 0.

Let x and y be vectors belonging to the real vector space R" for some
positive integer n. We write x < y (and y > x) when (x); < (y); for
Jj=12,...,n. Also we write x < y (and y > x) when (x); < (y); for
j=1,2....n

These notational conventions ensure that x > 0 if and only if (x); > 0
for j=1,2,...,n.

The scalar product of two n-dimensional vectors u and v can be repre-
sented as the matrix product u’v. Thus

T
U vV =1UV| + UVs + + -+ + UpUp

for all u,v € R", where u; = (u); and v; = (v); for j =1,2,...,n.
Given an m x n matrix A, where m and n are positive integers, we denote
by (A);; the coefficient in the ith row and jth column of the matrix A.

4.2 Feasible and Optimal Solutions of General Linear
Programming Problems

A general linear programming problem is one that seeks values of real vari-
ables x1, 2o, ..., x, that maximize or minimize some objective function

C1T1 + Coxg + - - - CpTy,

that is a linear functional of xq,xs,...,x, determined by real constants
c1,Co, - .., Cn, Where the variables xq, xo, . . ., x, are subject to a finite number
of constraints that each place bounds on the value of some linear functional
of the variables. These constraints can then be numbered from 1 to m, for
an appropriate value of m such that, for each value of i between 1 and m,
the ith constraint takes the form of an equation or inequality that can be
expressed in one of the following three forms:—

@in1 %1+ Q2% + -+ ATy = by,
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;171 + Q2T + -+ Qi Ty > by,
;11 + QiaTy + -+ Qi Ty < b;

for appropriate values of the real constants a;1,a;2,...,a;, and b;. In ad-
dition some, but not necessarily all, of the variables xy, s, ..., 2, may be
required to be non-negative. (Of course a constraint requiring a variable to
be non-negative can be expressed by an inequality that conforms to one of
the three forms described above. Nevertheless constraints that simply re-
quire some of the variables to be non-negative are usually listed separately
from the other constraints.)

Definition Consider a general linear programming problem with n real vari-
ables x1, 29, ..., x, whose objective is to maximize or minimize some objec-
tive function subject to appropriate constraints. A feasible solution of this
linear programming problem is specified by an n-dimensional vector x whose
components satisfy the constraints but do not necessarily maximize or min-
imize the objective function.

Definition Consider a general linear programming problem with n real vari-
ables x1, 9, ..., x, whose objective is to maximize or minimize some objec-
tive function subject to appropriate constraints. A optimal solution of this
linear programming problem is specified by an n-dimensional vector x that is
a feasible solution that optimizes the value of the objective function amongst
all feasible solutions to the linear programming problem.

4.3 Linear Programming Problems in Dantzig Stan-
dard Form

Let A be an m x n matrix of rank m with real coefficients, where m < n,
and let b € R™ and ¢ € R™ be vectors of dimensions m and n respectively.
We consider the following linear programming problem:—

T

Determine an n-dimensional vector x so as to minimize ¢* X sub-

ject to the constraints Ax =b and x > 0.

We refer to linear programming problems presented in this form as being in
Dantzig standard form. We refer to the m x n matrix A, the m-dimensional
vector b and the n-dimensional vector c as the constraint matrix, target vector
and cost vector for the linear programming problem.

Remark Nomenclature in Linear Programming textbooks varies. Problems
presented in the above form are those to which the basic algorithms of George
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B. Dantzig’s Simplex Method are applicable. In the series of textbooks by
George B. Dantzig and Mukund N. Thapa entitled Linear Programming,
such problems are said to be in standard form. In the textbook Introduc-
tion to Linear Programming by Richard B. Darst, such problems are said
to be standard-form LP. On the other hand, in the textbook Methods of
Mathematical Economics by Joel N. Franklin, such problems are said to be
in canonical form, and the term standard form is used for problems which
match the form above, except that the vector equality Ax = b is replaced
by a vector inequality Ax > b. Accordingly the term Danztig standard form
is used in these notes both to indicate that such problems are in standard
form at that term is used by textbooks of which Dantzig is the author, and
also to emphasize the connection with the contribution of Dantzig in creating
and popularizing the Simplex Method for the solution of linear programming
problems.

A linear programming problem in Dantzig standard form specified by an
m X n constraint matrix A of rank m, an m-dimensional target vector b
and an n-dimensional cost vector ¢ has the objective of finding values of real
variables x1, xo, ..., x, that minimize the value of the cost

C1T1 + CoToy + -+ - + ¢y,
subject to constraints

A1z + Aoz + -+ Ay, = by,
Agqxq + Agowg + -+ + Ay, = bo,

Am,lxl + Am,2x2 + -+ Am,nxn = bm

and
$120, $220,..., l’nzo

In this above programming problem, the function sending the n-dimensional
vector x to the corresponding cost ¢?x is the objective function for the prob-
lem. A feasible solution to the problem consists of an n-dimensional vector
(1,9, ...,x,) whose components satisfy the above constraints but do not
necessarily minimize cost. An optimal solution is a feasible solution whose
cost does not exceed that of any other feasible solution.
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4.4 Basic Feasible Solutions to Linear Programming
Problems in Dantzig Standard Form

We define the notion of a basis for a linear programming problem in Dantzig
standard form.

Definition Let A be an m x n matrix of rank m with real coefficients, where
m < n, let b € R™ be an m-dimensional column vector, let ¢ € R™ be an
n-dimensional column vector. Consider the following programming problem
in Dantzig standard form:

T

find x € R" so as to minimize ¢’ x subject to constraints Ax =b

and x > 0.

For each integer j between 1 and n, let a¥¥) denote the m-dimensional vector
determined by the jth column of the matrix A, so that (al?); = (A);; for
t=1,2,....mand j = 1,2,...,n. A basis for this linear programming
problem is a set consisting of m distinct integers ji, jo, . . ., jm between 1 and
n for which the corresponding vectors

a(jl)7 a(jQ), o 7a(jm)
constitute a basis of the vector space R™.

We next define what is meant by saying that a feasible solution of a
programming problem Dantzig standard form is a basic feasible solution for
the programming problem.

Definition Let A be an m x n matrix of rank m with real coefficients, where
m < n, let b € R™ be an m-dimensional column vector, let ¢ € R"” be an
n-dimensional column vector. Consider the following programming problem
in Dantzig standard form:—

find x € R™ s0 as to minimize cIx subject to constraints Ax = b
and x > 0.

A feasible solution x for this programming problem is said to be basic if there
exists a basis B for the linear programming problem such that (x); = 0 when

j¢B.

Lemma 4.1 Let A be an m xn matriz of rank m with real coefficients, where
m < n, let b € R™ be an m-dimensional column vector, let c € R™ be an
n-dimensional column vector. Consider the following programming problem
in Dantzig standard form:
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find x € R™ s0 as to minimize cIx subject to constraints Ax = b
and x > 0.

Let a9 denote the vector specified by the jth column of the matriz A for
j=1,2,...,n. Letx be a feasible solution of the linear programming problem.
Suppose that the m-dimensional vectors a¥) for which (x); > 0 are linearly
independent. Then X is a basic feasible solution of the linear programming
problem.

Proof Let x be a feasible solution to the programming problem, let z; = (x);
for all j € J, where J = {1,2,...,n}, and let K = {j € J: z; > 0}. If the
vectors a¥) for which j € K are linearly independent then basic linear algebra
ensures that further vectors a) can be added to the linearly independent set
{a¥) : j € K} so as to obtain a finite subset of R™ whose elements constitute
a basis of that vector space (see Proposition 2.2). Thus exists a subset B of
J satisfying K ¢ B C J such that the m-dimensional vectors a¥) for which
J € B constitute a basis of the real vector space R™. Moreover (x); = 0
for all j € J\ B. It follows that x is a basic feasible solution to the linear
programming problem, as required. |

Theorem 4.2 Let A be an m X n matriz of rank m with real coefficients,
where m < n, let b € R™ be an m-dimensional column vector, let c € R"
be an n-dimensional column vector. Consider the following programming
problem in Dantzig standard form:

T

find x € R™ so as to minimize c' X subject to constraints Ax = b

and x > 0.

If there exists a feasible solution to this programming problem then there exists
a basic feasible solution to the problem. Moreover if there exists an optimal
solution to the programming problem then there exists a basic optimal solution
to the problem.

Proof Let J = {1,2,...,n}, and let a¥) denote the vector specified by the
jth column of the matrix A for all j € J.

Let x be a feasible solution to the programming problem, let z; = (x),
for all j € J, and let K = {j € J : z; > 0}. Suppose that x is not basic.
Then the vectors a¥) for which j € K must be linearly dependent. We show
that there then exists a feasible solution with fewer non-zero components
than the given feasible solution x.

Now there exist real numbers y; for j € K, not all zero, such that

> yja(j) = 0, because the vectors a¥) for j € K are linearly dependent.
jeK
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Let y; = 0 for all j € J\ K, and let y € R" be the n-dimensional vector
satisfying (y); =y, for j =1,2,...,n. Then

Ay =Y yat =3 ya —o.

jeJ jeK

It follows that A(x — Ay) = b for all real numbers A, and thus x — Ay is
a feasible solution to the programming problem for all real numbers \ for
which x — \y > 0.

Now y is non-zero vector. Replacing y by —y, if necessary, we can assume,
without loss of generality, that at least one component of the vector y is
positive. Let

Ap = minimum (& 17 € K and y; > O) ,
Yj

and let jo be an element of K for which Ay = xj,/y;,- Then R > )\ for

all j € J for which y; > 0. Multiplying by the positive number Jyj, we find
that x; > Agy; and thus z; — A\gy; > 0 when y; > 0. Also Ay > 0 and
x; > 0, and therefore x; — A\oy; > 0 when y; < 0. Thus x; — A\gy; > 0 for
all j € J. Also zj, — Ay, = 0, and z; — A\gy; = 0 for all j € J\ K. Let
x' =x— Agy. Then x’ > 0 and AX’ = b, and thus x’ is a feasible solution to
the linear programming problem with fewer non-zero components than the
given feasible solution.

Suppose in particular that the feasible solution x is optimal. Now there
exist both positive and negative values of \ for which x — Ay > 0. If it
were the case that ¢’y # 0 then there would exist values of A for which
both x — Ay > 0 and Ac’y > 0. But then ¢ (x — \y) < ¢’'x, contradicting
the optimality of x. It follows that ¢’y = 0, and therefore x — Ay is an
optimal solution of the linear programming problem for all values of X\ for
which x — Ay > 0. The previous argument then shows that there exists a
real number )y for which x — \gy is an optimal solution with fewer non-zero
components than the given optimal solution x.

We have shown that if there exists a feasible solution x which is not basic
then there exists a feasible solution with fewer non-zero components than x.
It follows that if a feasible solution x is chosen such that it has the smallest
possible number of non-zero components then it is a basic feasible solution
of the linear programming problem.

Similarly we have shown that if there exists an optimal solution x which
is not basic then there exists an optimal solution with fewer non-zero com-
ponents than x. It follows that if an optimal solution x is chosen such that
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it has the smallest possible number of non-zero components then it is a basic
optimal solution of the linear programming problem. |}

4.5 A Simplex Method Example with Five Variables
and Two Constraints

We consider the following linear programming problem:—
minimize
3I1 + 4.732 + 2133 + 91’4 + 51’5

subject to the following constraints:
51’1 + 3[L’2 + 4ZE3 + 7ZE4 + 31‘5 = 11,
4l‘1 + I + 3£L'3 —+ 81’4 + 41’5 = 6,'

x; >0 forj=1,2,3,4,5.

The constraints require that xy, x9, 3, x4, x5 be non-negative real numbers
satisfying the matrix equation

X

2
I3 = 6 .
Ty

X5

_ W
(SR
RN
=~

VRS
B Ot

Thus we are required to find a (column) vector x with components x,
T9, T3, T4 and sy satisfying the equation Ax = b, where

5347 3 11
A:(41Z384)’b:<6>'
5 3 4
M @ _ 3 —
=(1) = (1) = (5).
7 3
@ = O
a (8) and a <4)

For a feasible solution to the problem we must find non-negative real numbers
x1,To, X3, T4, Ty such that

xla(l) + an(z) + xga(?’) + x4a(4) + x5a(5) = b.
An optimal solution to the problem is a feasible solution that minimizes

C1T1 + CoTo + c3T3 + cuTs + C5T5
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amongst all feasible solutions to the problem, where ¢; = 3, co = 4, ¢35 = 2,
cy =9 and ¢5 = 5.
Let ¢ denote the column vector whose ¢th component is ¢; respectively.
Then
c"=(34295),

and an optimal solution is a feasible solution that minimizes c¢?x amongst all
feasible solutions to the problem. We refer to the quantity c’x as the cost
of the feasible solution x.

Let I ={1,2,3,4,5}. A basis for this optimization problem is a subset
{j1,j2} of I, where j, # jo, for which the corresponding vectors at/t), als2)
constitute a basis of R2. By inspection we see that each pair of vectors taken
from the list a®V,a® a® a® a® consists of linearly independent vectors,
and therefore each pair of vectors from this list constitutes a basis of R?. It
follows that every subset of I with exactly two elements is a basis for the
optimization problem.

A feasible solution (z1, 9, 3,24, x5) to this optimization problem is a
basic feasible solution if there exists a basis B for the optimization problem
such that z; = 0 when j # B.

In the case of the present problem, all subsets of {1,2,3, 4,5} with exactly
two elements are bases for the problem. It follows that a feasible solution to
the problem is a basic feasible solution if and only if the number of non-zero
components of the solution does not exceed 2.

We take as given the following initial basic feasible solution x; = 1,
Ty =2, 13 = x4 = x5 = 0. One can readily verify that al) + 2a(® = b. This
initial basic feasible solution is associated with the basis {1,2}. The cost of
this solution is 11.

We apply the procedures of the simplex method to test whether or not
this basic feasible solution is optimal, and, if not, determine how to improve
it.

The basis {1, 2} determines a 2 x 2 minor Mg of A consisting of the first

two columns of A. Thus
5 3
- (33,

We now determine the components of the vector p € R? whose transpose
( pP1 Po ) satisfies the matrix equation

(01 02):(]?1 p2)MB~

1/ 1 -3
_1___
My = 7(—4 5)'

56



It follows that

We next compute a vector q € R®, where q” = ¢’ — pTA. Solving the

equivalent matrix equation for the transpose q” of the column vector q, we
find that

o = T —pTA

- (00 -3 28

We denote the jth component of the vector j by g;.

Now ¢3 < 0. We show that this implies that the initial basic feasible
solution is not optimal, and that it can be improved by bringing 3 (the index
of the third column of A) into the basis.

Suppose that X is a feasible solution of this optimization problem. Then
AX = b, and therefore

c'x=plAx+q'x=p’b+q'x

The initial basic feasible solution x satisfies
5
a'x =) ¢; =0,
j=1

because ¢ = ¢o = 0 and 3 = x4 = x5 = 0. This comes about because the
manner in which we determined first p then g ensures that ¢; = 0 for all
J € B, whereas the components of the basic feasible solution x associated
with the basis B satisfy x; = 0 for j ¢ B. We find therefore that p”b is the
cost of the initial basic feasible solution.

The cost of the initial basic feasible solution is 11, and this is equal to
the value of p’b. The cost ¢’X of any other basic feasible solution satisfies

CTi =11 — %fg + %54 —+ 4—7055,

where 7; denotes the jth component of X.
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We seek to determine a new basic feasible solution X for which z3 > 0,
74, = 0 and Ts = 0. The cost of such a basic feasible solution will then be
less than that of our initial basic feasible solution.

In order to find our new basic feasible solution we determine the relation-
ships between the coefficients of a feasible solution X for which 7, = 0 and
T5 = 0. Now such a feasible solution must satisfy

Ela(l) + Tga@) + 533(3) =b= 1'13_(1) + 1'23_(2),

where z; and x5 are the non-zero coefficients of the initial basic feasible
solution. Now the vectors al) and a® constitute a basis of the real vector
space R?. It follows that there exist real numbers t13 and t3 such that
a® =t 3aM +t53a®. Tt follows that

(fl + tl,gfg)a(l) + (fz + t27353)a(2) = xla(l) + 1'23(2).

The linear independence of a and a® then ensures that 7, +113T3 = 11
and Ty + t2 373 = x9. Thus if T3 = A, where A > 0 then

fl =T — )\lfl’g, EQ = Ty — )\15273.

Thus, once t; 3 and t3 3 have been determined, we can determine the range
of values of A that ensure that 7; > 0 and Z» > 0.
In order to determine the values of ¢, 3 and ¢35 we note that

o (-2
e (-0

3 _ (1) @_ (953 t31
a t3’1a +t3,23 (4 1 > <t372 )

= MB ( t371 ) )
3

and therefore

where

It follows that

t31 \ _ ap-1.3 L I -3 4 _
(tg,g)_MBa A 3 )=

28

~|—=~J|ot
N——



Thus t3,1 = % and t3,2 = l.
We now determine the feasible solutions X of this optimization problem
that satisty 73 = X\ and 7, = 75 = 0. we have already shown that

N

fl =1 — /\t173, fg = L9 — /\t273.

Now z; =1, 29 =2, t13 = % and t93 = % It follows that 7, = 1 — g/\ and

Ty =2 — %/\. Now the components of a feasible solution must satisfy z; > 0

and 7o > 0. it follows that 0 < A < % Moreover on setting A = % we find

that 7 = 0 and Ty = %. We thus obtain a new basic feasible solution X
associated to the basis {2, 3}, where

x'=(02 1 00).

The cost of this new basic feasible solution is 10.
We now let B’ and x’ denote the new basic and new associated basic
feasible solution respectively, so that B’ = {2,3} and

xXT=(02100).

5 5

We also let Mp be the 2 x 2 minor of the matrix A with columns indexed
by the new basis B, so that

(3 4 1 3 —4
MB’—(13> and MB’_5<_1 3>
We now determine the components of the vector p’ € R? whose transpose
( Py Ph ) satisfies the matrix equation

(2 es)=(py py)Mp.
We find that

(pll Plz) = (02 03)M§/1
1

3 —4
- (43
= (2 -2).
We next compute the components of the vector g’ € R® so as to ensure
that

1T T /TA



The components of the vector ¢’ determined using the new basis {2, 3} are all
non-negative. This ensures that the new basic feasible solution is an optimal
solution.

Indeed let X be a feasible solution of this optimization problem. Then
Ax’ = b, and therefore

CTf — p/TAi + q/TX/ — p/Tb + q’Ti.

Moreover p’Tb = 10. It follows that
c'x =104+ 7, + 117, + 7T5 > 10,

and thus the new basic feasible solution x’ is optimal.
We summarize the result we have obtained. The optimization problem
was the following:—

MInImize
31‘1 + 4.’172 + 2133 + 9$4 + 5565

subject to the following constraints:
51’1 + 31’2 + 4ZE3 + 7ZL‘4 + 31‘5 = 11,
41’1 + xo + 3ZE3 + 81‘4 + 4ZU5 = 6,’

x; >0 forj=1,2,3,4,5.

We have found the following basic optimal solution to the problem:

9 7
1'1:0, %2257 = 5134:0, £C5:0.
We now investigate all bases for this linear programming problem in order
to determine which bases are associated with basic feasible solutions.

The problem is to find x € R® that minimizes c¢’x subject to the con-

straints Ax = b and x > 0, where
7 3 11
1) e (%)

c"=(342095).

For each two-element subset B of {1,2,3,4,5} we compute Mp, Mg'
and M3'b, where Mp is the 2 x 2 minor of the matrix A whose columns are
indexed by the elements of B. We find the following:—

and
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Sy

5
a5
o

o]

S

o

o ()L ) () ] o
oo (55) (5 ) ()
o (59) #(5F) ()] ¢
ws (51) (4 (—_7) :
eal (T3)] (2 3) ) (1) | v
eal (1) #(53) (%))
ea (13)(47) ()] #
wo (5D 6 (D) (8]
ea (50)] (S ) <‘_) 1
ws (1) (5 7) (B)]

From this data, we see that there are four basic feasible solutions to the
problem. We tabulate them below:—

’ B \ X \ Cost ‘
{1,2} [ (1,2,0,0,0) 11
{2,3} | (0,2,1,0,0) 10
{2,4} | (0,3%,0,,0) | 2 =14.529. ..
{2,5} | (0,%,0,0,%) | 82 =15.444. ..
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4.6 A Linear Tableau Example with Five Variables and
Three Constraints

Example Consider the problem of minimizing c¢’x subject to constraints
Ax = b and x > 0, where

12335 13
A=123123], b= 13|,
425 1 4 20

c"=(24314).

As usual, we denote by A;; the coefficient of the matrix A in the ith row
and jth column, we denote by b; the ith component of the m-dimensional
vector b, and we denote by ¢; the jth component of the n-dimensional vec-
tor c.

We let a¥) be the m-dimensional vector specified by the jth column of
the matrix A for j =1,2,3,4,5. Then

1 2 3
al =1 2 ’ a® =1 3 7 a® — 1|,
4 2 5
3 5
a® =1 2 and a® = | 3
1 4

A basis B for this linear programming problem is a subset of {1,2,3,4,5}
consisting of distinct integers 7y, j2, 73 for which the corresponding vectors
alv) al2) als) constitute a basis of the real vector space R?.

Given a basis B for the linear programming programming problem, where
B = {ji1,jo2, J3}, we denote by Mp the matrix whose columns are specified
by the vectors al!), al®2) and at). Thus (Mp);x = A;j, for i = 1,2,3 and
k=1,2,3. We also denote by cg the 3-dimensional vector defined such that

CEZ(CJ'I Cja Cj3)‘

The ordering of the columns of My and cp is determined by the ordering
of the elements j;, j» and j3 of the basis. However we shall proceed on the
basis that some ordering of the elements of a given basis has been chosen,
and the matrix Mp and vector cg will be determined so as to match the
chosen ordering.
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Let j1 =1, jo = 2 and j3 = 3, and let B = {j1, j2,j3} = {1,2,3}. Then
B is a basis of the linear programming problem, and the invertible matrix
Mp determined by al*) for k = 1,2,3 is the following 3 x 3 matrix:—

Mp =

=N

2 3
31
2 5

This matrix has determinant —23, and

‘ 4 7
B 13 —4 -7 -3 = &
-1 __ _ 6 7 5
Mg =25 | =6 -7 5 23 28 3
8 6 1
Then
1 0 0
Mgta® = o0 |, Mzta®=| 1], Mza®=1{ o0 |,
0 1
_24 25
23 23
Mgla(4) = g—; and Mgla(f’) = g—é
13 26
23 23
Also
1
Mg'b=1{ 3
2

It follows that x is a basic feasible solution of the linear programming prob-
lem, where
x'=(13200).

The vectors al¥,a® a® a® a® b, e, e® and e® can then be ex-
pressed as linear combinations of at), a®, a® with coefficients as recorded
in the following tableau:—

2D a® a0 a@ a0 [pbled @ O
I AR -
a® | o 1 o £ 413 & I -Z
a0 0 1 g B2 5 4 &
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There is an additional row at the bottom of the tableau. This row is
the criterion row of the tableau. The values in this row have not yet been
calculated, but, when calculated according to the rules described below, the
values in the criterion row will establish whether the current basic feasible
solution is optimal and, if not, how it can be improved.

Ignoring the criterion row, we can represent the structure of the remainder
of the tableau in block form as follows:—

ad ... a®] b le® ... &®

: Mg'A Mg;'b Mg!

We now employ the principles of the Simplex Method in order to deter-
mine whether or not the current basic feasible solution is optimal and, if not,
how to improve it by changing the basis.

Let p be the 3-dimensional vector determined so that

T _ T -1
p’ =cpMy .

Then p” Mp = c%, and therefore pTal*) = ¢;, for k = 1,2,3. It follows that
(p"A); = ¢; whenever j € B. Putting in the relevant numerical values, we
find that

p’Mp=cp=1(c; ¢, ¢ )=(c 2 c5)=(2 4 3),
and therefore

T -1 _ (22 18 -3
pr=(243)M'=(% %5 %)
We enter the values of p;, ps and ps3 into the cells of the criterion row
in the columns labelled by e, e® and e® respectively. The tableau with
these values entered is then as follows:—

al 2@ 20 a® a0 [ bled @ o®

24 25 13 4 7

a1 0 0 -5 -RI1|-3 % %
2 27 31 6 7 5
a® 0 10 H 53 5 5

13 26 8 6 1

a® 0o 0 1 F B2 5 -5 %
2 18 _3
23 23 23
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The values in the criterion row in the columns labelled by e(!), e and
e® can be calculated from the components of the cost vector ¢ and the values
in these columns of the tableau. Indeed Let r; ) = (Mgl)iyk fori=1,2,3 and
k =1,2,3. Then each r; is equal to the value of the tableau element located
in the row labelled by a¥) and the column labelled by e*). The definition
of the vector p then ensures that

(3

Pr = Cj17”17k + Cj27’2,k + Cj3T37k

for k = 1,2, 3, where, for the current basis, j; = 1, jo = 2 and j3 = 3.

The cost C' of the current basic feasible solution x satisfies ¢ = cTx.
Now (pTA); = ¢; for all j € B, where B = {1,2,3}. Moreover the current
basic feasible solution x satisfies ; = 0 when j ¢ B, where z; = (x); for
7 =1,2,3,4,5. It follows that

5
C—p'b = c'x—plaAx = Z<Cj — (p"A)))z;
j=1
= > (5= (P"A)))z; =0,
j€B

and thus

C=c'x=p’b.
Putting in the numerical values, we find that C' = 20.

We enter the cost C into the criterion row of the tableau in the column
labelled by the vector b. The resultant tableau is then as follows:—

aD 2@ a® 2@ 40 [ b | e® @ O
R RN A
a®l 0 1 o 2 #|3| % L -2
a0 0 1 & Bl2% -5 &

20| % % —m

Let s; denote the value recorded in the tableau in the row labelled by a%?)
and the column labelled by b for ¢ = 1,2,3. Then the construction of the
tableau ensures that

b= sla(jl) + 32a(j2) + 33a(j3),

and thus s; = x;, for i = 1,2, 3, where (z1, x2, 3, T4, x5) is the current basic
feasible solution. It follows that

C = ¢j, 81 + ¢j, 52 + ¢j, 83,
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where, for the current basis, j; = 1, jo = 2 and j3 = 3. Thus the cost of the
current basic feasible solution can be calculated from the components of the
cost vector ¢ and the values recorded in the rows above the criterion row of
the tableau in the column labelled by the vector b.

We next determine a 5-dimensional vector q such that ¢ = pTA + qf.
We find that

—qf = pfA—¢T

1 2 3 3 5
—(z s 2)(23123
4 2 5 1 4
(2 431 4)
= now)—(24314)
( 5% )

Thus
@1=0, @=0, =0, q@u=—-5, ¢=—5%.
The 4th and 5th components of the vector q are negative. It follows that
the current basic feasible solution is not optimal. Indeed let X be a basic
feasible solution to the problem, and let 7; = (X); for j = 1,2,3,4,5. Then

the cost C of the feasible solution X satisfies

C = cx=p'Ax+q'x=p'b+q'x=C+q'x

76_ 60_
= (- 2—3[L’4 - 2—31['5.
It follows that the basic feasible solution X will have lower cost if either z, > 0

or x5 > 0.

We enter the value of —g; into the criterion row of the tableau in the
column labelled by a¥) for j = 1,2, 3,4,5. The completed tableau associated
with basis {1,2,3} is then as follows:—

al a®@ a0 4@ 26 [ p [ e @ &6
a | 1 o o0 -2 2|1 |- =+ I
SUICEEENIEE- I N EE
a® | 0 0 I

o o0 o B 8 42| 2z L _2

We refer to this tableau as the extended simplex tableau associated with
the basis {1, 2, 3}.
The general structure of the extended simplex tableau is then as follows:—
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aD 2@ a® a® a0 [ b le® @ O

aly |ty tie tiz tia tis | S1| Tia T2 T3
al2) | 1oy ton  taz toa  tas | S2 | Ton Too Tog
als) ts1  tzo t33 lza l3s5 | S3|T31 T2 T3

-1 —¢ —q¢ —q —q¢|C| nm D2 P3

where ji, jo and j3 are the elements of the current basis, and where the
coefficients ¢; ; s; and 7, are determined so that

3

3 3
al) — Zti,ja(ji)7 b = Z Sia(ji), e — Z Ti,ka(ji)
i=1 1=1

i=1
for j=1,2,3,4,5and k =1, 2,3.

The coefficients of the criterion row can then be calculated according to
the following formulae:—

3 3 3
Pk = chﬂ“i,k, C= Zpibi, —q; = ZpiAi,j — G-
=1 =1 =1

The extended simplex tableau can then be represented in block form as
follows:—

a®d ... a® [ p [e® ... &®
g MG'A Mg;'b My?
a(]3)
pTA_cT pr pT

The values in the criterion row in any column labelled by some a) can
also be calculated from the values in the relevant column in the rows above
the criterion row.

To see this we note that the value entered into the tableau in the row
labelled by aU) and the column labelled by al@) is equal to t; ;, where ¢, ;
is the coefficient in the ith row and jth column of the matrix My, TA. Also
pl =cEMy', where (cp); = ¢j, for i = 1,2,3. It follows that

3
pTA = CgMB?lA = chiti,j'
i=1

Therefore

T
- = (P A)j—q
= Culiy + Cila; + Cigtsj — ¢
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for j =1,2,3,4,5.
The coefficients of the criterion row can then be calculated according to
the formulae

3 3 3
Pr = E Cj;Ti ks C= E Cj;Si, —qj = E cili; — ¢
i=1 i=1 i=1

The extended simplex tableau can therefore also be represented in block
form as follows:—

NORSNG) b oD .. o
aln)
: Mg'A Mz'b Mg!
als)

cEM A —cT | cEMy'D cEM?

We now carry through procedures for adjusting the basis and calculating
the extended simplex tableau associated with the new basis.

We recall that the extended simplex tableau corresponding to the old
basis {1,2,3} is as follows:—

al 2@ 40 4@ 46 [ p [ e @ O
R I R
a0 10 B B3 & & F
a0 0 1§ Bl2) % -5 3

0 0 o 2z 8l20 2 2 -2

We now consider which of the indices 4 and 5 to bring into the basis.
Suppose we look for a basis which includes the vector al® together with
two of the vectors al, a® and a®. A feasible solution X with 75 = 0 will
satisfy
X' = (143N 3—ZX 2—-28X X 0),

where A = 7;. Indeed A(X — x) = 0, where x is the current basic feasible
solution, and therefore

(@ — Da + (7, — 3)a® + (73 — 2)a® + 72" = 0.

Now

4) __ 24 (1 27 (2 13 .,(3
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It follows that
(fl —1- %54)3(1) + (fQ -3+ %54)3(2) + (f3 -2+ %@)a(?’) =0.

But the vectors a, a® and a® are linearly independent. Thus if Z, = A
and T5 = 0 then
T1—1-2XA=0, Zp—-3+3A=0, T3—2+5A=0,

and thus
Ti=1+2\ T=3-2X T3=2-2\

For the solution X to be feasible the components of X must all be non-
negative, and therefore A must satisfy

)\gmin(?)x%, QX%).

Now 3 x 3—‘; = g—g ~ 2.5669 and 2 x % = % ~ 3.54. Tt follows that the maximum

possible value of A is 5z. The feasible solution corresponding to this value of

A is a basic feasible solution with basis {1, 3,4}, and passing from the current

basic feasible solution x to the new feasible basic solution would lower the

cost by —qu), where —gu\ = 28 x 8 = 228 ~ 8 44,

We examine this argument in more generality to see how to calculate the
change in the cost that arises if an index 7 not in the current basis is brought
into that basis. Let the current basis be {j1, jo, js}. Then

and . . . .
al) = tl,ja(h) + t27ja(32) + tgyja(”).

Thus if X is a feasible solution, and if (X);; = 0 for j & {J1, ja, J3,j}, then
7;a) +7;,a0) £ 75203 1700 —b=0.
Let A = ;. Then
(Tj, + M1y — 51)a") + (T, + Mo — s9)al) 4+ (T, + M3 — s3)a® = 0.

But the vectors a¥t), at2) als) are linearly independent, because {j1, ja, js }
is a basis for the linear programming problem. It follows that

fji = S; — )\ti,j
fori=1,2,3.
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For a feasible solution we require A > 0 and s; — M, ; > 0 for ¢ = 1,2, 3.
We therefore require

ogAgmin(;—i:tm>0).
.3
We could therefore obtain a new basic feasible solution by ejecting from the

current basis an index j; for which the ratio — has its minimum value, where

l?j
this minimum is taken over those values of 7 for which ¢, ; > 0. If we set A
equal to this minimum value, then the cost is then reduced by —g;A.

With the current basis we find that sy/tys = % and s3/ty3 = %. Now

% < %. It follows that we could bring the index 4 into the basis, obtaining
a new basis {1,3,4}, to obtain a cost reduction equal to %, given that
76 ., 69 _ 228 .

23 X 97 = 73 ~ 8.44.

We now calculate the analogous cost reduction that would result from
bringing the index 5 into the basis. Now sy/t50 = % and s3/ts3 = 3—2.
Moreover 3—2 < %. It follows that we could bring the index 5 into the basis,
obtaining a new basis {1, 2,5}, to obtain a cost reduction equal to % X % =
12160 ~ 4.62.

We thus obtain the better cost reduction by changing basis to {1,3,4}.

We need to calculate the tableau associated with the basis {1,3,4}. We
will initially ignore the change to the criterion row, and calculate the updated
values in the cells of the other rows. The current tableau with the values in

the criterion row deleted is as follows:—

al a®@ a@ 2@ 26 [p | e®d @ 6B
a | 1 o o -z -1, -8 4 I
SO B MR
a® | 0 o0 1 2 %2 & 5 L

Let v be a vector in R? and suppose that

Now
a(4) — —%a(l) _l_ %a@) + é_gaw).
On multiplying this equation by 3—?, we find that
g_;;’a(4) — —%a(l) + a(2) _|_ ;_?;a(:g)’
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and therefore

2) 24 (1 23,4 13 .,(3

It follows that
v = (1 + Szp0)alh + Zpoal® + (g — Fpus)a,

and thus
ph= i E e, iy = e, = i3 — .

Now each column of the tableau specifies the coefficients of the vector
labelling the column of the tableau with respect to the basis specified by the
vectors labelling the rows of the tableau.

The pivot row of the old tableau is that labelled by the vector a'® that
is being ejected from the basis. The pivot column of the old tableau is that
labelled by the vector a® that is being brought into the basis. The pivot
element of the tableau is the element or value in both the pivot row and the
pivot column. In this example the pivot element has the value %

We see from the calculations above that the values in the pivot row of the
old tableau are transformed by multiplying them by the reciprocal 3—37’ of the
pivot element; the entries in the first row of the old tableau are transformed
by adding to them the entries below them in the pivot row multiplied by the
factor g—‘;; the values in the third row of the old tableau are transformed by
subtracting from them the entries above them in the pivot row multiplied by
the factor ;—?7’

Indeed the coefficients t; j, s, 7y, t; ;, s; and r;, are defined for i = 1,2, 3,
j=1,2,3,4,5and k=1,2,3 so that

3 3
al) — Z ti,ja(ji) _ Z t;7ja(j§)7
=1 =1

3 3
— § Ji _§ ! o (i
=1 i=1
3 3

ek Zﬁ,ka(j")ZZT;ka(ma

i=1 i=1

Wherej1 :ji = 1,j3:jé:3, j2:2 andjé:4
The general rule for transforming the coefficients of a vector when chang-
ing from the basis a),a®, a® to the basis a¥,a® a® ensure that
1

. = —ty.
2,5 2,9
o4

)
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/ .
tij = tij— try (i=1,3)
’ toy
, 1
s, = —s
2 25
o4
i
s = si———sy (i=1,3)
l24
, 1
Tor = ; 72,5,
2.4
Lia .
e = rip———r (1=1,3).
’ lo4

The quantity ¢4 is the value of the pivot element of the old tableau. The
quantities ts;, so and 7y are those that are recorded in the pivot row of
that tableau, and the quantities ¢; 4 are those that are recorded in the pivot
column of the tableau.

We thus obtain the following tableau:—

aD 2@ 20 a® a® | b | ed @ o

0 2 3 [®|_9 12 3
a 1 27 0 0 27 | 27 27 27 27

(4) 23 3 || 6 1 _s
a 0 27 0 1 27 | 27 | 27 27 27

3) 13 1B || 6 1 4
a 0 T 0 27 | 27 | 27 27 27

The values in the column of the tableau labelled by the vector b give
us the components of a new basic feasible solution x’. Indeed the column
specifies that

b — g—ga(l) + %a@l) + é_ga@),

and thus Ax’ = b where

XT= (205 9 0)
We now calculate the new values for the criterion row. The new basis B’
is given by B’ = {j1, 75, j5}, where ji = 1, j5 = 4 and j; = 3. The values p/,
ph and p4 that are to be recorded in the criterion row of the new tableau in
the columns labelled by e, e® and e® respectively are determined by the
equation
P = Cjiri,k + Cj§7"/2,k + Cjéré,k
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for k = 1,2, 3, where

cji:01:2, cjé:c4:1, Cjé:C:),:?),

and where r;, denotes the ith component of the vector e®) with respect to
the basis a®, a® al® of R3.

We find that
;) Ll Iy /
b1 = CpTryq T CiToq T CjtTs
_ 9 6 6 _ 6
= QX( 27)+1X27+3X27_277
/ / / /
P2y = CjT19+ CipTan +CjiT3
_ 12 T Ly _ 2
—2X27+1X27+3X( 27)‘ 27
/ / / /
Py = CjTy3+ CjsTa3+ CjiTa3

3 5 4 13

We next calculate the cost C’ of the new basic feasible solution. The
quantities s, sy and s} satisfy s; = 2’ for i = 1,2, 3, where (7, 3, 73, 7}, 75)
is the new basic feasible solution. It follows that

r / / /
¢ = Cjy S1 1 Cjy Sy + Cjy 83,
where s1, s and s3 are determined so that
-/ -/ -/
b = s/alt) + shal) 4 gLalis),

The values of s}, s, and sj have already been determined, and have been
recorded in the column of the new tableau labelled by the vector b.
We can therefore calculate C” as follows:—

r / / r / / /
_ 99 | 69 15 _ 312
- 2X27+27+3X27_27'

Alternatively we can use the identity ¢’ = p'?'b to calculate C’ as follows:
C' = phby + Phbs + by = & x 13 — 2 x 13 + 13 x 20 = 22,

We now enter the values of p}, p), p4 and C’ into the tableau associated
with basis {1,4,3}. The tableau then takes the following form:—

a0 a® a® a® a® ] b le® o@ o@
) 2 3 [®w | _9 12 3
a 1 27 0 0 27 | 27 27 27 27

(4) 23 3|6 | 6 1 _5

a 0 27 0 1 27 | 27 | 27 27 27
3) 13 13|15 ¢ _u 4
a 0 T 0 27 | 27 | 27 27 27
33| 6 _2 13
27 | 21 23 23
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In order to complete the extended tableau, it remains to calculate the
values —q; for j = 1,2,3,4,5, where ¢; satisfies the equation —q; = pTa;—c;
for j =1,2,3,4,5.

Now ¢} is the jth component of the vector q' that satisfies the matrix
equation —q'7 = pTA — cT. It follows that

_q/T — p/TA_CT

1 2335
:(2%;_7253) 2 31 2 3
4 2 5 1 4
-(2 4314)
= (2231 Z)-(24314)
= (0 -F 00 -32)
Thus
76 _ 32

=0, ¢a=%, =0, ¢=0, ¢ =53
The value of each q} can also be calculated from the other values recorded
in the column of the extended simplex tableau labelled by the vector al?).

Indeed the vector p’ is determined so as to satisfy the equation p7al") = cjr
for all j* € B'. Tt follows that

3 3
T (5 1T (5! !
p al) = E ti D alii) — E ngtim
i—1 i=1
and therefore
3
—q; = Zcﬁti,j Cj.
i=1

The extended simplex tableau for the basis {1, 4,3} has now been com-
puted, and the completed tableau is as follows:—

a0 2@ a® a® a0 | b e o@ b
) 2 3 w9 12 3
a 1 27 0 0 27 27 27 27 27

(4) 23 st [ | 6 1 5

a 0 27 0 1 27 27 27 27 27
3) 1 B |6 u o4
a 0 T 0 27 27 | 27 27 27
76 32 | 312 | 6 2 13
0 z 0 0 27 | 27 | 27 23 23

The fact that qg. > 0for j =1,2,3,4,5 shows that we have now found our
basic optimal solution. Indeed the cost C of any feasible solution X satisfies

6 _ CTK — p/TAf—i- q/Tf — p/Tb + q/Tf
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—_ Cl + q/Ti
76 32
= O+ =T+ 27
P TAIT
where Ty = (X)2 and T5 = (X)s.
Therefore x’ is a basic optimal solution to the linear programming prob-

lem, where

T=(2 0 £ 2 o)

It is instructive to compare the pivot row and criterion row of the tableau
for the basis {1, 2, 3} with the corresponding rows of the tableau for the basis
{1,4,3}.

These rows in the old tableau for the basis {1, 2,3} contain the following
values:—

aD 2@ a® a® a0 b led @ O

a® 0 1 o Z &3] L& T _5

23 23 23 23 23
76 60 22 18 3
0 0 0 23 23 20 23 23 23

The corresponding rows in the new tableau for the basis {1,4, 3} contain
the following values:—

al a® a® a® a0 | b el @ oO
4 23 31 69 6 7 5
a® o 20 1 H|Z|F £ -3
76 32 312 6 2 13
0 —% 0 0 =5%1%|% —3 5

If we examine the values of the criterion row in the new tableau we find
that they are obtained from corresponding values in the criterion row of the
old tableau by subtracting off the corresponding elements of the pivot row of
the old tableau multiplied by the factor %. As a result, the new tableau has
value 0 in the cell of the criterion row in column a®. Thus the same rule
used to calculate values in other rows of the new tableau would also have
yielded the correct elements in the criterion row of the tableau.

We now investigate the reasons why this is so.

First we consider the transformation of the elements of the criterion row
in the columns labelled by a) for j = 1,2,3,4,5. Now the coefficients tij

and t} ; are defined for i = 1,2,3 and j = 1,2,3,4,5 so that

3 3
al) — Ztma(ji) _ Z tfi’ja(jé)’
=1

i=1
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where j; = 71 =1, j3 = j5 = 3, jo = 2 and j, = 4. Moreover

and

Now

=1
= Cltl,j + Cgtzj + Cgt37j — Cj,
3

, — >/ — .
— = Y et

Therefore

%‘—CJ} =

and thus

for j =1,2,3,4,5.
Next we note that

C

Cl

Therefore
c'—-C

i=1

/ / /
- Cltl,j + C4t27j + C3t37j - Cj.

C1 (tlljj — tl,j) + C4t/27j — CQtQJ‘ + Cg(téJ — t37]‘)

— (—citia+ ¢4 — catog — catsa) to
2.4

d4
o
to4
/ q4
;=G Tty
Lo,
3
= E Cj;Si = C151 + C2S2 + C3S3,
i=1

3

o ! / / /

= Cj1S; = €181 1 €485 + C383.
=1

/ _—

= ¢1(8] — s1) + a8y — 282 + c3(s5 — 83)

= — (—citia+cq — catog — Cstzg) So

o4
q4

lo4
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and thus
44

C'=q+— 2
o4
for k =1,2,3.
To complete the verification that the criterion row of the extended simplex
tableau transforms according to the same rule as the other rows we note that

3

Pr = g Cj;Tik = C1T1k T CoTo ) + C3T3 1,
i=1
3
/ _ /o / ! /
D = CjiTi g = C1Ty ) T CaTy  + C3T3 .
i=1
Therefore
/ / / /
Py =P = C1 (7”_17;€ — k) + C4To ) — CoTak + Cg(?‘wC —Tr3k)
1
= (—cit1a+ ca — cala g — Catza) To
o4
4 ,
= Tk
o4
and thus ¢
/ 4
Py =Pk + — T2k
toy
for k =1,2,3.

This completes the discussion of the structure and properties of the ex-
tended simplex tableau associated with the optimization problem under dis-
cussion.

4.7 Some Results concerning Finite-Dimensional Real
Vector Spaces

We consider the representation of vectors belonging to the m-dimensional
vector space R™ as linear combinations of basis vectors belonging to some
chosen basis of this m-dimensional real vector space.

Elements of R™ are normally considered to be column vectors represented
by m x 1 matrices. Given any v € R™, we denote by (v); the ith component
of the vector v, and we denote by v’ the 1 x m row vector that is the
transpose of the column vector representing v € R™. Thus

VT:(’Ul Vg - Um)7
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where v; = (v); for i =1,2,... ,m.
We define the standard basis of the real vector space R to be the basis

D) 6@ . gm
defined such that ‘ ‘
@n={ o itk
It follows that v = i(v)ie(i) for all v e R™.
Let uW, u®, .. .lil(m) be a basis of the real vector space R™, and let
e e® ... el denote the standard basis of R™. Then there exists an

invertible m x m matrix M with the property that

m

u® = Z(M)i,ke(i)

=1

for k=1,2,...,m.

The product Mv is defined in the usual fashion for any m-dimensional
vector v: the vector v is expressed as an m X 1 column vector, and the
matrix product is then calculated according to the usual rules of matrix
multiplication, so that

k=1
and thus o .
Mv = Z Z M (v)e® = Z(V)ku(k).

i=1 k=1 k=1
Then Me® = u® for i = 1,2,...,m. The inverse matrix M ' of M then
satisfies M~u® = el fori =1,2,...,m.
Lemma 4.3 Let m be a positive integer, let u™® u® ... u™ be a basis of
R™, let eV e@ .. e™ denote the standard basis of R™, and let M be the
non-singular matriz that satisfies Me® = u® fori=1,2,...,m. Letv be
a vector in R™, and let A1, Aa, ..., A\, be the unique real numbers for which

VvV = i /\Zu(l)
i=1

Then \; is the ith component of the vector M~'v fori=1,2,...,m.
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Proof The inverse matrix M~! of M satisfies M~ tu® = ek for k =
1,2,...,m. It follows that

M7y =" NMa® =" e,
k=1 k=1

and thus A\, Ao, ..., \, are the components of the column vector M v, as
required. [
Lemma 4.4 Let m be a positive integer, let u™ u® ... u™ be a basis of
R™, let e e .. e™ denote the standard basis of R™, and let M be the
non-singular matriz that satisfies Me®™ =u® fori=1,2,...,m. Then
e® =3y,
i=1

where r;, is the coefficient (M‘l)iﬁk in the ith row and kth column of the
inverse M~ of the matriz M.

Proof It follows from Lemma 4.3 that e = > ri,ku(i), where the coeffi-
i=1

cients r; satisfy 7, = (M~te®); for i = 1,2,...,m. But M~'e® is the
column vector whose components are those of the kth column of the ma-
trix M~1. The result follows. |

Lemma 4.5 Let m be a positive integer, let u™® u® ... u™ be a basis of
R™, let e e . e™ denote the standard basis of R™, let M be the non-
singular matriz that satisfies Me® = u® fori=1,2,...,m, and let Tik =

(MY fori=1,2,...,mand k = 1,2,...,m. Let g1,9a,...,gm be real

numbers, and let p =, pre®, where py = Y girip for k=1,2,....m.
i=1

Then pTu® = ¢; fori=1,2,...,m.

Proof It follows from the definition of the matrix M that (u®), = (M),

for all integers 7 and k between 1 and m. It follows that the ¢th component of

the row vector p” M is equal to p’u® for i = 1,2,...,m. But the definition

of the vector p ensures that p; is the ith component of the row vector g M1,
where g € R is defined so that

g'=(g 9 - gm)-

It follows that p?” = g/’ M~!, and therefore p’ M = g’. Taking the ith
component of the row vectors on both sides of this equality, we find that
p'u® = g;, as required. |
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Lemma 4.6 Let m be a positive integer, let

uM u® o u™ and oW a®, . ™

Y )

be bases of R™, and let v be an element of R™. Let h be an integer between 1

and m. Suppose that 4™ = >~ p;u® | where piy, o, . . ., ptm are real numbers,
=1
and that u® = a9 for all integers i between 1 and m satisfying i # h. Let

v=> \ul = 25\ @, where \; e R and \; ER fori=1,2,...,m. Then

1
- o ifi = h;
A = ¢ pn
_ KN, ifi £
L

Proof From the representation of " as a linear combination of the basis

vectors u®, u®, ... ul™ we find that
1 e
() Z Hi )
Mh 1<i<m Mh

i#h

Moreover ¥ = u® for all integers i between 1 and m satisfying i # h. It

follows that
u® = Z Hi A(z

1<i<m
i#h

It follows that

ifxiﬁ(i) = V—Z)\u
i=1
= Z N —i— — )\hu(h Z Ll Apu®

1<i<m 1<i<m Mh
i#h i#h

= Z ( >\h> —|— - )\hu
K, Hh

1<i<m
i#h

Therefore, equating coefficients of a® for i = 1,2,...,n, we find that

— if i = h,

as required. |}
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4.8 The Extended Simplex Tableau for solving Linear
Programming Problems

We now consider the construction of a tableau for a linear programming
problem in Dantzig standard form. Such a problem is specified by an m x n
matrix A, an m-dimensional target vector b € R™ and an n-dimensional
cost vector ¢ € R™. We suppose moreover that the matrix A is of rank m.
We consider procedures for solving the following linear program in Danzig
standard form.

Determine x € R™ so as to minimize cI'x subject to the con-
straints Ax =b and x > 0.

We denote by A;; the component of the matrix A in the ith row and
jth column, we denote by b; the ith component of the target vector b for
t=1,2,...,m, and we denote by ¢; the jth component of the cost vector c
for j=1,2,...,n.

We recall that a feasible solution to this problem consists of an n-dimensional
vector x that satisfies the constraints Ax = b and x > 0 (see Subsection 4.2).

A feasible solution of the linear programming problem then consists of non-

negative real numbers xy, s, ..., x, for which
n
Z xja(” = b.
j=1
A feasible solution determined by x1, xo, ..., x, is optimal if it minimizes cost

> cjz; amongst all feasible solutions to the linear programming problem.
=1
’ Let ji,J2,...,Jm be distinct integers between 1 and n that are the ele-
ments of a basis B for the linear programming problem. Then the vectors al?)
for j € B constitute a basis of the real vector space R™. (see Subsection 4.4).

We denote by Mp the invertible m x m matrix whose component (M), x in
the ith row and jth column satisfies (Mpg);, = (A);j, for i,k =1,2,...,m.
Then the kth column of the matrix Mp is specified by the column vector
aUr) for k = 1,2,...,m, and thus the columns of the matrix Mp coincide
with those columns of the matrix A that are determined by elements of the
basis B.

Every vector in R™ can be expressed as a linear combination of the basis
vectors a1, al2) . alm) It follows that there exist uniquely determined
real numbers ¢; ; and s; for i =1,2,...,m and j = 1,2,...,n such that

al) — Z ti’ja(ji) and b= Z sia(ji).
=1 =1
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It follows from Lemma 4.3 that
tiJ' = (Mgla(]))l and S; = (Mglb)l

fori=1,2,...,m.
The standard basis e, e® ... e™ of R™ is defined such that

1 if k= i;
), — ,
S {o it k.

It follows from Lemma 4.4 that

e® =3y,
=1

where r; 5 is the coeflicient (Mg 1),-7k in the ith row and kth column of the
inverse My L of the matrix M.
We can record the coefficients of the m-dimensional vectors

al) a® .. a® b, eM e? ... e™
with respect to the basis atv,al2) ... alm) of R™ in a tableau of the fol-
lowing form:—
a(l) a(2) e a(n) b e(l) e(Q) e e(m)
a(Jil) tig tipg 0 tim | ST | Ti1 T2t Tim
al2) log1  lop -+ ton | S2 | T21 T22 ot Tam
a(jm) tm,l tm,Q e tm,n Sm | Tm,1 Tm,2 “°° Tmm

The definition of the quantities ¢; ; ensures that
. 1 ife=k;
Wk 0 if i # k.

m

tij =Y rixdiy

k=1

Also

fort=1,2,....,mand j=1,2,...,n, and

m
S; = E Ti,kbk
k=1
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fori=1,2,...,m.

If the quantities sy, s9, ..., S, are all non-negative then they determine a
basic feasible solution x of the linear programming problem associated with
the basis B with components x1, s, ..., %,, Where x;, = s; fori =1,2,...,m
and z; = 0 for all integers j between 1 and n that do not belong to the
basis B. Indeed

n m m
Z xja(J) — Z xjia(Ji) — Z s;ali)
j=1 i=1 i=1
The cost C of the basic feasible solution x is defined to be the value ¢’ x of
the objective function. The definition of the quantities s, s9, ..., s, ensures
that
n m
C = ZC]‘I]‘ = Z%Si‘
j=1 i=1
If the quantities sy, s9,...,s, are not all non-negative then there is no

basic feasible solution associated with the basis B.
The criterion row at the bottom of the tableau has cells to record quan-

tities p1, po, . . ., pm associated with the vectors that constitute the standard
basis eV, e® ... e(™ of R™. These quantities are defined so that
m
Pr = Z CjiTik
i=1
for k =1,2,...,m, where ¢;, is the cost associated with the basis vector ali)

fori=1,2,... k,
An application of Lemma 4.5 establishes that

m
> il =
k=1

fori=1,2,... k.
On combining the identities

m m m
S; = E rikbe, D= g c;,rir and C = g Cj;Si
k=1 i=1 i=1
derived above, we find that
m m m m
C = E Cj;Si = E E ;T kbe = E Prbg.
i=1 i=1 k=1 k=1
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The tableau also has cells in the criterion row to record quantities

—q1, —q2,- .., —({n,

where ¢1, ¢a, . . ., ¢, are the components of the unique n-dimensional vector q
characterized by the following properties:

g, =0fori=1,2,...,m;
o c'x = C + q'x for all X € R™ satisfying the matrix equation AX = b.

First we show that if q € R" is defined such that q7 = ¢ — p’ A then
the vector q has the required properties.
The definition of py,po,...,pr ensures (as a consequence of Lemma 4.5,

as noted above) that
m
ZpkAk,ji =G
k=1

fori=1,2,...,k. It follows that

9j; = Cji — (pTA)ji =G — ZpkAk’,ji =0

k=1
fori=1,2,...,n
Also p’b = C. It follows that if X € R" satisfies AX = b then
cx=plAx+q'x=p'b+q'x=C+q'x

Thus if g7 = ¢’ — p” A then the vector q satisfies the properties specified
above.
We next show that

(PTA); =) ity
i=1
for y=1,2,...,n.
Now .
tij = Z Tik Ak, j
k=1
fori =1,2,...,mand j =1,2,...,n. (This is a consequence of the identities
al) — Z Ak,je(k) _ Z Z r; kAk:]a Ji)
k=1 i=1 k=1
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as noted earlier.)
Also the definition of p; ensures that

m

Pr = Z CjiTik
i=1
for Kk =1,2,...,m. These results ensure that
m m m m
Citig =Y cirikAr; = Y prAr; = (pTA);.
i=1 i=1 k=1 k=1

It follows that . .
—q; =Y pedrg— ;=Y Citin— ¢
k=1 i=1

for j=1,2,...,n.

The extended simplex tableau associated with the basis B is obtained
by entering the values of the quantities —¢; (for j = 1,2,...,n), C and py
(for k =1,2,...,m) into the bottom row to complete the tableau described
previously. The extended simplex tableau has the following structure:—

a(l) a(2) e a(n) b e(l) e(2) e e(m)
a(Jil) tip tig 0 tim | ST | Tia Ti2 ot Tim
al2) tog tao <+ tay | S2 | o1 T22 ottt Tam
a(jm) tm,l tm,2 T tm,n Sm | Tm1 Tm2 *“°° Tmm

_ql —q2 « e —qn C pl p2 ... pm

The extended simplex tableau can be represented in block form as follows:—

ald ... a®W | p [e® ... e
Mg'A Mz'b Mg?
a(]m)
pTA_CT pr pT

Let cp denote the m-dimensional vector defined so that

T _
CB_<CJ'1 Cjp * ij)-

The identities we have verified ensure that the extended simplex tableau can
therefore also be represented in block form as follows:—
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ORI b oD ... o
aln)
: Mg'A Mz'b Mg?
alim)

cEMg'A—c' | cEM5'D cEM !

Given an m x n matrix A of rank m, an m-dimensional target vector b,
and an n-dimensional cost vector c, there exists an extended simplex tableau
associated with any basis B for the linear programming problem, irrespective
of whether or not there exists a basic feasible solution associated with the
given basis B.

The crucial requirement that enables the construction of the tableau is
that the basis B should consist of m distinct integers 71, J2, . . ., Jm between
1 and m for which the corresponding columns of the matrix A constitute a
basis of the vector space R™.

A basis B is associated with a basic feasible solution of the linear pro-
gramming problem if and only if the values in the column labelled by the
target vector b and the rows labelled by at") al2) . alm) should be non-
negative. If so, those values will include the non-zero components of the basic
feasible solution associated with the basis.

If there exists a basic feasible solution associated with the basis B then
that solution is optimal if and only if all the values in the criterion row in
the columns labelled by a(V), a® ... a( are all non-positive.

Versions of the Simplex Tableau Algorithm for determining a basic op-
timal solution to the linear programmming problem, given an initial basic
feasible solution, rely on the transformation rules that determine how the
values in the body of the extended simplex tableau are transformed on pass-
ing from an old basis B to an new basis B’, where the new basis B’ contains
all but one of the members of the old basis B.

Let us refer to the rows of the extended simplex tableau labelled by the
basis vectors al, a® ... a™ as the basis rows of the tableau.

Lemma 4.6 determines how entries in the basis rows of the extended
simplex tableau transform which one element of the basis is replaced by an
element not belonging to the basis.

Let the old basis B consist of distinct integers ji, jo, ..., Jm between 1
and n, and let the new basis B’ also consist of distinct integers 71, j5, ..., j.,
between 1 and n. We suppose that the new basis B’ is obtained from the
old basis by replacing an element j; of the old basis B by some integer jj,
between 1 and n that does not belong to the old basis. We suppose therefore
that j; = j; when ¢ # h, and that j; is some integer between 1 and n that
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does not belong to the basis B.

Let the coefficients t;;, t};, si, si, rix and r;; be determined for i =

1,2,....m,5=12,....,nand k=1,2,...,m so that

al) — Z ti’ja(ji) — Z t;ja(j{)
=1 i=1

forj=1,2,...,n,

Lo al) — - "2l

and . .
k) — ZTi’ka(]’i) _ Z rgka(ﬁ)
i=1 i=1

fork=1,2,....,m.
It then follows from Lemma 4.6 that

, 1
tha] - t . th7j’
h’-jh
tA
/ Z?]h .
tijg = tlig thy (i h).
.37,
, 1
Sh = _Sh,
th.,
’ 1,37 .
S; = 8 — sp (i # h),
th.jy
1
Thie = P Th,k
h,jy,
t;
Tik = Tik Thy (i F D).
’ th.g,

The pivot row of the extended simplex tableau for this change of basis
from B to B’ is the row labelled by the basis vector at#) that is to be removed
from the current basis. The pivot column of the extended simplex tableau
for this change of basis is the column labelled by the vector als) that is to
be added to the current basis. The pivot element for this change of basis is
the element ¢, ;; of the tableau located in the pivot row and pivot column of
the tableau.

The identities relating the components of a¥), b and e® with respect
to the old basis to the components of those vectors with respect to the new
basis ensure that the rules for transforming the rows of the tableau other
than the criterion row can be stated as follows:—
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e a value recorded in the pivot row is transformed by dividing it by the
pivot element;

e an value recorded in a basis row other than the pivot row is transformed
by substracting from it a constant multiple of the value in the same
column that is located in the pivot row, where this constant multiple
is the ratio of the values in the basis row and pivot row located in the
pivot column.

In order to complete the discussion of the rules for transforming the val-
ues recorded in the extended simplex tableau under a change of basis that
replaces an element of the old basis by an element not in that basis, it re-
mains to analyse the rule that determines how the elements of the criterion
row are transformed under this change of basis.

First we consider the transformation of the elements of the criterion row
in the columns labelled by a¥) for j = 1,2,...,n. Now the coefficients ti
and t; ; are defined for i =1,2,... ,m and j = 1,2,...,n so that

al) — Zti,ja(ji) _ Z t;’ja(jl{),
=1 =1

where j1 = 71 =1, j3 = j5 = 3, jo = 2 and j5 = 4. Moreover

t —1 t
hi = h,j
h:.]h
and
A ti,j;} "
iy T VT h.j
h:]h

for all integers ¢ between 1 and m for which ¢ # h.

Now
m
—qj = E it — ¢
i=1
and
m
_qj_E ity ; — €.
i=1
Therefore
4 — 49 = § C]z‘(ti,j tz,])"‘cjgth,j Cjlh,j
1<i<m
i%£h
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=1
q;
= iy,
th.,
and thus ”
! i
_qj = —qj -+ ; }'L/ th,j
h’]h
for j=1,2,...,n.
Next we note that .
C= Z Cj; Si
i=1
and .
C' = Z Cj1 ;-
i=1
Therefore
C'-C = Z cj.(s; — 8i) + ¢jr 8}, — Cj,5n
1<i<m
i£h
1 m
T Z Cjitigy, + Cjj, | Sh
hodh i—1
th.g,
and thus "
C'=q+ 2 Sh
th,j,

for k=1,2,...,m.
To complete the verification that the criterion row of the extended simplex
tableau transforms according to the same rule as the other rows we note that

m

Pk = E CsTik

=1

and

m
;) /
Pr = E :Cjéri,k‘
i=1
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Therefore

/ ! /
Ph—=pe = Y Grie—7ik) +crthi — Gk
1<i<m
iZ£h
1 m
= — E letzjl +Cj’ Thk
th . sJh h ’
7.]h Z:1
q;
_ h
= 7 Thk
4
h.dy,
and thus q
/ Ji
P =Pk + —— Thik
th.,

for k=1,2,...,m.

We conclude that the criterion row of the extended simplex tableau trans-
forms under changes of basis that replace one element of the basis according
to a rule analogous to that which applies to the basis rows. Indeed an ele-
ment of the criterion row is transformed by subtracting from it a constant
multiple of the element in the pivot row that belongs to the same column,
where the multiplying factor is the ratio of the elements in the criterion row
and pivot row of the pivot column.

We have now discussed how the extended simplex tableau associated with
a given basis B is constructed from the constraint matrix A, target vector b
and cost vector c that characterizes the linear programming problem. We
have also discussed how the tableau transforms when one element of the given
basis is replaced.

It remains how to replace an element of a basis associated with a non-
optimal feasible solution so as to obtain a basic feasible solution of lower cost
where this is possible.

We use the notation previously established. Let 71, Js,...,Jm be the
elements of a basis B that is associated with some basic feasible solution
of the linear programming problem. Then there are non-negative numbers

$1,589,...,8n such that
m
i=1

where aUi) is the m-dimensional vector determined by column j; of the con-
straint matrix A.

Let jo be an integer between 1 and n that does not belong to the basis B.
Then

m

alo) _ Z ti,joa(ji) —-0.

i=1
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and therefore

Aal) 3 “(s; — M j,)a%) = b.
=1

This expression representing b as a linear combination of the basis vectors
alio) ali) aliz)  alm) determines an n-dimensional vector X()\) satisfying
the matrix equation AX(\) = b. Let Z;(\) denote the jth component of the
vector X(A) for j =1,2,...,n. Then

d fjo(/\) =\
L] TJZ(A) :Si_>\ti,j0 fori:1,2,...,m;
b fj:OWhenjg{jﬂ?jlaj?a--'vjm}-

The n-dimensional vector X(\) represents a feasible solution of the linear
programming problem if and only if all its coefficients are non-negative. The
cost is then C' + g¢;, A, where C is the cost of the basic feasible solution
determined by the basis B.

Suppose that ¢;, < 0 and that ¢; ;, <0 for i =1,2,...,m. Then X()\) is
a feasible solution with cost C'+ g;, A for all non-negative real numbers A. In
this situation there is no optimal solution to the linear programming problem,
because, given any real number K, it is possible to choose A so that C'+¢;, A <
K, thereby obtaining a feasible solution whose cost is less than K.

If there does exist an optimal solution to the linear programming problem
then there must exist at least one integer ¢ between 1 and m for which
tij, > 0. We suppose that this is the case. Then X(\) is a feasible solution
if and only if X satisfies 0 < A < \g, where

.. Si
Ao = minimum (— e > O) .
2,J0

We can then choose some integer h between 1 and n for which

Sh

= Xo.

thij °
Let ji = j; for i # h, and let j; = jo, and let B’ = {41, j5, ..., j,,}. ThenX(X\o)
is a basic feasible solution of the linear programming problem associated with
the basis B’. The cost of this basic feasible solution is

C + hio

th7j0
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It makes sense to select the replacement column so as to obtain the
greatest cost reduction. The procedure for finding this information from
the tableau can be described as follows.

We suppose that the simplex tableau for a basic feasible solution has
been prepared. Examine the values in the criterion row in the columns
labelled by a®,a® ... a(.  If all those are non-positive then the basic
feasible solution is optimal. If not, then consider in turn those columns a@)
for which the value —gj, in the criterion row is positive. For each of these
columns, examine the coefficients recorded in the column in the basis rows.
If these coefficients are all non-positive then there is no optimal solution to
the linear programming problem. Otherwise choose h to be the value of i

that minimizes the ratio amongst those values of ¢ for which ¢; ;, > 0.

2,J0
The row labelled by al») would then be the pivot row if the column a'i)
were used as the pivot column.

Sh(_qu)
hsjo
the column labelled by a®) were used as the pivot column. Then choose the
pivot column to maximize the cost reduction amongst all columns a0 for
which —g;, > 0. Choose the row labelled by aln) | where h is determined
as described above. Then apply the procedures for transforming the simplex
tableau to that determined by the new basis B’, where B’ includes jy together

with j; for all integers i between 1 and m satisfying i # h.

Calculate the value of the cost reduction that would result if

4.9 The Simplex Tableau Algorithm

In describing the Simplex Tableau Algorithm, we adopt notation previously
introduced. Thus we are concerned with the solution of a linear programming
problem in Dantzig standard form, specified by positive integers m and n,
an m X n constraint matrix A of rank m, a target vector b € R™ and a cost
vector ¢ € R™. The optimization problem requires us to find a vector x € R"
that minimizes ¢x amongst all vectors x € R™ that satisfy the constraints
Ax =b and x > 0.

We denote by A;; the coefficient in the 7th row and jth column of the
matrix A, we denote the 7th component of the target vector b by b; and we
denote the jth component of the cost vector ¢ by ¢; for i = 1,2,...,m and
j=12...,n.

As usual, we define vectors a¥) € R™ for j = 1,2,...,n such that (a¥)); =
Ajjfori=1,2,... mand j=1,2,...,n.

Distinct integers 71, Jo2, . - - , jm between 1 and n determine a basis B, where

B = {jlaj?a--wjm}a
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if and only if the corresponding vectors att), al2) . alm) constitute a basis

of R™. Given such a basis B we let Mp denote the invertible m x m matrix

defined such that (Mp);, = A, for all integers ¢ and k between 1 and m.
We let t;; = (Mz'A);; and s; = (Mz'b); for i = 1,2,...,m and j =

1,2,...,n. Then
al) — Z ti’ja(jz’)
i=1

for j=1,2,...,n, and

A basis B determines an associated basic feasible solution if and only if
s; > 0 forv =1,2,...,m. We suppose in what follows that the basis B
determines a basic feasible solution.

Let

m
C = Cj;Si-
i=1

Then C is the cost of the basic feasible solution associated with the basis B.

Let
m
—gj =) ity — ¢
=1

Then g; = 0 for all j € {ji1,J2,...,Jm}. Also the cost of any feasible solution

(T1,Ta, ..., Ty) of the linear programming problem is
j=1
The simplex tableau associated with the basis B is that portion of the ex-
tended simplex tableau that omits the columns labelled by e e ... ™).

The simplex table has the following structure:

2D a® ... a® b
a(]:l) tin tig - tin | S1
al2) toqg  to2 <+ ton | S2
a(jm) tm,l tm,2 e tmm Sm
-1 —q - —q | C
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Let cp denote the m-dimensional vector defined such that

C%Z(le Cjo " ij)'

Then the simplex tableau can be represented in block form as follows:—

al .. g™ b
aln)

: Mg'A Mz'b
alim)

cEMZ'A—cT | cEML'D

Example We consider again the following linear programming problem:—
minimize
3x1 + 4xs + 223 + 924 + s
subject to the following constraints:
ox1 + 3x9 + 4w + Ty + 35 = 11;
4$1 + To + 31’3 + 8274 + 4$5 = 6,’
x; >0 forj=1,2,3,4,5.

We are given the following initial basic feasible solution (1,2,0,0,0). We
need to determine whether this initial basic feasible solution is optimal and,
if not, how to improve it till we obtain an optimal solution.

The constraints require that xq, xs, 23, 24, x5 be non-negative real numbers
satisfying the matrix equation

N
>~ ot
—_ W
[SURNTN
o ~J
=~ W
~_
8 8 8
=W N
Il
N
o=
N~

Thus we are required to find a (column) vector x with components x,
To, T3, T4 and 5 that maximizes ¢’ x subject to the constraints Ax = b and

x > 0, where
53 4 7 3 11
a-(Graid) ()

and
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Our initial basis B satisfies B = {j1, jo}, where j; = 1 and j, = 2. The
first two columns of the matrix A provide the corresponding invertible 2 x 2

matrix Mp. Thus
5 3
My — ( o3 )

Inverting this matrix, we find that

1 1 -3
—1 _
Mzt = ( 1 ) |
For each integer j between 1 and 5, let a¥) denote the m-dimensional
vector whose ¢th component is A; ; for ¢ = 1,2. Then

2 2
all) — Z ti,ja(ji) and b= Z Sia(ji),
=1 =1

where t;; = (M3'A);; and s; = (Mz'b); for j =1,2,3,4,5 and i = 1, 2.
Calculating M3 A we find that

[y
EN|

10
01

M;lb:(;).

The coefficients of these matrices determine the values of ¢; ; and s; to be
entered into the appropriate cells of the simplex tableau.

The basis rows of the simplex tableau corresponding to the basis {1,2}
are thus as follows:—

Mg'A = (

= ~3len
| <
~I%
| S
oo
N————

Also

a0 a®@ a® a®@ a0 b
1 5 17 9
a1 o0 2 F 3
2 1 12 8

Now the cost C' of the current feasible solution satisfies the equation

2
C= E Cj;Si = C181 + C2S89,
=1

where ¢; = 3, ¢co = 4, s;1 = 1 and sy = 2. It follows that C' = 11.
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To complete the simplex tableau, we need to compute —g; for j =

1,2,3,4,5, where
2
—q; =Y citi; — ¢
=1

Let cp denote the 2-dimensional vector whose ith component is (¢;;). Then
cg = (3,4). Let q denote the 5-dimensional vector whose jth component is
q; for j =1,2,3,4,5. Then
—ql = chglA —cr.
It follows that
10

_qT:(34)<01 _
—(3 429 5)

= (0032 =% -7).

== 3o

—

H\Il\]
[\

| <o
~J|00

\—/

~|

The simplex tableau corresponding to basis {1,2} is therefore completed
as follows:—

al a® a® a® a0 [ p

O

a®l 0 1 1 -2 312
o o 2 -2 BN

The values of —g; for j =1,2,3,4,5 are not all non-positive ensures that
the initial basic feasible solution is not optimal. Indeed the cost of a feasible

11— 275 + 97, + 775,

Thus a feasible solution with Z3 > 0 and T, = Z5 = 0 will have lower cost
than the initial feasible basic solution. We therefore implement a change of
basis whose pivot column is that labelled by the vector a®.

We must determine which row to use as the pivot row. We need to deter-

mine the value of 7 that minimizes the ratio i, subject to the requirement
i3
that t;3 > 0. This ratio has the value g when ¢ = 1 and 14 when ¢ = 2.
Therefore the pivot row is the row labelled by a®. The pivot element i3
then has the value %
The simplex tableau corresponding to basis {2,3} is then obtained by
subtracting the pivot row multiplied by % from the row labelled by a®,
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subtracting the pivot row from the criterion row, and finally dividing all
values in the pivot row by the pivot element %
The simplex tableau for the basis {2, 3} is thus the following:—

al a® a® a@ a® b

7 17 9 7

a® ) L0 1 F 2]
2 1 11 7 9
a®| -5 1 0 -3 1|3
-1 0 0 -—11 -7]10

All the values in the criterion row to the left of the new cost are non-
positive. It follows that we have found a basic optimal solution to the linear
programming problem. The values recorded in the column labelled by b
show that this basic optimal solution is

4.10 The Revised Simplex Algorithm

The Simplex Tableau Algorithm restricts attention to the columns to the left
of the extended simplex tableau. The Revised Simplex Algorithm proceeds
by maintaining the columns to the right of the extended simplex tableau,
calculating values in the columns to the left of that tableau only as required.

We show how the Revised Simplex Algorithm is implemented by applying
it to the example used to demonstrate the implementation of the Simplex
Algorithm.

Example We apply the Revised Simplex Algorithm to determine a basic
optimal solution to the the following linear programming problem:—

minimize
3ZE1 + 4.7)2 + 21‘3 + 9.734 + 51’5
subject to the following constraints:
51‘1 + 3$2 + 4I3 + 7$4 + 3!23'5 = 11,
dxy + 29 + 323 + 8wy + 425 = 6;
x; >0 forj=1,2,3,4,5.

We are given the following initial basic feasible solution (1,2,0,0,0). We
need to determine whether this initial basic feasible solution is optimal and,
if not, how to improve it till we obtain an optimal solution.
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The constraints require that xy, x9, 3, x4, x5 be non-negative real numbers
satisfying the matrix equation

T

= At
T3 6 .
Ty

Ts

—_ w
[JURIN
CIEN|
e~ w

Thus we are required to find a (column) vector x with components x,
T9, T3, T4 and 5 that maximizes ¢’ x subject to the constraints Ax = b and

x > 0, where
53473 11
A:(41384)’ b:<6>’

c"=(34295).

and

Our initial basis B satisfies B = {j1,j2}, where j; = 1 and jo = 2. The
first two columns of the matrix A provide the corresponding invertible 2 x 2

matrix Mp. Thus
5 3
MB_(4 1).

Inverting this matrix, we find that

1 1 -3
—1 _ -
My =7 ( —4 5 ) '
For each integer j between 1 and 5, let al(j) denote the m-dimensional
vector whose ¢th component is A; ; for ¢ = 1,2. Then

2 2
al) — Z ti,ja(ji) and b= Z sia(ji),
=1 =1

where t; ; = (Mz'A);; and s; = (Mg'b), for j =1,2,3,4,5 and i = 1, 2.
Let 7, = (Mg");x for i = 1,2 and k = 1,2, and let

C = ¢j,81+Cj50 =151 + 250 =11
_ _ _ 13
D1 = CjTi1 1 CjpTan = CiT11 + Celol = =
11
P2 = CjTiatCjprag =CiTip + Col2 = — %

The values of s;, 7,5, C and p;, are inserted into the following tableau,
which consists of the columns to the right of the extended simplex tableau:—
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b e @
1 1 3
a | 1| -7 ¢
2 4 5
a® 2| 7 -2
13 11
= -7

To proceed with the algorithm, one computes values —g; for j & B using
the formula

—qj = p1A1j +paAaj — ¢y,
seeking a value of j for which —g; > 0. Were all the values —g; are non-

positive (i.e., if all the ¢; are non-negative), then the initial solution would
be optimal. Computing —g; for j = 5,4, 3, we find that

—¢; = 2x3-dx4-5=-2
—qs = :$X7—1—71X8—9:—6—70
—q3 = =2x4-Ux3-2=3

The inequality g3 > 0 shows that the initial basic feasible solution is not
optimal, and we should seek to change basis so as to include the vector al®.
Let

1 3 5
lig = 7”1,1141,3 + 7”1,2142,3 =—-zX 4+ Z X 3= =

1

4 5
taz = ra1Aizt+ropdaz=2XxX4—2X3=2

Then

a® — t173a(j1) + t273a(j2) _ ga(l) + %a(Z)'

We introduce a column representing the vector a® into the tableau to
serve as a pivot column. The resultant tableau is as follows:—

2O T b e @
[ F[1[1
a®| 4|24 -8

Py ¥

To determine a pivot row we must pick the row index i so as to minimize

S

the ratio —, subject to the requirement that ¢; 3 > 0. In the context of this
i3

example, we should pick i = 1. Accordingly the row labelled by the vector a(!

is the pivot row. To implement the change of basis we must subtract from

the second row the values above them in the pivot row, multiplied by %; we

must subtract the values in the pivot row from the values below them in the

99



criterion row, and we must divide the values in the pivot row itself by the
pivot element %
The resultant tableau corresponding to the basis 2, 3 is then as follows:—

2@ Th (6@ o@
3 7 1 3
a® | 1 | I |- ¢
2 9 3 4
a® 0 |3 ¢ -7
0 |10] 2 -

A straightforward computation then shows that if
pr=(2 -2)

then
pPA-c"=(-100 —11 7).

The components of this row vector are all non-positive. It follows that the
basis {2,3} determines a basic optimal solution

0,2,2,0,0).

1’57 59

4.11 Finding an Initial Basic Solution to a Linear Pro-
gramming Problem

Suppose that we are given a linear programming problem in Dantzig standard
form, specified by positive integers m and n, an m x n matrix A of rank m,
an m-dimensional target vector b € R” and an n-dimensional cost vector
c € R". The problem requires us to find an n-dimensional vector x that
minimizes the objective function ¢’x subject to the constraints Ax = b and
x > 0.

The Simplex Tableau Algorithm and the Revised Simplex Algorithm pro-
vided methods for passing from an initial basic feasible solution to a basic
optimal solution, provided that such a basic optimal solution exists. How-
ever, we need first to find an initial basic feasible solution for this linear
programming problem.

One can find such an initial basic feasible solution by solving an auxiliary

linear programming problem. This auxiliary problem requires us to find n-

dimensional vectors x and z that minimize the objective function ) (z);
j=1
subject to the constraints Ax +z=Db, x> 0 and z > 0.
This auxiliary linear programming problem is itself in Dantzig standard
form. Moreover it has an initial basic feasible solution specified by the si-

multaneous equations x = 0 and z = b. The objective function of a feasible
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solution is always non-negative. Applications of algorithms based on the
Simplex Method should identify a basic optimal solution (x, z) for this prob-

n
lem. If the cost ) (z); of this basic optimal solution is equal to zero then
j=1

Ax = b and x > 0. If the cost of the basic optimal solution is positive then
the problem does not have any basic feasible solutions.

The process of solving a linear programming problem in Dantzig standard
form thus typically consists of two phases. The Phase I calculation aims to
solve the auxiliary linear programming problem of seeking n-dimensional

n
vectors x and z that minimize ) (z); subject to the constraints Ax+z = b,
i=1

x > 0 and z > 0. If the optimal solution (x,z) of the auxiliary problem
satisfies z # 0 then there is no initial basic solution of the original linear
programming problem. But if z = 0 then Ax = b and x > 0, and thus
the Phase I calculation has identified an initial basic feasible solution of
the original linear programmming problem. The Phase II calculation is the
process of successively changing bases to lower the cost of the corresponding
basic feasible solutions until either a basic optimal solution has been found
or else it has been demonstated that no such basic optimal solution exists.
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5 General Linear Programming Problems, Du-
ality and Complementary Slackness

5.1 General Linear Programming Problems

Linear programming is concerned with problems seeking to maximize or min-
imize a linear functional of several real variables subject to a finite collection
of constraints, where each constraint either fixes the values of some linear
function of the variables or else requires those values to be bounded, above
or below, by some fixed quantity.

The objective of such a problem involving n real variables x1,xs,..., 2,
is to maximize or minimize an objective function of those variables that is of
the form

C1T1 + CoTgy + -+ - + CpTy,

subject to appropriate constraints. The coefficients ¢y, cs, ..., ¢, that deter-
mine the objective function are then fixed real numbers.

Now such an optimization problem may be presented as a minimization
problem, because simply changing the signs of all the coefficients ¢y, ¢s, ..., ¢,
converts any maximization problem into a minimization problem. We there-
fore suppose, without loss of generality, that the objective of the linear pro-
gramming problem is to find a feasible solution satisfying appropriate con-
straints which minimizes the value of the objective function amongst all such
feasible solutions to the problem.

Some of the constraints may simply require specific variables to be non-
negative or non-positive. Now a constraint that requires a particular vari-
able x; to be non-positive can be reformulated as one requiring a variable to
be non-negative by substituting z,; for —x; in the statement of the problem.
Thus, without loss of generality, we may suppose that all constraints that
simply specify the sign of a variable z; will require that variable to be non-
negative. Then all such constraints can be specified by specifying a subset
Jt of {1,2,...,n}: the constraints then require that z; > 0 for all j € J*.

There may be further constraints in addition to those that simply specify
whether one of the variables is required to be non-positive or non-negative.
Suppose that there are m such additional constraints, and let them be num-
bered between 1 and m. Then, for each integer i between 1 and m, there
exist real numbers A; 1, A;9,...,A;, and b; that allow the ith constraint to
be expressed either as an inequality constraint of the form

Aigxy + Aipzo+ ...+ Az, > b;
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or else as an equality constraint of the form
Ai,lxl + Ai,gﬂfg 4+ ...+ Amxn = bz

It follows from the previous discussion that the statement of a general
linear programming problem can be transformed, by changing the signs of
some of the variables and constants in the statement of the problem, so
as to ensure that the statement of the problem conforms to the following
restrictions:—

e the objective function is to be minimized;
e some of the variables may be required to be non-negative;

e other constraints are either inequality constraints placing a lower bound
on the value of some linear function of the variables or else equality
constraints fixing the value of some linear function of the variables.

Let us describe the statement of a linear programming problem as being
in general primal form if it conforms to the restrictions just described.

A linear programming problem is expressed in general primal form if the
specification of the problem conforms to the following restrictions:—

e the objective of the problem is to find an optimal solution minimizing
the objective function amongst all feasible solutions to the problem;

e any variables whose sign is prescribed are required to be non-negative,
not non-positive;

e all inequality constraints are expressed by prescribing a lower bound
on the value on some linear function of the variables.

A linear programming problem in general primal form can be specified
by specifying the following data: an m x n matrix A with real coefficients,
an m-dimensional vector b with real components; an n-dimensional vec-
tor ¢ with real components; a subset I of {1,2,...,m}; and a subset J*
of {1,2,...,n}. The linear programming programming problem specified by
this data is the following:—

seek x € R™ that minimizes the objective function c’

the following constraints:—

x subject to

e Ax > b;
o (Ax); = (b); unlessi € I";

103



e (x); >0 foralljeJ".

We refer to the m x n matrix A, the m-dimensional vector b and the n-
dimensional vector ¢ employed in specifying a linear programming problem
in general primal form as the constraint matriz, target vector and cost vector
respectively for the linear programming problem. Let us refer to the subset
It of {1,2,...,m} specifying those constraints that are inequality constraints
as the inequality constraint specifier for the problem, and let us refer to the
subset JT of {1,2,...,n} that specifies those variables that are required to
be non-negative for a feasible solution as the variable sign specifier for the
problem.

We denote by Primal(A,b,c, I, J") the linear programming problem
whose specification in general primal form is determined by a constraint
matrix A, target vector b, cost vector ¢, inequality constraint specifier I+
and variable sign specifier J*.

A linear programming problem formulated in general primal form can be
reformulated as a problem in Dantzig standard form, thus enabling the use
of the Simplex Method to find solutions to the problem.

Indeed consider a linear programming problem Primal(A,b,c, I, J")
where the constraint matrix A is an m x n matrix with real coefficients,
the target vector b and the cost vector c are vectors of dimension m and n
respectively with real coefficients. Then the inequality constraint specifier I+
is a subset of {1,2,...,m} and the variable sign specifier J* is a subset of
{1,2,...,n}. The problem is already in Dantzig standard form if and only
if I"=0and J*t ={1,2,...,n}.

If the problem is not in Dantzig standard form, then each variable x;
for j & J* can be replaced by a pair of variables x;“ and z; satisfying the
constraints mj >0 and z; > 0: the difference :Ej' —x; of these new variables
is substituted for x; in the objective function and the constraints. Also a
slack variable z; can be introduced for each ¢« € I, where z; is required to
satisfy the sign constraint z; > 0, and the inequality constraint

Aijxr +Aiszo+ ...+ Az, > b,
is then replaced by the corresponding equality constraint
Aigrr + Aipzo+ ...+ Az, — 2 = ;.
The linear programming problem Primal(A4,b, ¢, I, J*) in general pri-

mal form can therefore be reformulated as a linear programming problem in
Dantzig standard form as follows:—
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determine values of x; for all j € J*, ] and x} for all j € J°,
where J° = {1,2,....,n} \ JT, and z for all i € I so as to
mainimize the objective function

E e E .+_§: e
cjx; + Cjx; G

jeJt jeJo jeJo

subject to the following constraints:—

(i) 3 Ajjr;+ Y0 Ajjay— 30 Ajjxy = b foreachi € {1,2,...,n}\
JjeJt+ jeJo jeJo

I+ ;

1.3 A jxi+ Y, Aw-xj— > Aijr; —z; =b; for eachi € I*;

jeJt jeJo jeJo

(ii) x; >0 for all j € J*;
(ii) x7 >0 and 7 >0 for all j € J°;
(iv) z; >0 forallieIT.

Once the problem has been reformulated in Dantzig standard form, techiques
based on the Simplex Method can be employed in the search for solutions to
the problem.

5.2 Complementary Slackness and the Weak Duality
Theorem

Every linear programming problem Primal(A, b,c, I, J") in general primal
form determines a corresponding linear programming problem Dual(A, b, ¢, I, J1)
in general dual form. The second linear programming problem is referred to
as the dual of the first, and the first linear programming problem is referred
to as the primal of its dual.

We shall give the definition of the dual problem associated with a given
linear programming problem, and investigate some important relationships
between the primal linear programming problem and its dual.

Let Primal(A,b,c, I, J") be a linear programming problem in general
primal form specified in terms of an m xn constraint matrix A, m-dimensional
target vector b, n-dimensional cost vector c, inequality constraint spec-
ifier I and variable sign specifier J*. The corresponding dual problem
Dual(A, b, c, I't, J*) may be specified in general dual form as follows:
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seek p € R™ that mazimizes the objective function p'b subject
to the following constraints:—

° pTA S CT,'
e (p); >0 forallielt;
e (pTA); = (c); unless j € J*.

Lemma 5.1 Let Primal(A, b,c, I, JT) be a linear programming problem ez-
pressed in general primal form with constraint matriz A with m rows and n
columns, target vector b, cost vector ¢, inequality constraint specifier It and
variable sign specifier J*. Then the feasible and optimal solutions of the cor-

responding dual linear programming problem Dual(A, b, c, I, J") are those
of the problem Primal(—AT, —c, —b, J*, IT).

Proof An m-dimensional vector p satisfies the constraints of the dual linear
programming problem Dual(4, b, c, I, J*) if and only if pT A < c”, (p); >0
for all i € I'™ and (p”A); = (c); unless j € J*. On taking the transposes of
the relevant matrix equations and inequalities, we see that these conditions
are satisfied if and only if —ATp > —c, (p); > Oforalli € It and (—ATp); =
(—c); unless j € J*. But these are the requirements that the vector p
must satisfy in order to be a feasible solution of the linear programming
problem Primal(—AT, —¢, —b, J*, ). Moreover p is an optimal solution of
Dual(4, b, c, I, JT) if and only if it maximizes the value of p”b, and this is
the case if and only if it minimizes the value of —b”p. The result follows. |

A linear programming problem in Dantzig standard form is specified by
specifying integers m and n a constraint matrix A which is an m x n matrix
with real coefficients, a target vector b belonging to the real vector space R™
and a cost vector c belonging to the real vector space R™. The objective
of the problem is to find a feasible solution to the problem that minimizes
the quantity ¢’x amongst all n-dimensional vectors x for which Ax = b and
x > 0.

The objective of the dual problem is then to find some feasible solution
to the problem that maximizes the quantity p?b amongst all m-dimensional
vectors p for which p”’A < c.

Theorem 5.2 (Weak Duality Theorem for Linear Programming Problems
in Dantzig Standard Form)

Let m and n be integers, let A be an m X n matriz with real coefficients, let
b € R™ and let c € R". Let x € R" satisfy the constraints Ax = b and
x > 0, and let p € R™ satisfy the constraint p' A < c. Then p’b < c’x.
Moreover p'b = c'x if and only if the following complementary slackness
condition is satisfied:
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o (pTA); = (c); for all integers j between 1 and n for which (x); > 0.

Proof The constraints satisfied by the vectors x and p ensure that

c’x—p’b = (¢! —p'A)x+p’(Ax —b)
= (CT - pTA)Xa

because Ax —b = 0. But also x > 0 and ¢ — p”A) > 0, and therefore
(¢’ —pTA)x > 0. Moreover (¢’ —pTA)x = 0 if and only if (¢’ —pTA); =0
for all integers j between 1 and n for which (x); > 0. The result follows. |

Corollary 5.3 Let a linear programming problem in Dantzig standard form
be specified by an m X n constraint matriz A, and m-dimensional target
vector b and an n-dimensional cost vector c. Let x* be a feasible solution
of this primal problem, and let p* be a solution of the dual problem. Then
pTA < c”. Suppose that the complementary slackness conditions for this
primal-dual pair are satisfied, so that (p** A); = (c); for all integers j between
1 and n for which (x*); > 0. Then x* is an optimal solution of the primal
problem, and p* is an optimal solution of the dual problem.

Proof Because the complementary slackness conditions for this primal-dual
pair are satisfied, it follows from the Weak Duality Theorem that c’x* =
p*’b (see Theorem 5.2). But it then also follows from the Weak Duality
Theorem that

c'x > pTb =c'x*

for all feasible solutions x of the primal problem. It follows that x* is an
optimal solution of the primal problem. Similarly

for all feasible solutions p of the dual problem. It follows that p* is an
optimal solution of the dual problem, as required. |

Another special case of duality in linear programming is exemplified by a
primal-dual pair of problems in Von Neumann Symmetric Form. In this case
the primal and dual problems are specified in terms of an m X n constraint
matrix A, an m-dimensional target vector b and an n-dimensional cost vec-
tor c¢. The objective of the problem is minimize ¢?x amongst n-dimensional
vectors x that satisfy the constraints Ax > b and x > 0. The dual prob-
lem is to maximize p’b amongst m-dimensional vectors p that satisfy the
constraints p’A < ¢’ and p > 0.
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Theorem 5.4 (Weak Duality Theorem for Linear Programming Problems
in Von Neumann Symmetric Form)

Let m and n be integers, let A be an m X n matriz with real coefficients,
let b € R™ and let ¢ € R™. Let x € R" satisfy the constraints Ax > b and
x > 0, and let p € R™ satisfy the constraints p? A < ¢ and p* > 0. Then
p’b < cTx. Moreover p'b = c'x if and only if the following complementary
slackness conditions are satisfied:

e (Ax); = (b); for all integers i between 1 and m for which (p); > 0;
o (pTA); = (c); for all integers j between 1 and n for which (x); > 0;
Proof The constraints satisfied by the vectors x and p ensure that
c'x —p'b = (¢! — pTA)x + p’(Ax — b).

But x > 0, p >0, Ax —b > 0 and ¢’ — p”4 > 0. It follows that
c’x — p’b > 0. and therefore ¢’x > p?’b. Moreover c’'x — p’b = 0 if and
only if (¢ — pTA);(x); =0 for j = 1,2,...,n and (p):(Ax — b); = 0, and
therefore ¢’x = p’b if and only if the complementary slackness conditions
are satisfied. |

Theorem 5.5 (Weak Duality Theorem for Linear Programming Problems
in General Primal Form)
Let x € R™ be a feasible solution to a linear programming problem

Primal(A, b,c,I*,J")

expressed in general primal form with constraint matriz A with m rows and
n columns, target vector b, cost vector ¢, inequality constraint specifier It
and variable sign specifier J*, and let p € R™ be a feasible solution to the
corresponding dual programming problem

Dual(A,b,c, It,J").

Then p'b < c'x. Moreover p'b = c¢’'x if and only if the following comple-
mentary slackness conditions are satisfied:—

o (Ax); = b; whenever (p); # 0;
e (pTA); = (c); whenever (x); # 0.

Proof The feasible solution x to the primal problem satisfies the following
constraints:—
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o Ax > b;
o (Ax); = (b); unlessi € I'";
e (x); >0forall jeJr.

The feasible solution p to the dual problem satisfies the following constraints:—

o pi'A<cT;
e (p); >0forallielf
e (p7A); = (c); unless j € JT.
Now
T

c'x—p'b = (¢! - TA)X—i—pT(Ax—b)

n

= Z(CT +Z i(Ax —b

Jj=1

Let j be an integer between 1 and n. If j € J then (x); > 0 and (c”

pTA); > 0, and therefore (¢! —pTA);(x); > 0. If j & J* then (pTA4); = (c);,
and therefore (¢’ — pTA);(x); = 0, irrespective of whether (x); is positive,
negative or zero. It follows that

n

S (e~ p A (x); 2 0.

J=1

Moreover
n

> (e —pTA)(x); =0
j=1
if and only if (p”A); = (¢); for all indices j for which (x); # 0.

Next let i be an index between 1 and m. If i € I then (p); > 0 and
(Ax —Db); > 0, and therefore (p);(Ax —b); > 0. If i € I"" then (Ax); = (b),,
and therefore (p);(Ax — b); = 0, irrespective of whether (p); is positive,
negative or zero. It follows that
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if and only if (Ax); = (b); for all indices ¢ for which (p); # 0. The result
follows. |}

Corollary 5.6 Let x* € R* be a feasible solution to a linear programming
problem Primal(A, b, c, [T, J1) expressed in general primal form with con-
straint matriz A with m rows and n columns, target vector b, cost vec-
tor ¢, inequality constraint specifier I and variable sign specifier J*, and let
p* € R™ be a feasible solution to the corresponding dual programming problem
Dual(A, b,c, It JT). Suppose that the complementary slackness conditions
are satisfied for this pair of problems, so that (Ax); = b; whenever (p); # 0,
and (pTA); = (c); whenever (x); # 0. Then x* is an optimal solution for
the primal problem and p* is an optimal solution for the dual problem.

Proof Because the complementary slackness conditions for this primal-dual
pair are satisfied, it follows from the Weak Duality Theorem that c¢’x* =
p*Tb (see Theorem 5.5). But it then also follows from the Weak Duality
Theorem that

c'x>pTb =clx*

for all feasible solutions x of the primal problem. It follows that x* is an
optimal solution of the primal problem. Similarly

pr < CTX* — p*Tb
for all feasible solutions p of the dual problem. It follows that p* is an

optimal solution of the dual problem, as required. [

Example Consider the following linear programming problem in general
primal form:—

find values of x1, w9, x3 and x4 so as to minimize the objective
function
C1X1 + CoTo + C3X3 + C4T4

subject to the following constraints:—
® 1,171 + a12Ts + Q1373 + a14T4 = by;
® (3171 + G22T3 + Az 373 + A2 4Ty = by;
® 43171 + a3pTy + 3373 + a3 474 > ba;

e r1 >0 and x3 > 0.

Here a; j, b; and ¢; are constants for ¢ = 1,2,3 and j = 1,2, 3,4. The dual
problem is the following:—
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find values of p1, po and p3 so as to maximize the objective func-
tion
p1b1 + p2by + p3bs

subject to the following constraints:—

® piay 1 + paag + psasy < c¢q;
® DiG12 + P2ag2 + P3az2 = Caf
® piay3 + pado 3 + P3ass < C3;
® D1G14 + P2a24 + P3a3 4 = Ca;
e p3 > 0.
We refer to the first and second problems as the primal problem and
the dual problem respectively. Let (z1,xs, x3,4) be a feasible solution of the

primal problem, and let (py, p2, p3) be a feasible solution of the dual problem.
Then

4

3
Z Cijx; — szbz = Z <Cj — Zpiai7j> X
j i i=1

j=1 =1 j=1

3 4
+ Zpl (Z Q; T4 — bz> .
i=1 j=1

3 4
Now the quantity ¢;—>  p;a;; = 0for j =2and j =4, and > a; jx;—b; =
i=1 j=1
0 for ¢ =1 and ¢ = 2. It follows that

4 3 3
chxj - sz‘bi = (Cl - ZPz’%,l) 1
j=1 i=1 i=1
3
+ <C3 - sz‘@z‘,:s) T3
, =1
+ p3 (Z as ;jr; — bg) .

J=1

Now x7 > 0, x3 > 0 and p3 > 0. Also
3 3
1 — Zpiaz‘,l >0, c3— sz'az‘,:’) >0
i=1 i=1
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and

7=1
It follows that
4 3
Zle’j - szbz Z 0.
j=1 i=1
and thus
4 3
D6 = ) pibi
j=1 i=1
Now suppose that
4 3
Z c;xj = Zpibi.
j=1 i=1

Then

3
(Cl - sz‘am) ;. = 0,
i=1
3
<C3 - sz‘az',:a) xz3 = 0,
i=1
4
Ps3 <Z as ;rj — b3> = 0,
j=1

because a sum of three non-negative quantities is equal to zero if and only if
each of those quantities is equal to zero.

It follows that
4 3

Z CiTy; = Z pzbz
j=1 i=1

if and only if the following three complementary slackness conditions are
satisfied:—

3

° pia;1 = C1 if xTr1 > 0,
i=1
3

° Zpiam = C3 if Ty > 0,
i=1

° Z?:l asjx; = bz if ps > 0.
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5.3 Open and Closed Sets in Euclidean Spaces

Let m be a positive integer. The Fuclidean norm |x| of an element x of R™
is defined such that

X =) ().
i=1
The Fuclidean distance function d on R™ is defined such that

d(Xv y) - |y - X|

for all x,y € R™. The Euclidean distance function satisfies the Triangle
Inequality, together with all the other basic properties required of a distance
function on a metric space, and therefore R™ with the FEuclidean distance
function is a metric space.

A subset U of R™ is said to be open in R™ if, given any point b of U,
there exists some real number ¢ satisfying € > 0 such that

{xeR":|x—b|<e} CU

A subset of R™ is closed in R™ if and only if its complement is open in R™.
Every union of open sets in R™ is open in R™, and every finite intersection
of open sets in R™ is open in R™.
Every intersection of closed sets in R™ is closed in R™, and every finite
union of closed sets in R™ is closed in R™ .

Lemma 5.7 Let m be a positive integer, let u™, u®, ... u™ be a basis of
R™, and let

F= {Zsiu(i):siZOforizl,Q,...,m}.

=1

Then F' is a closed set in R™.

Proof Let T: R™ — R™ be defined such that

m
T(S1,89, .. 8m) = E s;u®
i=1
for all real numbers s1, so, ..., S,,. Then T is an invertible linear operator on

R™ and F = T(G), where

G={xeR":(x);>0fori=1,2,...,m}.
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Moreover the subset G of R™ is closed in R™.

Now it is a standard result of real analysis that every linear operator on
a finite-dimensional vector space is continuous. Therefore 771 R™ — R™ is
continuous. Moreover T'(G) is the preimage of the closed set G under the
continuous map 7'~ !, and the preimage of any closed set under a continuous
map is itself closed. It follows that T'(G) is closed in R™. Thus F is closed
in R™, as required. |}

Lemma 5.8 Let m be a positive integer, let F' be a non-empty closed set in
R™, and let b be a vector in R™. Then there exists an element g of F' such
that |x —b| > |g — b| for allx € F.

Proof Let R be a positive real number chosen large enough to ensure that
the set F{ is non-empty, where

Fo=Fn{xeR":|x—b| <R}

Then Fj is a closed bounded subset of R™. Let f: Fy — R be defined such
that f(x) = |x —b| for all x € F'. Then f: Fy — R is a continuous function
on Fj.

Now it is a standard result of real analysis that any continuous real-valued
function on a closed bounded subset of a finite-dimensional Euclidean space
attains a minimum value at some point of that set. It follows that there
exists an element g of Fj such that

x —b| > |g — b
for all x € Fy. If x € F'\ Fp then
|Ix —b|>R>|g—Db|

It follows that
[x —b| > |g — b

for all x € F', as required. |}

5.4 A Separating Hyperplane Theorem

Definition A subset K of R™ is said to be convez if (1 — pu)x+ ux’ € K for
all elements x and x’ of K and for all real numbers pu satisfying 0 < pu < 1.

It follows from the above definition that a subset K of R” is a convex
subset of R™ if and only if, given any two points of K, the line segment
joining those two points is wholly contained in K.
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Theorem 5.9 Let m be a positive integer, let K be a closed convex set in
R™ and let b be a vector in R™, where b & K. Then there exists a linear
functional p: R™ — R and a real number ¢ such that p(x) > ¢ for allx € K
and o(b) < c.

Proof It follows from Lemma 5.8 that there exists a point g of K such that
|x —b| > |g—b| forall x € K. Let x € K. Then (1 — \)g+ \x € K for
all real numbers A satisfying 0 < A < 1, because the set K is convex, and

therefore
|(1-Mg+ A x—b[>|g— Dbl

for all real numbers A satisfying 0 < A < 1. Now
(1-Ng+Xx—b=g—b+Ax—g).

It follows by a straightforward calculation from the definition of the Eu-
clidean norm that

lg—bl> < |(1-Ng+ x—b]?
= |g—b[*+2X\(g—b)"(x—g)
+ Xx — g|?

for all real numbers A satisfying 0 < A < 1. In particular, this inequality
holds for all sufficiently small positive values of A, and therefore

(g—b)(x—g)>0

for all x € K.
Let

p(x) = (g —b)'x
for all x € R™. Then ¢:R™ — R is a linear functional on R™, and ¢(x) >
©(g) for all x € K. Moreover

p(g) — ¢(b) = |g —b|* >0,

and therefore p(g) > ¢(b). It follows that ¢(x) > ¢ for all x € K, where
¢ = 3¢(b) + 3¢(g), and that ¢(b) < c. The result follows. [}

5.5 Convex Cones

Definition Let m be a positive integer. A subset C' of R™ is said to be a
conver cone in R™ if A\v + pw € C for all v,w € C and for all real numbers
A and p satisfying A > 0 and p > 0.
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Lemma 5.10 Let m be a positive integer. Then every convex cone in R™ is
a conver subset of R™.

Proof Let C be a convex cone in R™ and let v,w € C. Then A\v + uw € C
for all non-negative real numbers A and p. In particular (1 — A\)w+ v € C.
whenever 0 < A < 1, and thus the convex cone C' is a convex set in R, as
required. |

Lemma 5.11 Let S be a subset of R™, and let C' be the set of all elements
of R™ that can be expressed as a linear combination of the form

where 2, a® . a™ are vectors belonging to S and s, Ss, . . ., Sy, are non-
negative real numbers. Then C' is a convex cone in R™.

Proof Let v and w be elements of C'. Then there exist finite subsets S;
and Sy of S such that v can be expressed as a linear combination of the
elements of S; with non-negative coefficients and w can be expressed as a
linear combination of the elements of Sy with non-negative coefficients. Let

Sl U Sg = {a(l),a(2), e ,a(”)}.

Then there exist non-negative real numbers sq, so,...,s, and t1,ta,...,t,
such that
n n
v = Z sja(]) and w = Z tjam.
j=1 j=1

Let A and p be non-negative real numbers. Then

AV pw =Y (As; + ptj)al?,

Jj=1

and As; + ut; > 0 for j = 1,2,...,n. It follows that A\v + pw € S, as
required. |

Proposition 5.12 Let m be a positive integer, let al¥,a® ... a™ ¢ R™,
and let C' be the subset of R™ defined such that

C':{tha(j):thOforjzl,Q,...,n}.
j=1

Then C' is a closed convex cone in R™.
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Proof It follows from Lemma 5.11 that C' is a convex cone in R™. We must
prove that this convex cone is a closed set.

The vectors at),a® ... a™ span a vector subspace V of R™ that is
isomorphic as a real vector space to R¥ for some integer k satisfying 0 < k <
m. This vector subspace V' of R™ is a closed subset of R™, and therefore any
subset of V' that is closed in V' will also be closed in R™. Replacing R™ by
R* . if necessary, we may assume, without loss of generality that the vectors
a® a® .. a®™ gpan the vector space R™. Thus if A is the m x n matrix
defined such that (A);; = (a¥); fori = 1,2,...,m and j = 1,2,...,n then
the matrix A is of rank m.

Let B be the collection consisting of all subsets B of {1,2,...,n} for
which the members of the set {al’) : j € B} constitute a basis of the real
vector space R™ and, for each B € B, let

i=1
where 71, Jo, ..., Jm are distinct and are the elements of the set B. It follows
from Lemma 5.7 that the set Cg is closed in R™ for all B € B.

Let b € C. The definition of C' then ensures that there exists some
x € R” that satisfies Ax = b and x > 0. Thus the problem of determining
x € R" such that Ax = b and x > 0 has a feasible solution. It follows
from Theorem 4.2 that there exists a basic feasible solution to this problem,
and thus there exist distinct integers 71, j2, . . ., jm between 1 and n and non-
negative real numbers sq, so, . . . , S, such that at") at2) . alm) are linearly
independent and

Therefore b € C'g where

B = {j17j27 s 7jm}

We have thus shown that, given any element b of C| there exists a subset
B of {1,2,...,n} belonging to B for which b € Cg. It follows from this that
the subset C' of R™ is the union of the closed sets Cp taken over all elements
B of the finite set B. Thus C is a finite union of closed subsets of R™, and
is thus itself a closed subset of R™, as required. |}

5.6 Farkas’ Lemma

Proposition 5.13 Let C' be a closed convex cone in R™ and let b be a vector
in R™. Suppose that b & C. Then there exists a linear functional p: R™ — R
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such that p(v) >0 for all v e C and ¢(b) < 0.

Proof Suppose that b ¢ C. The cone C' is a closed convex set. It follows
from Theorem 5.9 that there exists a linear functional ¢: R®™ — R and a real
number ¢ such that p(v) > ¢ for all v € C and ¢(b) < c.

Now 0 € C, and ¢(0) = 0. It follows that ¢ < 0, and therefore p(b) <
c<0.

Let v € C. Then Av € C for all real numbers \ satisfying A > 0. It

follows that Ap(v) = ¢(Av) > ¢ and thus ¢(v) > ; for all real numbers A

satisfying A > 0, and therefore

c
> lim - = 0.
SO(V) o )\1—1>r-‘£100 0
We conclude that ¢(v) >0 for all v € C.
Thus ¢(v) > 0 for all v € C and ¢(b) < 0, as required. |

Lemma 5.14 (Farkas’ Lemma) Let A be a m x n matriz with real coeffi-
cients, and let b € R™ be an m-dimensional real vector. Then exactly one of
the following two statements is true:—

(i) there exists x € R™ such that Ax =b and x > 0;

(ii) there exists y € R™ such that yT A >0 and y'b < 0.

Proof Let a® a® ... a( be the vectors in R™ determined by the columns
of the matrix A, so that (a)); = (A);; fori =1,2,...,mand j =1,2,...,n,

and let
C = {ija(j) cx; > 0for j = 1,2,...,n}.
j=1

It follows from Proposition 5.12 that C'is a closed convex cone in R™. More-
over

C ={Ax:x € R" and x > 0}.

Thus b € C'if and only if there exists x € R"™ such that b = Ax and x > 0.
Therefore statement (i) in the statement of Farkas’ Lemma is true if and only
iftbeC

If b ¢ C then it follows from Proposition 5.13 that there exists a linear
functional ¢: R™ — R such that ¢(v) > 0 for all v € C and ¢(b) < 0. Then
there exists y € R™ with the property that ¢(v) = yTv for all v € R™.
Now Ax € C for all x € R” satisfying x > 0. It follows that yTAx > 0
for all x € R™ satisfying x > 0. In particular (y7A); = y" Ae®® > 0 for
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i=1,2,...,m, where e is the vector in R™ whose ith component is equal
to 1 and whose other components are zero. Thus if b € C' then there exists
y € R™ for which y?A > 0 and y’b < 0.

Conversely suppose that there exists y € R™ such that y’A > 0 and
yIb < 0. Then yTAx > 0 for all x € R" satisfying x > 0, and therefore
yIv > 0forallv e C. But y'b < 0. It follows that b ¢ C. Thus statement
(ii) in the statement of Farkas’s Lemma is true if and only if b ¢ C. The
result follows. |}

Corollary 5.15 Let A be a m X n matriz with real coefficients, and let c €
R™ be an n-dimensional real vector. Then exactly one of the following two
statements is true:—

(i) there exists y € R™ such that yT' A =c? andy > 0;

(ii) there exists v € R™ such that Av > 0 and c'v < 0.

Proof It follows on applying Farkas’s Lemma to the transpose of the ma-
trix A that exactly one of the following statements is true:—

i) there exists y € R™ such that ATy = c and y > 0;
ii) there exists v € R™ such that v AT > 0 and v'c < 0.
( ) =

But vic = cTv. Also ATy = c if and only if y’A = ¢, and vI' AT > 0 if
and only if Av > 0. The result follows. |}

Corollary 5.16 Let A be a mxn matriz with real coefficients, and let c € R"
be an n-dimensional real vector. Suppose that c'v > 0 for all v. € R
satisfying Av > 0. Then there exists some there exists y € R™ such that
yI'A=cT andy > 0.

Proof Statement (ii) in the statement of Corollary 5.15 is false, by assump-
tion, and therefore statement (i) in the statement of that corollary must be
true. The result follows. |}

Proposition 5.17 Let n be a positive integer, let I be a non-empty finite
set, let :R™ — R be a linear functional on R™, and, for each i € I, let
ni:R" — R be a linear functional on R™. Suppose that p(v) > 0 for all
v € R" with the property that n;(v) > 0 for all i € 1. Then there exist

non-negative real numbers g; for all i € I such that ¢ = gin;.
i€l
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Proof We may suppose that [ = {1,2,...,m} for some positive integer m.
For each 7 € I there exist real numbers A;1, A; 9, ..., A;, such that

n
7’]7;(’01,’02, e ,Un) = E Ai,jvj
Jj=1

fori =1,2,...,m and for all real numbers v, vo,...,v,. Let A be the m xn
matrix whose coefficient in the ¢th row and jth column is the real number
Ajjfori=1,2,...,mand j =1,2,...,n. Then an n-dimensional vector

v € R” satisfies n;(v) > 0 for all ¢ € [ if and only if Av > 0.

There exists an n-dimensional vector ¢ € R” such that o(v) = cTv for all
v € R™. Then c’v > 0 for all v € R” satisfying Av > 0. It then follows from
Corollary 5.16 that there exists y € R™ such that y?A = ¢’ and y > 0. Let

gi=(y)ifori=1,2,...,m. Theng; >0fori=1,2,...,mand > g;m = ¢,
il
as required. |

Remark The result of Proposition 5.17 can also be viewed as a consequence
of Proposition 5.13 applied to the convex cone in the dual space R™ of the
real vector space R™ generated by the linear functionals n; for ¢ € I. Indeed
let C' be the subset of R™ defined such that

C:{ngi:giZOforalliel}.

iel

It follows from Proposition 5.12 that C is a closed convex cone in the dual
space R™ of R™. If the linear functional ¢ did not belong to this cone then it
would follow from Proposition 5.13 that there would exist a linear functional
V:R™ — R with the property that V(n;) > 0 for all i € I and V(p) < 0.
But given any linear functional on the dual space of a given finite-dimensional

vector space, there exists some vector belonging to the given vector space such
that the linear functional on the dual space evaluates elements of the dual
space at that vector (see Corollary 2.7). It follows that there would exist
v € R" such that V(1) = ¢(v) for all » € R™. But then n;(v) > 0 for all
i € I and p(v) < 0. This contradicts the requirement that ¢(v) > 0 for
all v € R" satisfying n;(v) > 0 for all ¢ € I. To avoid this contradiction it
must be the case that ¢ € (| and therefore there must exist non-negative
real numbers g; for all ¢ € I such that ¢ = Ziel Gin;i-

Corollary 5.18 Letn be a positive integer, let I be a non-empty finite set, let
@:R™ — R be a linear functional on R™, and, for eachi € I, let n;: R™ — R be
a linear functional on R™. Suppose that there exists a subset Iy of I such that
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©(v) >0 for all v € R™ with the property that n;(v) > 0 for alli € Iy. Then
there exist non-negative real numbers g; for all i € I such that ¢ = > g;in;

i€l
and g; = 0 when i & I.

Proof It follows directly from Proposition 5.17 that there exist non-negative
real numbers g; for all i € Iy such that o = > gim;. Let g; = 0 for alli € I\ I.
1€l
Then ¢ = > g;m;, as required. |}
i€lp
Definition A subset X is said to be a convex polytope if there exist linear
functionals 1y, 72, ..., My on R™ and real numbers s1, s, . . ., S, such that

X={xeR":n(x)>s; fori=1,2,...,m}.

Let (n; : i € I) be a finite collection of linear functionals on R™ indexed
by a finite set I, let s; be a real number for all 7 € I, and let

X=[{xeR:m(x) > s}

il

Then X is a convex polytope in R™. A point x of R” belongs to the convex
polytope X if and only if n;(x) > s; for all i € I.

Proposition 5.19 Let n be a positive integer, let I be a non-empty finite
set, and, for each i € I, let n;: R™ — R be non-zero linear functional and let
s; be a real number. Let X be the convex polytope defined such that

X = ﬂ{x € R:ni(x) > s}

el

(Thus a point x of R™ belongs to the convex polytope X if and only if n;(x) >
s; for alli € 1.) Let o:R™ — R be a non-zero linear functional on R™, and
let x* € X. Then o(x*) < p(x) for all x € X if and only if there exist

non-negative real numbers g; for all i € I such that ¢ =Y gin; and g; = 0
i€l
whenever n;(x*) > s;.

Proof Let K = {i € I : n;(x*) > s;}. Suppose that there do not exist

non-negative real numbers g; for all i € I such that ¢ = > ¢;n; and g; = 0
i€l

when ¢ € K. Corollary 5.18 then ensures that there must exist some v € R”

such that n;(v) > 0 for all: € I \ K and ¢(v) < 0. Then

ni(xX" 4+ Av) = n;(x") + Ans(v) > s
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foralli € I'\ K and for all A > 0. If i € K then n;(x*) > s;. The set K is
finite. It follows that there must exist some real number )\ satisfying Ay > 0
such that 7;(x* + Av) > s; for all ¢ € K and for all real numbers \ satisfying
0< A< .

Combining the results in the cases when ¢ € [ \ K and when i € K,
we find that n;(x* + Av) > s; for all i« € I and A € [0, )], and therefore
x* + Av € X for all real numbers A satisfying 0 < A < A\g. But

(X" 4 Av) = o(x7) + Ap(v) < p(X7)

whenever A > 0. It follows that the linear functional ¢ cannot attain a
minimum value in X at any point x* for which either K = I or for which K
is a proper subset of [ but there exist non-negative real numbers g; for all

i €I\ K such that p = > g¢;n;. The result follows. ||
i€l\K

5.7 Strong Duality

Example Consider again the following linear programming problem in gen-
eral primal form:—

find values of x1, x2, x3 and x4 so as to minimize the objective
function
C1T1 + Co9 + C3T3 + Cqy

subject to the following constraints:—

® 1171 + 12T + 1373 + a1 4T4 = by;
® A217 + A2 22 + a2 373 + A2 4Xy4 = bg,’
® a31%) + a3 + a3 3T3 + azaxy > bs;
e 1 >0 and z3 > 0.

Now the constraint
a11T1 + a12T2 + a1373 + a1474 = by
can be expressed as a pair of inequality constraints as follows:

1,101 + 12%T2 + a1 373 + a1 4y > by

—Q1,171 — A12T2 — Q1373 — G144 > —b.

Similarly the equality constraint involving b, can be expressed as a pair or
inequality constraints.
Therefore the problem can be reformulated as follows:—
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find values of x1, w9, x3 and x4 so as to minimize the
function
C1X1 + CoTo + C3X3 + C4T4

subject to the following constraints:—

® a; %] + Q12T + a1 373 + a1 474 > by
® —(11%1 — A12T2 — (13%T3 — A1,4T4 = —by;
® (2171 + G22T2 + 2373 + G244 > bo;
® —(21%1 — U22T2 — (23%3 — U 4Ty = —by;

® 3171 + a32T2 + a33T3 + a34T4 > bs;

objective

® I Z 0;
® I3 Z 0.
Let
(1, T2, T3, T4) = C121 + CoTy + C33 + Ca4,
and let
+ _
Ny (1, %2,T3,%4) = G11%1 + A12T2 + A13%3 + A1,4T4,
771_ T1,T2,T3,T4 = _nl(xlal‘%x37m4)7
+ _
Ny (T1,T2,T3,T4) = 2171 + A22T2 + G2 3%3 + A24T4,
Ny

= I,

( )
( )
( )
(T1, 02,23, 24) = —13(21, T2, T3, 24),
( )
( )
( )

x3,

= a3,1%1 + G32%T2 + A33T3 + A3 474,

Then (x1,x9,x3,x4) is a feasible solution to the primal problem if and
only if this element of R* belongs to the convex polytope X, where X is
the subset of R* consisting of all points x of R* that satisfy the following

constraints:—
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e (1(x)>0
e (3(x)>0

An inequality constraint is said to be binding for a particular feasible
solution x if equality holds in that constraint at the feasible solution. Thus
the constraints on the values of 0", n;, 7y and 7, are always binding at
points of the convex polytope X, but the constraints determined by ns3, (3
and (3 need not be binding.

Suppose that the linear functional ¢ attains its minimum value at a point
x* of X, where x* = (z7, 25, %, 2}). It then follows from Proposition 5.19
that there exist non-negative real numbers p{, p, p1, Py, p3, ¢1 and g3 such
that

pim’ +piny + 03y +pany +psis + @+ @G = ¢
Moreover p3 = 0 if n3(x*) > b3, ¢ = 0 if (1(x*) > 0, and g3 = 0 if (3(x*) > 0.
Now 1, = —n{ and 1, = —n; . It follows that

pint +pams +pans 4+ Gl + G =

4
where p; = p — p; and py = p5 — p,. Moreover p3 = 0 if > azjr; > bs,
i=1

¢ =0if 27 >0, and g3 = 0 if 2§ > 0.
It follows that

piai1 + paagy + p3azy < cq,
Di1G12 + P2ag2 + P3aza = Cz,
piai 3 + paas3 +p3azz < cs,
D114 + P2a24 + P3G3za = C4,
p3 = 0

Moreover p3 = 0 if Z asjx; > bs, szaz 1 =c if 27 >0, and szazg C3

it x5 > 0. It follows that (p1, P2, p3) is a feasible solution of the dual problem
to the feasible primal problem.

Moreover the complementary slackness conditions determined by the pri-
mal problem are satisfied. It therefore follows from the Weak Duality Theo-
rem (Theorem 5.5) that (p1, pa, p3) is an optimal solution to the dual problem.

Theorem 5.20 (Strong Duality for Linear Programming Problems with Op-
timal Solutions)
Let x* € R* be an optimal solution to a linear programming problem

Primal(A,b,c, I*, J*)
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expressed in general primal form with constraint matriz A with m rows and
n columns, target vector b, cost vector ¢, inequality constraint specifier I+
and variable sign specifier J*. Then there exists an optimal solution p* to
the corresponding dual programming problem

Dual(4,b,c, It,J7),

and moreover p*'b = cTx*.

Proof Let x* = (z7,25,...,2}),and let A; ; = (A);;, bi = (b); and ¢; = (c¢);

rrn
fort=1,2,...,mand j = 1,2,...,n. Then optimal solution x* minimizes

c’'x* subject to the following constraints:—

o Ax* > b;
o (Ax*); =b; unlessi € I't;
e 15 >0 forall jeJ*.

Let p be a feasible solution to the dual problem, and let p = (p1, pa, - - ., Pm)-
Then p must satisfy the following constraints:—

e pfA<ch;
e p,>0foralliel™;
e (pTA); =c; unless j € JT.

Now the constraints of the primal problem can be expressed in inequality
form as follows:—

o (Ax*); >b; for allie I';
o (Ax*); > b forallie I\I"; (—Ax*); > —b; foralli e I\ I";
o x>0 forall j € J*.
Let .
o(T1, T, ..., x,) = chxj,
j=1

n

Ml aa.w) = S Ay (=1,2,...,m)

Cj(xl,ﬂig,...,.’]?n)Il’j (j21,2,,n)



It follows from Proposition 5.19 that if there exists an optimal solution to
the primal problem then there exist non-negative quantities p; for all i € I,
p; and p_ for all i € I\ I and g; for all j € J* such that

e=Y_pmi+ Y 0f =i+ D 4

ielt ieI\I+ jeJt

Moreover p; = 0 whenever ¢ € I and n;(a},25,...,2%); > b and ¢; = 0
whenever } > 0. Let p* € R™ be defined such that (p*); = p; for all i € I
and (p*); = p —p; foralli € I\ IT. Then (p*7TA); <c¢;forj=1,2,...,n,
(p*); > 0foralli € I't, and (p*TA); = ¢; unless j € J*. Moreover (p*); =0
whenever (Ax*); > b; and ¢; = 0 whenever x; > 0. It follows that p* is a
feasible solution of the dual problem. Moreover the relevant complementary
slackness conditions are satisfied by x* and p*. It is then a consequence
of the Weak Duality Theorem that c’x* = p*’b, and that therefore p*
is an optimal solution of the dual problem (see Corollary 5.6). The result

follows. |}

126



