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7. The Topology of Closed Surfaces

7. The Topology of Closed Surfaces

7.1. Affine Independence

Definition

Points v0, v1, . . . , vq in some Euclidean space Rk are said to be
affinely independent (or geometrically independent) if the only
solution of the linear system

q∑
j=0

sjvj = 0,

q∑
j=0

sj = 0

is the trivial solution s0 = s1 = · · · = sq = 0.



7. The Topology of Closed Surfaces (continued)

Lemma 7.1

Let v0, v1, . . . , vq be points of Euclidean space Rk of dimension k.
Then the points v0, v1, . . . , vq are affinely independent if and only
if the displacement vectors v1 − v0, v2 − v0, . . . , vq − v0 are linearly
independent.
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Proof
Suppose that the points v0, v1, . . . , vq are affinely independent.
Let s1, s2, . . . , sq be real numbers which satisfy the equation

q∑
j=1

sj(vj − v0) = 0.

Then
q∑

j=0
sjvj = 0 and

q∑
j=0

sj = 0, where s0 = −
q∑

j=1
sj , and therefore

s0 = s1 = · · · = sq = 0.

It follows that the displacement vectors
v1 − v0, v2 − v0, . . . , vq − v0 are linearly independent.
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Conversely, suppose that these displacement vectors are linearly
independent. Let s0, s1, s2, . . . , sq be real numbers which satisfy

the equations
q∑

j=0
sjvj = 0 and

q∑
j=0

sj = 0. Then s0 = −
q∑

j=1
sj , and

therefore

0 =

q∑
j=0

sjvj = s0v0 +

q∑
j=1

sjvj =

q∑
j=1

sj(vj − v0).

It follows from the linear independence of the displacement vectors
vj − v0 for j = 1, 2, . . . , q that

s1 = s2 = · · · = sq = 0.

But then s0 = 0 also, because s0 = −
q∑

j=1
sj . It follows that the

points v0, v1, . . . , vq are affinely independent, as required.
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It follows from Lemma 7.1 that any set of affinely independent
points in Rk has at most k + 1 elements. Moreover if a set
consists of affinely independent points in Rk , then so does every
subset of that set.
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7.2. Simplices in Euclidean Spaces

Definition

A q-simplex in Rk is defined to be a set of the form
q∑

j=0

tjvj : 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1

 ,

where v0, v1, . . . , vq are affinely independent points of Rk . The
points v0, v1, . . . , vq are referred to as the vertices of the simplex.
The non-negative integer q is referred to as the dimension of the
simplex.
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Example
A 0-simplex in a Euclidean space Rk is a single point of that space.

Example
A 1-simplex in a Euclidean space Rk of dimension at least one is a
line segment in that space. Indeed let λ be a 1-simplex in Rk with
vertices v and w. Then

λ = {s v + t w : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 and s + t = 1}
= {(1− t)v + t w : 0 ≤ t ≤ 1},

and thus λ is a line segment in Rk with endpoints v and w.
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Example
A 2-simplex in a Euclidean space Rk of dimension at least two is a
triangle in that space. Indeed let τ be a 2-simplex in Rk with
vertices u, v and w. Then

τ = {r u + s v + t w : 0 ≤ r , s, t ≤ 1 and r + s + t = 1}.

Let x ∈ τ . Then there exist r , s, t ∈ [0, 1] such that
x = r u + s v + t w and r + s + t = 1. If r = 1 then x = u.
Suppose that r < 1. Then

x = r u + (1− r)
(

(1− p)v + pw
)

where p =
t

1− r
. Moreover 0 < r ≤ 1 and 0 ≤ p ≤ 1. Moreover

the above formula determines a point of the 2-simplex τ for each
pair of real numbers r and p satisfying 0 ≤ r ≤ 1 and 0 ≤ p ≤ 1.
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Thus

τ =
{
r u + (1− r)

(
(1− p)v + pw

)
: 0 ≤ p, r ≤ 1.

}
.

Now the point (1− p)v + pw traverses the line segment v w from
v to w as p increases from 0 to 1. It follows that τ is the set of
points that lie on line segments with one endpoint at u and the
other at some point of the line segment v w. This set of points is
thus a triangle with vertices u, v and w.

A 3-dimensional simplex is a tetrahedron. Higher-dimensional
simplices are the higher-dimensional analogues of points, line
segments, triangles and tetrahedra.
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7. The Topology of Closed Surfaces

7.3. Faces of Simplices

Definition

Let σ and τ be simplices in Rk . We say that τ is a face of σ if the
set of vertices of τ is a subset of the set of vertices of σ. A face of
σ is said to be a proper face if it is not equal to σ itself. An
r -dimensional face of σ is referred to as an r -face of σ. A
1-dimensional face of σ is referred to as an edge of σ.

Note that any simplex is a face of itself. Also the vertices and
edges of any simplex are by definition faces of the simplex.
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7.4. Simplical Complexes in Euclidean Spaces

Definition

A finite collection K of simplices in Rk is said to be a simplicial
complex if the following two conditions are satisfied:—

if σ is a simplex belonging to K then every face of σ also
belongs to K ,

if σ1 and σ2 are simplices belonging to K then either
σ1 ∩ σ2 = ∅ or else σ1 ∩ σ2 is a common face of both σ1 and
σ2.
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The dimension of a simplicial complex K is the greatest
non-negative integer n with the property that K contains an
n-simplex. The union of all the simplices of K is a compact
subset |K | of Rk referred to as the polyhedron of K . (The
polyhedron is compact since it is both closed and bounded in Rk .)

Example
Let Kσ consist of some n-simplex σ together with all of its faces.
Then Kσ is a simplicial complex of dimension n, and |Kσ| = σ.
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Lemma 7.2

Let K be a simplicial complex, and let X be a subset of some
Euclidean space. A function f : |K | → X is continuous on the
polyhedron |K | of K if and only if the restriction of f to each
simplex of K is continuous on that simplex.

Proof
Each simplex of the simplicial complex K is a closed subset of the
polyhedron |K | of the simplicial complex K . The numbers of
simplices belonging to the simplicial complex is finite. The result
therefore follows from a straightforward application of the Pasting
Lemma (Lemma 1.24).
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Lemma 7.3

Let K be a finite collection of triangles, edges and points in some
Euclidean space. Then K is a two-dimensional simplicial complex if
and only if the following conditions are all satisfied:—

(i) the edges and vertices of any triangle belonging to K
themselves belong to K;

(ii) the endpoints of any edge belonging to K are vertices
belonging to K;

(iii) if two distinct triangles belonging to K have a non-empty
intersection, then that intersection is either a single common
edge or a single common vertex of both triangles;
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(iv) if a triangle belonging to K intersects an edge belonging to K
then either the edge is an edge of the triangle or else the
intersection of the triangle and edge is a vertex of the triangle
that is an endpoint of the edge;

(v) if two distinct edges belonging to K have a non-empty
intersection then that intersection is a common vertex (or
endpoint) of both edges;

1 (vi) if a vertex belongs to a triangle then it is a vertex of that
triangle, and if a vertex belongs to an edge then it is an
endpoint of that edge.
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Proof
Consider a finite collection K of simplices of dimension two in a
Euclidean space. The simplices belonging to K are points, line
segments or triangles. Conditions (i) and (ii) in the statement of
the lemma are equivalent to the condition that every face of a
simplex belonging to the collection K must itself belong to that
collection. Similarly conditions (iii), (iv), (v) and (vi) in the
statement of the lemma are equivalent to the condition that any
two simplices of K whose intersection is non-empty intersect in a
common face. The result therefore follows from the definition of a
simplicial complex, applied in the special case where the simplices
of the complex are of dimension at most two.



7. The Topology of Closed Surfaces (continued)

Definition

A two-dimensional simplicial complex in a Euclidean space consists
of a finite collection K of triangles, edges (which are line segments)
and vertices (which are points) in that space which contains at
least one triangle, and which satisfies the following conditions:

(i) The edges and vertices of any triangle belonging to K
themselves belong to K ;

(ii) The endpoints of any edge belonging to K are vertices
belonging to K ;

(iii) if two distinct triangles belonging to K have a non-empty
intersection, then that intersection is either a single common
edge or a single common vertex of both triangles;

(iv) if two distinct edges belonging to K have a non-empty
intersection then that intersection is a common vertex (or
endpoint) of both edges.
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Definition

Let K be a two-dimensional simplicial complex in some Euclidean
space. The polyhedron |K | of K is the union of all the triangles,
edges and vertices belonging to the collection K .

Lemma 7.4

The polyhedron of a two-dimensional simplicial complex is a
compact Hausdorff space.
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Proof
The simplicial complex K is a finite collection of triangles, edges
and vertices in some ambient Euclidean space, and each triangle,
edge and vertex in the collection is a closed bounded subset of this
ambient Euclidean space. Now a subset of a Euclidean space is
compact if and only if it is both closed and bounded. It follows
that each of the triangles, edges and vertices belonging to K is a
compact subset of the ambient Euclidean space. Moreover it
follows directly from the definition of compactness that any finite
union of compact topological spaces is itself compact. Therefore
the polyhedron |K | of K is a compact subset of the ambient
Euclidean space. This ambient Euclidean space is a Hausdorff
space (as it is a metric space, and all metric spaces are Hausdorff
spaces), and any subset of a Hausdorff space is itself a Hausdorff
space (with the subspace topology). Therefore the polyhedron |K |
of K is a compact Hausdorff space, as required.
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Definition

Let p be a point of the polyhedron |K | of the two-dimensional
simplicial complex K . The star neighbourhood stK (p) of the
point p in |K | is defined to be the subset of |K | whose
complement is the union of all triangles, edges and vertices
belonging to K that do not contain the point p.

Lemma 7.5

Let K be a two-dimensional simplicial complex, and let p be a
point of K. Then the star neighbourhood stK (p) of the point p of
|K | is an open subset of |K |, and moreover p ∈ stK (p).
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Proof
A two-dimensional simplicial complex is a finite collection of
triangles, edges and vertices in some ambient Euclidean space.
Each of those triangles, edges and vertices is a closed subset of the
ambient Euclidean space, and therefore the union of any finite
collection of such triangles, edges and vertices is a closed subset of
the ambient Euclidean space.

Now, given any point p of |K |, the complement |K | \ stK (p) of the
star neighbourhood stK (p) of p in |K | is by definition the union of
all triangles, edges and vertices belonging to K that do not contain
the point p. It follows that |K | \ stK (p) is closed in |K |, and
p 6∈ |K | \ stK (p). Therefore stK (p) is open in |K |, and p ∈ stK (p),
as required.
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