MA342R—Covering Spaces and Fundamental Groups School of Mathematics, Trinity College Hilary Term 2017 Lecture 22 (March 13, 2017)

David R. Wilkins

7. The Topology of Closed Surfaces

7.1. Affine Independence

Definition

Points $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$ in some Euclidean space \mathbb{R}^k are said to be *affinely independent* (or *geometrically independent*) if the only solution of the linear system

$$\begin{cases} \sum_{j=0}^{q} s_j \mathbf{v}_j = \mathbf{0}, \\ \sum_{j=0}^{q} s_j = \mathbf{0} \end{cases}$$

is the trivial solution $s_0 = s_1 = \cdots = s_q = 0$.

Lemma 7.1

Let $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ be points of Euclidean space \mathbb{R}^k of dimension k. Then the points $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ are affinely independent if and only if the displacement vectors $\mathbf{v}_1 - \mathbf{v}_0, \mathbf{v}_2 - \mathbf{v}_0, \ldots, \mathbf{v}_q - \mathbf{v}_0$ are linearly independent.

Proof

Suppose that the points $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$ are affinely independent. Let s_1, s_2, \dots, s_q be real numbers which satisfy the equation

$$\sum_{j=1}^q s_j(\mathbf{v}_j-\mathbf{v}_0)=\mathbf{0}.$$

Then $\sum_{j=0}^{q} s_j \mathbf{v}_j = \mathbf{0}$ and $\sum_{j=0}^{q} s_j = 0$, where $s_0 = -\sum_{j=1}^{q} s_j$, and therefore

$$s_0=s_1=\cdots=s_q=0.$$

It follows that the displacement vectors $\mathbf{v}_1 - \mathbf{v}_0, \mathbf{v}_2 - \mathbf{v}_0, \dots, \mathbf{v}_q - \mathbf{v}_0$ are linearly independent.

7. The Topology of Closed Surfaces (continued)

Conversely, suppose that these displacement vectors are linearly independent. Let $s_0, s_1, s_2, \ldots, s_q$ be real numbers which satisfy the equations $\sum_{j=0}^{q} s_j \mathbf{v}_j = \mathbf{0}$ and $\sum_{j=0}^{q} s_j = 0$. Then $s_0 = -\sum_{j=1}^{q} s_j$, and therefore

$$\mathbf{0} = \sum_{j=0}^q s_j \mathbf{v}_j = s_0 \mathbf{v}_0 + \sum_{j=1}^q s_j \mathbf{v}_j = \sum_{j=1}^q s_j (\mathbf{v}_j - \mathbf{v}_0).$$

It follows from the linear independence of the displacement vectors $\mathbf{v}_j - \mathbf{v}_0$ for $j = 1, 2, \dots, q$ that

$$s_1=s_2=\cdots=s_q=0.$$

But then $s_0 = 0$ also, because $s_0 = -\sum_{j=1}^{q} s_j$. It follows that the points $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$ are affinely independent, as required.

It follows from Lemma 7.1 that any set of affinely independent points in \mathbb{R}^k has at most k + 1 elements. Moreover if a set consists of affinely independent points in \mathbb{R}^k , then so does every subset of that set.

7.2. Simplices in Euclidean Spaces

Definition

A *q-simplex* in \mathbb{R}^k is defined to be a set of the form

$$\left\{\sum_{j=0}^q t_j \mathbf{v}_j: 0 \leq t_j \leq 1 \text{ for } j=0,1,\ldots,q \text{ and } \sum_{j=0}^q t_j = 1\right\},$$

where $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ are affinely independent points of \mathbb{R}^k . The points $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ are referred to as the *vertices* of the simplex. The non-negative integer q is referred to as the *dimension* of the simplex.

Example

A 0-simplex in a Euclidean space \mathbb{R}^k is a single point of that space.

Example

A 1-simplex in a Euclidean space \mathbb{R}^k of dimension at least one is a line segment in that space. Indeed let λ be a 1-simplex in \mathbb{R}^k with vertices **v** and **w**. Then

$$\begin{array}{rcl} \lambda & = & \{s \, \mathbf{v} + t \, \mathbf{w} : 0 \le s \le 1, & 0 \le t \le 1 \text{ and } s + t = 1\} \\ & = & \{(1 - t) \mathbf{v} + t \, \mathbf{w} : 0 \le t \le 1\}, \end{array}$$

and thus λ is a line segment in \mathbb{R}^k with endpoints **v** and **w**.

Example

A 2-simplex in a Euclidean space \mathbb{R}^k of dimension at least two is a triangle in that space. Indeed let τ be a 2-simplex in \mathbb{R}^k with vertices **u**, **v** and **w**. Then

$$\tau = \{ r \mathbf{u} + s \mathbf{v} + t \mathbf{w} : 0 \le r, s, t \le 1 \text{ and } r + s + t = 1 \}.$$

Let $\mathbf{x} \in \tau$. Then there exist $r, s, t \in [0, 1]$ such that $\mathbf{x} = r \mathbf{u} + s \mathbf{v} + t \mathbf{w}$ and r + s + t = 1. If r = 1 then $\mathbf{x} = \mathbf{u}$. Suppose that r < 1. Then

$$\mathbf{x} = r \mathbf{u} + (1-r) \Big((1-p)\mathbf{v} + p\mathbf{w} \Big)$$

where $p = \frac{t}{1-r}$. Moreover $0 < r \le 1$ and $0 \le p \le 1$. Moreover the above formula determines a point of the 2-simplex τ for each pair of real numbers r and p satisfying $0 \le r \le 1$ and $0 \le p \le 1$.

Thus

$$\tau = \left\{ r \, \mathbf{u} + (1-r) \Big((1-p) \mathbf{v} + p \mathbf{w} \Big) : 0 \le p, r \le 1. \right\}.$$

Now the point $(1 - p)\mathbf{v} + p\mathbf{w}$ traverses the line segment $\mathbf{v} \mathbf{w}$ from \mathbf{v} to \mathbf{w} as p increases from 0 to 1. It follows that τ is the set of points that lie on line segments with one endpoint at \mathbf{u} and the other at some point of the line segment $\mathbf{v} \mathbf{w}$. This set of points is thus a triangle with vertices \mathbf{u} , \mathbf{v} and \mathbf{w} .

A 3-dimensional simplex is a tetrahedron. Higher-dimensional simplices are the higher-dimensional analogues of points, line segments, triangles and tetrahedra.

7. The Topology of Closed Surfaces

7.3. Faces of Simplices

Definition

Let σ and τ be simplices in \mathbb{R}^k . We say that τ is a *face* of σ if the set of vertices of τ is a subset of the set of vertices of σ . A face of σ is said to be a *proper face* if it is not equal to σ itself. An *r*-dimensional face of σ is referred to as an *r*-face of σ . A 1-dimensional face of σ is referred to as an *edge* of σ .

Note that any simplex is a face of itself. Also the vertices and edges of any simplex are by definition faces of the simplex.

7. The Topology of Closed Surfaces (continued)

7.4. Simplical Complexes in Euclidean Spaces

Definition

A finite collection K of simplices in \mathbb{R}^k is said to be a *simplicial complex* if the following two conditions are satisfied:—

- if σ is a simplex belonging to K then every face of σ also belongs to K,
- if σ_1 and σ_2 are simplices belonging to K then either $\sigma_1 \cap \sigma_2 = \emptyset$ or else $\sigma_1 \cap \sigma_2$ is a common face of both σ_1 and σ_2 .

The dimension of a simplicial complex K is the greatest non-negative integer n with the property that K contains an n-simplex. The union of all the simplices of K is a compact subset |K| of \mathbb{R}^k referred to as the *polyhedron* of K. (The polyhedron is compact since it is both closed and bounded in \mathbb{R}^k .)

Example

Let K_{σ} consist of some *n*-simplex σ together with all of its faces. Then K_{σ} is a simplicial complex of dimension *n*, and $|K_{\sigma}| = \sigma$.

Lemma 7.2

Let K be a simplicial complex, and let X be a subset of some Euclidean space. A function $f: |K| \to X$ is continuous on the polyhedron |K| of K if and only if the restriction of f to each simplex of K is continuous on that simplex.

Proof

Each simplex of the simplicial complex K is a closed subset of the polyhedron |K| of the simplicial complex K. The numbers of simplices belonging to the simplicial complex is finite. The result therefore follows from a straightforward application of the Pasting Lemma (Lemma 1.24).

Lemma 7.3

Let K be a finite collection of triangles, edges and points in some Euclidean space. Then K is a two-dimensional simplicial complex if and only if the following conditions are all satisfied:—

- (i) the edges and vertices of any triangle belonging to K themselves belong to K;
- (ii) the endpoints of any edge belonging to K are vertices belonging to K;
- (iii) if two distinct triangles belonging to K have a non-empty intersection, then that intersection is either a single common edge or a single common vertex of both triangles;

- (iv) if a triangle belonging to K intersects an edge belonging to K then either the edge is an edge of the triangle or else the intersection of the triangle and edge is a vertex of the triangle that is an endpoint of the edge;
- (v) if two distinct edges belonging to K have a non-empty intersection then that intersection is a common vertex (or endpoint) of both edges;
 - (vi) if a vertex belongs to a triangle then it is a vertex of that triangle, and if a vertex belongs to an edge then it is an endpoint of that edge.

Proof

Consider a finite collection K of simplices of dimension two in a Euclidean space. The simplices belonging to K are points, line segments or triangles. Conditions (i) and (ii) in the statement of the lemma are equivalent to the condition that every face of a simplex belonging to the collection K must itself belong to that collection. Similarly conditions (iii), (iv), (v) and (vi) in the statement of the lemma are equivalent to the condition that any two simplices of K whose intersection is non-empty intersect in a common face. The result therefore follows from the definition of a simplicial complex, applied in the special case where the simplices of the complex are of dimension at most two.

Definition

A two-dimensional simplicial complex in a Euclidean space consists of a finite collection K of triangles, edges (which are line segments) and vertices (which are points) in that space which contains at least one triangle, and which satisfies the following conditions:

- (i) The edges and vertices of any triangle belonging to K themselves belong to K;
- (ii) The endpoints of any edge belonging to K are vertices belonging to K;
- (iii) if two distinct triangles belonging to K have a non-empty intersection, then that intersection is either a single common edge or a single common vertex of both triangles;
- (iv) if two distinct edges belonging to K have a non-empty intersection then that intersection is a common vertex (or endpoint) of both edges.

Definition

Let K be a two-dimensional simplicial complex in some Euclidean space. The *polyhedron* |K| of K is the union of all the triangles, edges and vertices belonging to the collection K.

Lemma 7.4

The polyhedron of a two-dimensional simplicial complex is a compact Hausdorff space.

Proof

The simplicial complex K is a finite collection of triangles, edges and vertices in some ambient Euclidean space, and each triangle, edge and vertex in the collection is a closed bounded subset of this ambient Euclidean space. Now a subset of a Euclidean space is compact if and only if it is both closed and bounded. It follows that each of the triangles, edges and vertices belonging to K is a compact subset of the ambient Euclidean space. Moreover it follows directly from the definition of compactness that any finite union of compact topological spaces is itself compact. Therefore the polyhedron |K| of K is a compact subset of the ambient Euclidean space. This ambient Euclidean space is a Hausdorff space (as it is a metric space, and all metric spaces are Hausdorff spaces), and any subset of a Hausdorff space is itself a Hausdorff space (with the subspace topology). Therefore the polyhedron |K|of K is a compact Hausdorff space, as required.

Definition

Let **p** be a point of the polyhedron |K| of the two-dimensional simplicial complex K. The star neighbourhood $\operatorname{st}_{K}(\mathbf{p})$ of the point **p** in |K| is defined to be the subset of |K| whose complement is the union of all triangles, edges and vertices belonging to K that do not contain the point **p**.

Lemma 7.5

Let K be a two-dimensional simplicial complex, and let \mathbf{p} be a point of K. Then the star neighbourhood $\operatorname{st}_{K}(\mathbf{p})$ of the point \mathbf{p} of |K| is an open subset of |K|, and moreover $\mathbf{p} \in \operatorname{st}_{K}(\mathbf{p})$.

Proof

A two-dimensional simplicial complex is a finite collection of triangles, edges and vertices in some ambient Euclidean space. Each of those triangles, edges and vertices is a closed subset of the ambient Euclidean space, and therefore the union of any finite collection of such triangles, edges and vertices is a closed subset of the ambient Euclidean space.

Now, given any point \mathbf{p} of |K|, the complement $|K| \setminus \operatorname{st}_{K}(\mathbf{p})$ of the star neighbourhood $\operatorname{st}_{K}(\mathbf{p})$ of \mathbf{p} in |K| is by definition the union of all triangles, edges and vertices belonging to K that do not contain the point \mathbf{p} . It follows that $|K| \setminus \operatorname{st}_{K}(\mathbf{p})$ is closed in |K|, and $\mathbf{p} \notin |K| \setminus \operatorname{st}_{K}(\mathbf{p})$. Therefore $\operatorname{st}_{K}(\mathbf{p})$ is open in |K|, and $\mathbf{p} \in \operatorname{st}_{K}(\mathbf{p})$, as required.