MA342R—Covering Spaces and Fundamental Groups School of Mathematics, Trinity College Hilary Term 2017 Lecture 20 (March 9, 2017)

David R. Wilkins

5.2. Orbit Spaces

Example

The cyclic group C_2 of order 2 consists of a set $\{e, a\}$ with two elements *e* and *a*, together with a group multiplication operation defined so that $e^2 = a^2 = e$ and ea = ae = a. The identity element of C_2 is thus *e*.

Let us represent the *n*-dimensional sphere S^n as the unit sphere in \mathbb{R}^{n+1} centred on the origin. Let $\theta_e \colon S^n \to S^n$ be the identity map of S^n and let $\theta_a \colon S^n \to S^n$ be the antipodal map of S^n , defined such that $\theta_a(\mathbf{x}) = -\mathbf{x}$ for all $\mathbf{x} \in S^n$. Then the group C_2 acts on S^n (on the left) so that elements *a* and *e* of S^n correspond under this action to the homeomorphisms θ_e and θ_a respectively. Points \mathbf{x} and \mathbf{y} are said to be *antipodal* to one another if and only if $\mathbf{y} = -\mathbf{x}$. Each orbit for the action of C_2 on S^n thus consists of a pair of antipodal points on S^n .

Let **p** be an element of S^n , and let

$$U = \{ \mathbf{x} \in S^n : \mathbf{x} \cdot \mathbf{p} > 0 \}.$$

Then U is open in S^n and $\mathbf{p} \in U$. Also

$$\theta_a(U) = \{ \mathbf{x} \in S^n : \mathbf{x} \cdot \mathbf{p} < 0 \},\$$

and therefore $U \cap \theta_a(U) = \emptyset$. It follows that the group C_2 acts freely and properly discontinuously on S^n .

Distinct points of S^n belong to the same orbit under the action of C_2 on S^n if and only if the line in \mathbb{R}^{n+1} passing through those points also passes through the origin. It follows that lines in \mathbb{R}^{n+1} that pass through the origin are in one-to-one correspondence with orbits for the action of C_2 on S^n . The orbit space S^n/C_2 thus represents the set of lines through the origin in \mathbb{R}^{n+1} . We define *n*-dimensional *real projective space* $\mathbb{R}P^n$ to be the topological space whose elements are the lines in \mathbb{R}^{n+1} passing through the origin, with the topology obtained on identifying $\mathbb{R}P^n$ with the orbit space S^n/C_2 . The quotient map $q: S^n \to \mathbb{R}P^n$ then sends each point **x** of S^n to the orbit consisting of the two points **x** and $-\mathbf{x}$. Thus each pair of antipodal points on the *n*-dimensional sphere S^n determines a single point of *n*-dimensional real projective space $\mathbb{R}P^n$.

Proposition 5.1

Let G be a group acting freely and properly discontinuously on a topological space X, let X/G denote the resulting orbit space, and let $q: X \to X/G$ be the quotient map that sends each element of X to its orbit under the action of the group G. Let $p: X \to Y$ be a continuous surjective map from X to a topological space Y. Suppose that elements x and x' of X satisfy p(x) = p(x') if and only if q(x) = q(x'). Suppose also p(V) is open in Y for every open set V in X. Then the surjective continuous map $p: X \to Y$ induces a homeomorphism $h: X/G \to Y$ between the topological spaces X/G and Y, where h(q(x)) = p(x) for all $x \in X$.

The function $h: X/G \to Y$ is continuous because $p: X \to Y$ is continuous and $q: X \to Y$ is a quotient map (see Lemma 1.35). Moreover it is surjective because $p: X \to Y$ is a surjection, and it is injective because elements x and x' satisfy p(x) = p(x') if and only if q(x) = q(x'). It follows that $h: X/G \to Y$ is a bijection.

Let W be an open set in X/G. It follows from the definition of the quotient topology that $q^{-1}(W)$ is open in X. The map p maps open sets to open sets. Therefore $p(q^{-1}(W))$ is open in Y. But $p(q^{-1}(W)) = h(W)$. Thus h(W) is open in Y for every open set W in X, and therefore $h^{-1}: Y \to X/W$ is continuous. Thus the continuous bijection $h: X/G \to Y$ is a homeomorphism, as required.

Corollary 5.2

Let the group \mathbb{Z} act on the real line \mathbb{R} by translation, where the action sends each integer n to the translation $\theta_n \colon \mathbb{R} \to \mathbb{R}$ defined such that $\theta_n(t) = t + n$ for all real numbers t. Let \mathbb{R}/\mathbb{Z} denote the orbit space for this action, and let $q \colon \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ be the quotient map that sends each real number to its orbit under the action of the group \mathbb{Z} . Let S^1 denote the unit circle centred on the origin in \mathbb{R}^2 , let $p \colon \mathbb{R} \to S^1$ be defined such that

 $p(t) = (\cos 2\pi t, \sin 2\pi t)$

for all real numbers t, and let $h: \mathbb{R}/\mathbb{Z} \to S^1$ be the map defined such that h(q(t)) = p(t) for all real numbers t. Then $h: \mathbb{R}/\mathbb{Z} \to S^1$ is a homeomorphism.

The map $p \colon \mathbb{R} \to S^1$ maps open sets to open sets. The result therefore follows directly on applying Proposition 5.1.

Corollary 5.3

Let the group \mathbb{Z} act by translation on the complex plane \mathbb{C} , where the action sends each integer n to the translation $\theta_n \colon \mathbb{C} \to \mathbb{C}$ defined such that $\theta_n(z) = z + n$ for all complex numbers z, where $i^2 = -1$. Let \mathbb{C}/\mathbb{Z} denote the orbit space for this action, and let $q \colon \mathbb{C} \to \mathbb{C}/\mathbb{Z}$ be the quotient map that sends each complex number to its orbit under the action of the group \mathbb{Z} . Let $p \colon \mathbb{C} \to \mathbb{C} \setminus \{0\}$ be defined such that $p(z) = \exp(2\pi i z)$ for all complex numbers z, and let $h \colon \mathbb{C}/\mathbb{Z} \to \mathbb{C} \setminus \{0\}$ be the map defined such that h(q(z)) = p(z) for all complex numbers z. Then $h \colon \mathbb{C}/\mathbb{Z} \to \mathbb{C} \setminus \{0\}$ is a homeomorphism.

We show that the map $p: \mathbb{C} \to \mathbb{C} \setminus \{0\}$ maps open sets to open sets. Let V be an open set in \mathbb{C} , and let u and v be real numbers for which $u + iv \in V$. Then there exist real numbers θ_1 , θ_2 and positive real numbers r_1 and r_2 satisfying the inequalities

$$\theta_1 < 2\pi u < \theta_2$$
 and $\log r_1 < -2\pi v < \log r_2$

where θ_1 and θ_2 are close enough to $2\pi u$ and $\log r_1$ and $\log r_2$ are close enough to $-2\pi v$ to ensure that $s + it \in V$ for all real numbers s and t that satisfy the inequalities

$$\theta_1 < 2\pi s < \theta_2$$
 and $\log r_1 < -2\pi t < \log r_2$.

It then follows that $u + iv \in N$ and $N \subset p(V)$, where

$$N = \{ re^{i\theta} : r_1 < r < r_2 \text{ and } \theta_1 < \theta < \theta_2 \}.$$

Now *N* is an open set in $\mathbb{C} \setminus \{0\}$. It follows that p(V) is a neighbourhood of p(u + iv). We have now shown that the set p(V) is a neighbourhood of each of its points. It follows that p(V) is open in $\mathbb{C} \setminus \{0\}$. We conclude therefore that the map $p: \mathbb{C} \setminus \mathbb{C} \setminus \{0\}$ maps open sets to open sets. It then follows directly from Proposition 5.1 that $h: \mathbb{C}/\mathbb{Z} \to \mathbb{C} \setminus \{0\}$ is a homeomorphism.

Proposition 5.4

Let G be a group acting freely and properly discontinuously on a topological space X, let X/G denote the resulting orbit space, and let $q: X \rightarrow X/G$ be the quotient map that sends each element of X to its orbit under the action of the group G. Let $p: X \to Y$ be a continuous surjective map from X to a Hausdorff topological space Y. Suppose that elements x and x' of X satisfy p(x) = p(x') if and only if q(x) = q(x'). Suppose also that there exists a compact subset K of X that intersects every orbit for the action of G on X. Then the surjective continuous map $p: X \to Y$ induces a homeomorphism h: $X/G \rightarrow Y$ between the topological spaces X/G and Y, where h(q(x)) = p(x) for all $x \in X$.

The function $h: X/G \to Y$ is continuous because X is continuous and $q: X \to Y$ is a quotient map (see Lemma 1.35). Moreover it is surjective because $p: X \to Y$ is a surjection, and it is injective because elements x and x' satisfy p(x) = p(x') if and only if q(x) = q(x'). It follows that $h: X/G \to Y$ is a bijection.

The orbit space X/G is compact, because it is the image q(K) of the compact set K under the continuous map $q: X \to X/G$. (see Lemma 1.39). Thus $h: X/G \to Y$ is a continuous bijection from a compact topological space to a Hausdorff space. This map is therefore a homeomorphism (see Theorem 1.45).

Example

Let the group \mathbb{Z} of integers under addition act by translation on the real line \mathbb{R} by translation so that, under this action, an integer *n* corresponds to the homeomorphism $\theta_n \colon \mathbb{R} \to \mathbb{R}$ defined such that $\theta_n(t) = t + n$ for all real numbers *t*. Let $q \colon \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ be the quotient map onto the orbit space, and let $p \colon \mathbb{R} \to S^1$ be defined such that

$$p(t) = (\cos 2\pi t, \sin 2\pi t)$$

for all real numbers t, and let $h: \mathbb{R}/\mathbb{Z} \to S^1$ be the map defined such that h(q(t)) = p(t) for all real numbers t.

Now S^1 is a Hausdorff space, as it is a subset of the metric space \mathbb{R}^2 . Also the map $p: \mathbb{R} \to S^1$ is surjective. Real numbers t_1 and t_2 satisfy $p(t_1) = p(t_2)$ if and only if $t_1 = t_2 + n$ for some integer n. It follows that $p(t_1) = p(t_2)$ if and only if $q(t_1) = q(t_2)$. The compact subset [0, 1] of \mathbb{R} intersects every orbit for the action of \mathbb{Z} on \mathbb{R} . It therefore follows from Proposition 5.4 that $h: \mathbb{R}/\mathbb{Z} \to S^1$ is a homeomorphism. (This result was also shown to follow from the fact that $p: \mathbb{R} \to S^1$ maps open sets to open sets: see Corollary 5.2.)

Example

Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be defined so that

 $f(s,t) = ((2 + \cos 2\pi t) \cos 2\pi s, (2 + \cos 2\pi t) \sin 2\pi s, \sin 2\pi t)$

for all $(s, t) \in \mathbb{R}^2$, and let $Y = f(\mathbb{R}^2)$. Then Y is a torus in \mathbb{R}^3 that bounds the 'solid doughnut' consisting of those points of \mathbb{R}^3 whose distance from the circle in the plane z = 0 of radius 2 centred on the origin is less than one. Points (s_1, t_1) and (s_2, t_2) of \mathbb{R}^2 satisfy $f(s_1, t_1) = f(s_2, t_2)$ if and only if $s_1 - t_1$ and $s_2 - t_2$ are integers. Let the group \mathbb{Z}^2 act on \mathbb{R}^2 by translation, so that, under this action, an element (m, n) of \mathbb{Z}^2 corresponds to the homeomorphism $\theta_{(m,n)} : \mathbb{R}^2 \to \mathbb{R}^2$ from \mathbb{R}^2 to itself defined so that $\theta_{(m,n)}(s, t) = (s + m, t + n)$ for all $(s, t) \in \mathbb{R}^2$.

5. Free Discontinuous Group Actions on Topological Spaces (continued)

Let δ be a real number satisfying $0 < \delta \leq \frac{1}{2}$, and, for all $(s,t) \in \mathbb{R}^2$, let $B((s,t), \delta)$ denote the open disk in \mathbb{R}^2 of radius δ centred on the point (s, t). Then

$$B((s+m,t+n),\delta)\cap B((s,t),\delta)=\emptyset$$

for all integers *m* and *n* for which $(m, n) \neq (0, 0)$. It follows that the group \mathbb{Z}^2 acts freely and properly discontinuously on \mathbb{R}^2 by translation. Let $\mathbb{R}^2/\mathbb{Z}^2$ be the orbit space determined by this action, let $q: \mathbb{R} \to \mathbb{R}^2/\mathbb{Z}^2$ be the quotient map sending each point of \mathbb{R}^2 to its orbit under the action of \mathbb{Z}^2 , and let $h: \mathbb{R}^2/\mathbb{Z}^2 \to Y$ be the function from $\mathbb{R}^2/\mathbb{Z}^2$ to the surface *Y* defined so that h(q(s, t)) = f(s, t) for all $(s, t) \in \mathbb{R}^2$.

Now the unit square $[0,1] \times [0,1]$ is a compact subset of \mathbb{R}^2 that intersects every orbit for the action of \mathbb{Z}^2 on \mathbb{R}^2 . It follows directly from Proposition 5.4 that $h: \mathbb{R}^2/\mathbb{Z}^2 \to Y$ is a homeomorphism. Thus the quotient space $\mathbb{R}^2/\mathbb{Z}^2$ represents a 2-dimensional torus.

Proposition 5.5

Let G be a group acting freely and properly discontinuously on a topological space X. Then the quotient map $q: X \to X/G$ from X to the corresponding orbit space X/G is a covering map.

Proof

The quotient map $q: X \to X/G$ is surjective. Let V be an open set in X. Then $q^{-1}(q(V))$ is the union $\bigcup_{g \in G} \theta_g(V)$ of the open sets $\theta_g(V)$ as g ranges over the group G, since $q^{-1}(q(V))$ is the subset of X consisting of all elements of X that belong to the orbit of some element of V. But any union of open sets in a topological space is an open set. We conclude therefore that if V is an open set in X then q(V) is an open set in X/G. Let x be a point of X. Then there exists an open set U in X such that $x \in U$ and $\theta_g(U) \cap U = \emptyset$ for all $g \in G$ satisfying $g \neq e$. Now $q^{-1}(q(U)) = \bigcup_{g \in G} \theta_g(U)$. We claim that the sets $\theta_g(U)$ are disjoint. Let g and h be elements of G. Suppose that $\theta_g(U) \cap \theta_h(U) \neq \emptyset$. Then $\theta_{h^{-1}}(\theta_g(U) \cap \theta_h(U)) \neq \emptyset$. But $\theta_{h^{-1}}: X \to X$ is a bijection, and therefore

$$\theta_{h^{-1}}(\theta_g(U) \cap \theta_h(U)) = \theta_{h^{-1}}(\theta_g(U)) \cap \theta_{h^{-1}}(\theta_h(U)) = \theta_{h^{-1}g}(U) \cap U,$$

and therefore $\theta_{h^{-1}g}(U) \cap U \neq \emptyset$. It follows that $h^{-1}g = e$, where e denotes the identity element of G, and therefore g = h. Thus if g and h are elements of g, and if $g \neq h$, then $\theta_g(U) \cap \theta_h(U) = \emptyset$. We conclude therefore that the preimage $q^{-1}(q(U))$ of q(U) is the disjoint union of the sets $\theta_g(U)$ as g ranges over the group G. Moreover each these sets $\theta_g(U)$ is an open set in X.

5. Free Discontinuous Group Actions on Topological Spaces (continued)

Now $U \cap [u]_G = \{u\}$ for all $u \in U$, since $[u]_G = \{\theta_g(u) : g \in G\}$ and $U \cap \theta_{g}(U) = \emptyset$ when $g \neq e$. Thus if u and v are elements of U, and if q(u) = q(v) then $[u]_G = [v]_G$ and therefore u = v. It follows that the restriction $q|U: U \rightarrow X/G$ of the quotient map q to U is injective, and therefore q maps U bijectively onto q(U). But q maps open sets onto open sets, and any continuous bijection that maps open sets onto open sets is a homeomorphism. We conclude therefore that the restriction of $q: X \to X/G$ to the open set U maps U homeomorphically onto q(U). Moreover, given any element g of G, the quotient map q satisfies $q = q \circ \theta_{g^{-1}}$, and the homeomorphism $\theta_{g^{-1}}$ maps $\theta_g(U)$ homeomorphically onto U. It follows that the quotient map q maps $\theta_{g}(U)$ homeomorphically onto q(U) for all $g \in U$. We conclude therefore that q(U) is an evenly covered open set in X/G whose preimage $q^{-1}(q(U))$ is the disjoint union of the open sets $\theta_g(U)$ as g ranges over the group G. It follows that the quotient map $q \colon X \to X/G$ is a covering map, as required.