MA342R—Covering Spaces and Fundamental Groups School of Mathematics, Trinity College Hilary Term 2017 Lecture 19 (March 6, 2017)

David R. Wilkins

5. Free Discontinuous Group Actions on Topological Spaces

5.1. Discontinuous Group Actions

Definition

Let G be a group, and let X be a set. The group G is said to *act* on the set X (on the left) if each element g of G determines a corresponding function $\theta_g \colon X \to X$ from the set X to itself, where

(i)
$$\theta_{gh} = \theta_g \circ \theta_h$$
 for all $g, h \in G$;

(ii) the function θ_e determined by the identity element e of G is the identity function of X.

Let G be a group acting on a set X. Given any element x of X, the orbit $[x]_G$ of x (under the group action) is defined to be the subset $\{\theta_g(x) : g \in G\}$ of X, and the *stabilizer* of x is defined to the subgroup $\{g \in G : \theta_g(x) = x\}$ of the group *G*. Thus the orbit of an element x of X is the set consisting of all points of Xto which x gets mapped under the action of elements of the group G. The stabilizer of x is the subgroup of G consisting of all elements of this group that fix the point x. The group G is said to act freely on X if $\theta_g(x) \neq x$ for all $x \in X$ and $g \in G$ satisfying $g \neq e$. Thus the group G acts freely on X if and only if the stabilizer of every element of X is the trivial subgroup of G.

Let *e* be the identity element of *G*. Then $x = \theta_e(x)$ for all $x \in X$, and therefore $x \in [x]_G$ for all $x \in X$, where $[x]_G = \{\theta_g(x) : g \in G\}.$

Let x and y be elements of G for which $[x]_G \cap [y]_G$ is non-empty, and let $z \in [x]_G \cap [y]_G$. Then there exist elements h and k of G such that $z = \theta_h(x) = \theta_k(y)$. Then $\theta_g(z) = \theta_{gh}(x) = \theta_{gk}(y)$, $\theta_g(x) = \theta_{gh^{-1}}(z)$ and $\theta_g(y) = \theta_{gk^{-1}}(z)$ for all $g \in G$, and therefore $[x]_G = [z]_G = [y]_G$. It follows from this that the group action partitions the set X into orbits, so that each element of X determines an orbit which is the unique orbit for the action of G on X to which it belongs. We denote by X/G the set of orbits for the action of G on X.

Now suppose that the group G acts on a topological space X. Then there is a surjective function $q: X \to X/G$, where $q(x) = [x]_G$ for all $x \in X$. This surjective function induces a quotient topology on the set of orbits: a subset U of X/G is open in this quotient topology if and only if $q^{-1}(U)$ is an open set in X (see Lemma 1.34). We define the orbit space X/G for the action of G on X to be the topological space whose underlying set is the set of orbits for the action of G on X, the topology on X/G being the quotient topology induced by the function $q: X \to X/G$. This function $q: X \to X/G$ is then an identification map: we shall refer to it as the quotient map from X to X/G.

We shall be concerned here with situations in which a group action on a topological space gives rise to a covering map. The relevant group actions are those where the group acts *freely and properly discontinuously* on the topological space.

Definition

Let G be a group with identity element e, and let X be a topological space. The group G is said to act *freely and properly discontinuously* on X if each element g of G determines a corresponding continuous map $\theta_g \colon X \to X$, where the following conditions are satisfied:

(i)
$$\theta_{gh} = \theta_g \circ \theta_h$$
 for all $g, h \in G$;

- (ii) the continuous map θ_e determined by the identity element e of G is the identity map of X;
- (iii) given any point x of X, there exists an open set U in X such that $x \in U$ and $\theta_g(U) \cap U = \emptyset$ for all $g \in G$ satisfying $g \neq e$.

Let *G* be a group which acts freely and properly discontinuously on a topological space *X*. Given any element *g* of *G*, the corresponding continuous function $\theta_g \colon X \to X$ determined by *X* is a homeomorphism. Indeed it follows from conditions (i) and (ii) in the above definition that $\theta_{g^{-1}} \circ \theta_g$ and $\theta_g \circ \theta_{g^{-1}}$ are both equal to the identity map of *X*, and therefore $\theta_g \colon X \to X$ is a homeomorphism with inverse $\theta_{g^{-1}} \colon X \to X$.

Remark

The terminology 'freely and properly discontinuously' is traditional, but is hardly ideal. The adverb 'freely' refers to the requirement that $\theta_g(x) \neq x$ for all $x \in X$ and for all $g \in G$ satisfying $g \neq e$. The adverb 'discontinuously' refers to the fact that, given any point x of G, the elements of the orbit $\{\theta_g(x) : g \in G\}$ of x are separated; it does not signify that the functions defining the action are in any way discontinuous or badly-behaved. The adverb 'properly' refers to the fact that, given any compact subset K of X, the number of elements of g for which $K \cap \theta_g(K) \neq \emptyset$ is finite.

Moreover the definitions of *properly discontinuous actions* in textbooks and in sources of reference are not always in agreement: some say that an action of a group G on a topological space X(where each group element determines a corresponding) homeomorphism of the topological space) is *properly discontinuous* if, given any $x \in X$, there exists an open set U in X such that the number of elements g of the group for which $g(U) \cap U \neq \emptyset$ is finite; others say that the action is *properly discontinuous* if it satisfies the conditions given in the definition above for a group acting freely and properly discontinuously on the set. William Fulton, in his textbook Algebraic topology: a first course (Springer, 1995), introduced the term 'evenly' in place of 'freely and properly discontinuously', but this change in terminology does not appear to have been generally adopted.