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4. Covering Maps (continued)

4.4. The Homotopy-Lifting Theorem

Theorem 4.6 (Homotopy-Lifting Theorem)

Let p : X̃ → X be a covering map over a topological space X . Let
Z be a topological space, and let F : Z × [0, 1]→ X and
g : Z → X̃ be continuous maps with the property that
p(g(z)) = F (z , 0) for all z ∈ Z . Then there exists a unique
continuous map G : Z × [0, 1]→ X̃ such that G (z , 0) = g(z) for
all z ∈ Z and p ◦ G = F .



4. Covering Maps (continued)

Proof
For each z ∈ Z , consider the path γz : [0, 1]→ Z defined by
γz(t) = F (z , t) for all t ∈ [0, 1]. Note that p(g(z)) = γz(0). It
follows from the Path-Lifting Theorem (Theorem 4.5) that there
exists a unique continuous path γ̃z : [0, 1]→ X̃ such that
γ̃z(0) = g(z) for all z ∈ Z and p ◦ γ̃z = γz . Let the function
G : Z × [0, 1]→ X̃ be defined by G (z , t) = γ̃z(t) for all z ∈ Z and
t ∈ [0, 1]. Then G (z , 0) = g(z) for all z ∈ Z and

p(G (z , t)) = p(γ̃z(t)) = γz(t) = F (z , t)

for all z ∈ Z and t ∈ [0, 1]. It remains to show that the function
G : Z × [0, 1]→ X̃ is continuous and that it is unique.



4. Covering Maps (continued)

Given any z ∈ Z , let Sz denote the set of all real numbers c
belonging to the closed interval [0, 1] which have the following
property:

there exists an open set N in Z such that z ∈ N and the
function G is continuous on N × [0, c].

Let sz be the supremum sup Sz (i.e., the least upper bound) of the
set Sz . We prove that sz belongs to the set Sz and that sz = 1.



4. Covering Maps (continued)

Choose some z ∈ Z , and let w ∈ X̃ be given by w = G (z , sz).
There exists an open neighbourhood U of p(w) in X which is
evenly covered by the map p. Thus p−1(U) is a disjoint union of
open sets, each of which is mapped homeomorphically onto U by
the covering map p. One of these open sets contains the point w ;
let this open set be denoted by Ũ. Then there exists a unique
continuous map σ : U → Ũ defined such that, for all x ∈ U, σ(x)
is the unique element of Ũ for which p(σ(x)) = x . Then
σ(F (z , sz)) = w .



4. Covering Maps (continued)

Now F (z , sz) = p(w). It follows from the continuity of the map F
that there exists some positive real number δ and some open
set M1 in Z such that z ∈ M1 and F (M1 × J(sz , δ)) ⊂ U, where

J(sz , δ) = {t ∈ [0, 1] : sz − δ < t < sz + δ}.

Now we can choose some c belonging to Sz which satisfies
sz − δ < c ≤ sz , because sz is the least upper bound of the set Sz .
It then follows from the definition of the set Sz that there exists an
open set M2 in Z such that z ∈ M2 and the function G is
continuous on M2 × [0, c]. Let

N = {z ′ ∈ M1 ∩M2 : G (z ′, c) ∈ Ũ}.

Then z ∈ N, and the continuity of the function G on M2 × [0, c]
ensures that N is open in Z . Moreover the function G is
continuous on N × [0, c] and F (N × J(sz , δ)) ⊂ U.



4. Covering Maps (continued)

Let z ′ ∈ N. Then G (z ′, c) ∈ Ũ and p(G (z ′, c)) = F (z ′, c). It
follows from the definition of the map σ : U → X̃ that
G (z ′, c) = σ(F (z ′, c)). Also the interval J(sz , δ) is connected, and

p(G (z ′, t)) = F (z ′, t) = p(σ(F (z ′, t))

for all t ∈ J(sz , δ). It follows from Theorem 4.3 that
G (z ′, t) = σ(F (z ′, t) for all t ∈ J(sz , δ).



4. Covering Maps (continued)

We have thus shown that the function G is equal to the
continuous function σ ◦ F on N × J(sz , δ). The function G is
therefore continuous on both N × [0, c] and N × [c , t] for all
t ∈ J(sz , δ) satisfying t ≥ c. It then follows from the Pasting
Lemma (Lemma 1.24) that the function G is continuous on
N × [0, t] for all t ∈ J(sz , δ), and thus J(sz , δ) ⊂ Sz . This however
contradicts the definition of Sz unless sz ∈ Sz and sz = 1. We
conclude therefore that 1 ∈ Sz , and thus there exists an open
set N in Z such that z ∈ N and G |N × [0, 1] is continuous.

We conclude from this that every point of Z × [0, 1] is contained in
some open subset of Z × [0, 1] on which that function G is
continuous. It follows that G : Z × [0, 1]→ X̃ is continuous (see
Proposition 1.23).



4. Covering Maps (continued)

The uniqueness of the map G : Z × [0, 1]→ X̃ follows directly
from the fact that for any z ∈ Z there is a unique continuous path
γ̃z : [0, 1]→ X̃ such that γ̃z(0) = g(z) and p(γ̃z(t)) = F (z , t) for
all t ∈ [0, 1].



4. Covering Maps (continued)

4.5. Path-Lifting and the Fundamental Group

Let p : X̃ → X be a covering map and let α : [0, 1]→ X and
β : [0, 1]→ X be paths in the base space X which both start at
some point x0 of X and finish at some point x1 of X , so that

α(0) = β(0) = x0 and α(1) = β(1) = x1.

Let x̃0 be some point of the covering space X̃ that projects down
to x0, so that p(x̃0) = x0. It follows from the Path-Lifting
Theorem (Theorem 4.5) that there exist paths α̃ : [0, 1]→ X̃ and
β̃ : [0, 1]→ X̃ in the covering space X̃ that both start at x̃0 and
that are lifts of the paths α and β respectively.



4. Covering Maps (continued)

Thus
α̃(0) = β̃(0) = x̃0,

p(α̃(t)) = α(t) and p(β̃(t)) = β(t) for all t ∈ [0, 1].

These lifts α̃ and β̃ of the paths α and β are uniquely determined
by their starting point x̃0 (see Proposition 4.3).



4. Covering Maps (continued)

Now, though the lifts α̃ and β̃ of the paths α and β have been
chosen such that they start at the same point x̃0 of the covering
space X̃ , they need not in general end at the same point of X̃ .
However we shall prove that if α ' β rel {0, 1}, then the lifts α̃
and β̃ of α and β respectively that both start at some point x̃0 of
X̃ will both finish at some point x̃1 of x̃ , so that α̃(1) = β̃(1) = x̃1.
This result is established in Proposition 4.7 below.



4. Covering Maps (continued)

Proposition 4.7

Let p : X̃ → X be a covering map over a topological space X , let
α : [0, 1]→ X and β : [0, 1]→ X be paths in X , where
α(0) = β(0) and α(1) = β(1), and let α̃ : [0, 1]→ X̃ and
β̃ : [0, 1]→ X̃ be paths in X̃ such that p ◦ α̃ = α and p ◦ β̃ = β.
Suppose that α̃(0) = β̃(0) and that α ' β rel {0, 1}. Then
α̃(1) = β̃(1) and α̃ ' β̃ rel {0, 1}.



4. Covering Maps (continued)

Proof
Let x0 and x1 be the points of X given by

x0 = α(0) = β(0), x1 = α(1) = β(1).

Now α ' β rel {0, 1}, and therefore there exists a homotopy
F : [0, 1]× [0, 1]→ X such that

F (t, 0) = α(t) and F (t, 1) = β(t) for all t ∈ [0, 1],

and

F (0, τ) = x0 and F (1, τ) = x1 for all τ ∈ [0, 1].



4. Covering Maps (continued)

It then follows from the Homotopy-Lifting Theorem (Theorem 4.6)
that there exists a continuous map G : [0, 1]× [0, 1]→ X̃ such that
p ◦ G = F and G (0, 0) = α̃(0). Then p(G (0, τ)) = x0 and
p(G (1, τ)) = x1 for all τ ∈ [0, 1]. A straightforward application of
Proposition 4.3 shows that any continuous lift of a constant path
must itself be a constant path. Therefore G (0, τ) = x̃0 and
G (1, τ) = x̃1 for all τ ∈ [0, 1], where

x̃0 = G (0, 0) = α̃(0), x̃1 = G (1, 0).



4. Covering Maps (continued)

However
G (0, 0) = G (0, 1) = x̃0 = α̃(0) = β̃(0),

p(G (t, 0)) = F (t, 0) = α(t) = p(α̃(t))

and
p(G (t, 1)) = F (t, 1) = β(t) = p(β̃(t))

for all t ∈ [0, 1]. It follows that the map that sends t ∈ [0, 1] to
G (t, 0) is a lift of the path α that starts at x̃0, and the map that
sends t ∈ [0, 1] to G (t, 1) is a lift of the path β that also starts at
x̃0.



4. Covering Maps (continued)

However Proposition 4.3 ensures that the lifts α̃ and β̃ of the
paths α and β are uniquely determined by their starting points. It
follows that G (t, 0) = α̃(t) and G (t, 1) = β̃(t) for all t ∈ [0, 1]. In
particular,

α̃(1) = G (1, 0) = x̃1 = G (1, 1) = β̃(1).

Moreover the map G : [0, 1]× [0, 1]→ X̃ is a homotopy between
the paths α̃ and β̃ which satisfies G (0, τ) = x̃0 and G (1, τ) = x̃1
for all τ ∈ [0, 1]. It follows that α̃ ' β̃ rel {0, 1}, as required.



4. Covering Maps (continued)

Proposition 4.8

Let p : X̃ → X be a covering map, and let x̃0 be a point of the
covering space X̃ . Then the homomorphism

p# : π1(X̃ , x̃0)→ π1(X , p(x̃0))

of fundamental groups induced by the covering map p is injective.

Proof
Let σ0 and σ1 be loops in X̃ based at the point x̃0, representing
elements [σ0] and [σ1] of π1(X̃ , x̃0). Suppose that
p#[σ0] = p#[σ1]. Then p ◦ σ0 ' p ◦ σ1 rel {0, 1}. Also
σ0(0) = x̃0 = σ1(0). Therefore σ0 ' σ1 rel {0, 1}, by
Proposition 4.7, and thus [σ0] = [σ1]. We conclude that the
homomorphism p# : π1(X̃ , x̃0)→ π1(X , p(x̃0)) is injective.



4. Covering Maps (continued)

Proposition 4.9

Let p : X̃ → X be a covering map, let x̃0 be a point of the covering
space X̃ , and let γ be a loop in X based at p(x̃0). Then
[γ] ∈ p#

(
π1(X̃ , x̃0)

)
if and only if there exists a loop γ̃ in X̃ , based

at the point x̃0, such that p ◦ γ̃ = γ.



4. Covering Maps (continued)

Proof
If γ = p ◦ γ̃ for some loop γ̃ in X̃ based at x̃0 then [γ] = p#[γ̃],
and therefore [γ] ∈ p#

(
π1(X̃ , x̃0)

)
.

Conversely suppose that [γ] ∈ p#
(
π1(X̃ , x̃0)

)
. We must show that

there exists some loop γ̃ in X̃ based at x̃0 such that γ = p ◦ γ̃.
Now there exists a loop σ in X̃ based at the point x̃0 such that
[γ] = p#([σ]) in π1(X , p(x̃0)). Then γ ' p ◦ σ rel {0, 1}. It follows
from the Path-Lifting Theorem for covering maps (Theorem 4.5)
that there exists a unique path γ̃ : [0, 1]→ X̃ in X̃ for which
γ̃(0) = x̃0 and p ◦ γ̃ = γ. It then follows from Proposition 4.7 that
γ̃(1) = σ(1) and γ̃ ' σ rel {0, 1}. But σ(1) = x̃0. Therefore the
path γ̃ is the required loop in X̃ based the point x̃0 which satisfies
p ◦ γ̃ = γ.



4. Covering Maps (continued)

Corollary 4.10

Let p : X̃ → X be a covering map over a topological space X , let
w0 and w1 be points of X̃ satisfying p(w0) = p(w1), and let
α : [0, 1]→ X̃ be a path in X̃ from w0 to w1. Suppose that
[p ◦α] ∈ p#

(
π1(X̃ ,w0)

)
. Then the path α is a loop in X̃ , and thus

w0 = w1.

Proof
It follows from Proposition 4.9 that there exists a loop β based at
w0 satisfying p ◦ β = p ◦ α. Then α(0) = β(0). Now
Proposition 4.3 ensures that the lift to X̃ of any path in X is
uniquely determined by its starting point. It follows that α = β.
But then the path α must be a loop in X̃ , and therefore w0 = w1,
as required.



4. Covering Maps (continued)

Theorem 4.11

Let p : X̃ → X be a covering map over a topological space X .
Suppose that X̃ is path-connected and that X is simply-connected.
Then the covering map p : X̃ → X is a homeomorphism.

Proof
We show that the map p : X̃ → X is a bijection. This map is
surjective (since covering maps are by definition surjective). We
must show that it is injective. Let w0 and w1 be points of X̃ with
the property that p(w0) = p(w1). Then there exists a path
α : [0, 1]→ X̃ with α(0) = w0 and α(1) = w1, since X̃ is
path-connected. Then p ◦ α is a loop in X based at the point x0,
where x0 = p(w0). However π1(X , p(w0)) is the trivial group, since
X is simply-connected. It follows from Corollary 4.10 that the
path α is a loop in X̃ based at w0, and therefore w0 = w1. This
shows that the the covering map p : X̃ → X is injective.



4. Covering Maps (continued)

Thus the map p : X̃ → X is a bijection, and thus has a well-defined
inverse p−1 : X → X̃ . But any bijective covering map is a
homeomorphism (Corollary 4.2). The result follows.
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