
MA342R—Covering Spaces and
Fundamental Groups

School of Mathematics, Trinity College
Hilary Term 2017

Lecture 16 (February 20, 2017)

David R. Wilkins



4. Covering Maps

4. Covering Maps

4.1. Evenly-Covered Open Sets and Covering Maps

Definition

Let X and X̃ be topological spaces and let p : X̃ → X be a
continuous map. An open subset U of X is said to be evenly
covered by the map p if and only if p−1(U) is a disjoint union of
open sets of X̃ each of which is mapped homeomorphically onto U
by p. The map p : X̃ → X is said to be a covering map if
p : X̃ → X is surjective and in addition every point of X is
contained in some open set that is evenly covered by the map p.

If p : X̃ → X is a covering map, then we say that X̃ is a covering
space of X .



4. Covering Maps (continued)

Example
Let S1 be the unit circle in R2. Then the map p : R→ S1 defined
by

p(t) = (cos 2πt, sin 2πt)

is a covering map. Indeed let n be a point of S1. Consider the
open set U in S1 containing n defined by U = S1 \ {−n}. Now
n = (cos 2πt0, sin 2πt0) for some t0 ∈ R. Then p−1(U) is the
union of the disjoint open sets Jn for all integers n, where

Jn = {t ∈ R : t0 + n − 1
2 < t < t0 + n + 1

2}.

Each of the open sets Jn is mapped homeomorphically onto U by
the map p. This shows that p : R→ S1 is a covering map.



4. Covering Maps (continued)

Example
Let pexp : C→ C \ {0} be the map from the complex plane C to
the open subset C \ {0} of C defined such that pexp(z) = exp(z)
for all complex numbers z . We show that pexp(z) is a covering
map.

Given any real number s, let

Ls = {−re is : r ∈ R and r ≥ 0}.

Then Ls is a ray in the complex plane starting at zero and passing
through − cos s − i sin s. Moreover every complex number
belonging to the complement C \ Ls of the ray Ls in C can be
expressed uniquely in the form re it , where r and t are real numbers
satisfying r > 0 and s − π < t < s + π.



4. Covering Maps (continued)

Let
Ws = {w ∈ C : s − π < Im[w ] < s + π},

where Im[w ] denotes the imaginary part of w for all complex
numbers w , and let Fs : C \ Ls →Ws be the complex-valued
function on the open subset C \ Ls of the complex plane defined
such that

Fs(re it) = log r + it

for all real numbers r and t satisfying r > 0 and s − π < t < s + π.
Then Fs : C \ Ls →Ws is a continuous map, exp(Fs(z)) = z for all
z ∈ C \ Ls and Fs(exp(w)) = w for all w ∈Ws . It follows that
Fs : C \ Ls →Ws is a homeomorphism between C \ Ls and Ws .



4. Covering Maps (continued)

Let w be a complex number for which exp(w) ∈ C \ Ls . Then
there exists a unique integer m such that
s + 2πm − π < Im[w ] < s + 2πm + π. Then w ∈ Fs+m(expw). It
follows from this that, for each real number s, the preimage
p−1exp(C \ Ls) is the disjoint union of the sets Ws+2πm as m ranges
over the set Z of integers. Also Ws+2πm ∩Ws+2πn = ∅ when m
and n are integers and m 6= n, and pexp : C \ C \ {0} maps the
open set Ws+2πm homeomorphically onto C \ Ls for all integers m,
where pexp(w) = exp(w) for all w ∈ C. Thus pexp : C→ C \ {0} is
a covering map.



4. Covering Maps (continued)

Example
Let

X = {(x , y) ∈ R2 : (x , y) 6= (0, 0)},
X̃ = {(x , y , z) ∈ R3 : (x , y) 6= (0, 0),

x =
√
x2 + y2 cos 2πz and y =

√
x2 + y2 sin 2πz},

and let p : X̃ → X be defined so that p(x , y , z) = (x , y) for all
(x , y , z) ∈ X̃ . Now exp(w) = T (p(h(w))) for all w ∈ C, where

h(u + iv) =
(
eu cos v , eu sin v ,

v

2π

)
for all real numbers u and v and T (x , y) = x + iy for all
(x , y) ∈ X .



4. Covering Maps (continued)

Moreover h : C→ X̃ is a homeomorphism whose inverse h−1

satisfies
h−1(z) = 1

2 log(x2 + y2) + 2πiz

for all (x , y , z) ∈ X̃ .

The map p : X̃ → X is a covering map. Indeed let

Ws,m = {(x , y , z) ∈ X̃ : s + m − 1
2 < z < s + m + 1

2}

and let Vs,m = p(Ws,0) for all real numbers s and integers m.
Then Vs,0 is an open set in X , p−1(Vs,0) =

⋃
m∈ZWs,m and p

maps Ws,m homeomorphically onto Vs,0 for all s ∈ R and m ∈ Z.

The surface X̃ is a helicoid in R3.



4. Covering Maps (continued)

Example
Consider the map α : (−2, 2)→ S1, where
α(t) = (cos 2πt, sin 2πt) for all t ∈ (−2, 2). It can easily be shown
that there is no open set U containing the point (1, 0) that is
evenly covered by the map α. Indeed suppose that there were to
exist such an open set U. Then there would exist some δ satisfying
0 < δ < 1

2 such that Uδ ⊂ U, where

Uδ = {(cos 2πt, sin 2πt) : −δ < t < δ}.

The open set Uδ would then be evenly covered by the map α.
However the connected components of α−1(Uδ) are (−2,−2 + δ),
(−1− δ,−1 + δ), (−δ, δ), (1− δ, 1 + δ) and (2− δ, 2), and neither
(−2,−2 + δ) nor (2− δ, 2) is mapped homeomorphically onto Uδ
by α.



4. Covering Maps (continued)

Example
Let Z = C \ {1,−1}, let

Z̃ = {(z ,w) ∈ C2 : w 6= 0 and w2 = z2 − 1},

and let p : Z̃ → Z be defined such that p(z ,w) = z for all
(z ,w) ∈ Z̃ . Let (z0,w0) ∈ Z̃ , and let z = z0 + ζ. Then

z2 − 1 = z20 − 1 + 2z0ζ + ζ2 = w2
0 + 2z0ζ + ζ2

= w2
0

(
1 +

2z0ζ + ζ2

w2
0

)
.



4. Covering Maps (continued)

Now the continuity at zero of the function sending each complex
number ζ to (2z0ζ + ζ2)/w2

0 ensures that there exists some
positive real number δ such that∣∣∣∣2z0ζ + ζ2

w2
0

∣∣∣∣ < 1

whenever |ζ| < δ. Let D(z0, δ) be the open disk of radius δ about
z0 in the complex plane, and let

F (z) =
1

2
log

(
1 +

2z0(z − z0) + (z − z0)2

w2
0

)
for all z ∈ D(z0, δ), where log(re iθ) = log r + iθ for all real
numbers r and θ satisfying r > 0 and −π < θ < π. Then F (z) is a
continuous function of z on D(z0, δ), and

exp(F (z))2 = 1 +
2z0(z − z0) + (z − z0)2

w2
0

=
z2 − 1

w2
0

for all z ∈ D(z0, δ).



4. Covering Maps (continued)

Let (z ,w) ∈ p−1(D(z0, δ)). Then z ∈ D(z0, δ) and

w2 = z2 − 1 =
(
w0 exp(F (z))

)2
,

and therefore w = ±w0 exp(F (z)). It follows that
p−1(D(z0, δ)) = W+ ∪W− where

W+ = {(z ,w) ∈ C2 : z ∈ D(z0, δ) and w = w0 exp(F (z))},
W− = {(z ,w) ∈ C2 : z ∈ D(z0, δ) and w = −w0 exp(F (z))},

Now

Re

[
1 +

2z0(z − z0) + (z − z0)2

w2
0

]
> 0

for all z ∈ D(z0, δ). It follows from the definition of F (z) that

−1
4π < Im[F (z)] < 1

4π

for all z ∈ D(z0, δ), and therefore



4. Covering Maps (continued)

Re[exp(F (z))] = exp(Re[F (z)]) cos(Im[F (z)]) > 0

for all z ∈ D(z0, δ). It follows that

W+ =

{
(z ,w) ∈ Z̃ : z ∈ D(z0, δ) and Re

[
w

w0

]
> 0

}
,

=

{
(z ,w) ∈ p−1 (D(z0, δ)) : Re

[
w

w0

]
> 0

}
,

W− =

{
(z ,w) ∈ Z̃ : z ∈ D(z0, δ) and Re

[
w

w0

]
< 0

}
,

=

{
(z ,w) ∈ p−1 (D(z0, δ)) : Re

[
w

w0

]
< 0

}
.



4. Covering Maps (continued)

Now p−1(D(z0, δ) is open in Z̃ , because the it is the preimage of
the open subset D(z0, δ) of Z under the continuous map
p : Z̃ → Z . Moreover the function mapping (z ,w) to the real part
of w/w0 is continuous on p−1(D(z0, δ). It follows that W+ and
W− are open in Z̃ . Also W+ ∩W− = ∅, and the map p : Z̃ → Z
maps each of the sets W+ and W− homeomorphically onto Z ,
where Z = C \ {1,−1}. It follows that the open disk D(z0, δ) is
evenly covered by the map p : Z̃ → Z . We have therefore shown
that this map is a covering map.



4. Covering Maps (continued)

Let f̃ (z ,w) = w for all (z ,w) ∈ Z̃ . Then

f̃ (z̃)2 = p(z̃)2 − 1

for all z̃ ∈ Z̃ . It follows that the function f̃ : Z̃ → C represents in
some sense the many-valued ‘function’

√
z2 − 1. However this

function z̃ is not defined on the open subset Z of the complex
plane, but is instead defined over a covering space Z̃ of this open
set. This covering space is the Riemann surface for the ‘function’√
z2 − 1. This method of representing many-valued ‘functions’ of

a complex variable using single-valued functions defined over a
covering space was initiated and extensively developed by Bernhard
Riemann (1826–1866) in his doctoral thesis.
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